skia2/tools/perf-canvaskit-puppeteer/canvas_perf.js
Kevin Lubick a1c2117004 [canvaskit] Add drawRect4f as example 'fast path' API
I added 3 tests, one using the drawRect API naively,
one using drawRect with a Malloc'd array, and one using
the drawRect4f.

rough local measurements:
 - [baseline with tip of tree code]: 50ms
 - naive drawRect: 40ms
 - drawRect with malloc: 28ms
 - drawRect4f: 27ms

I also tried the benchmarks locally with taking in paint
as a const reference. I did not see any changes, but that
could just be small sample size. I plan to land the code
as is for now, collect a bit of data in Perf and then try
landing the const reference stuff and see if we get
something measurable.

To aid this, I added in a helper list of tests to only run
some benchmarks easily.

Change-Id: I2d8c5296e93f05be45fc12059955fb9d9e339d83
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/315143
Reviewed-by: Kevin Lubick <kjlubick@google.com>
2020-09-03 14:53:42 +00:00

685 lines
23 KiB
JavaScript

const onlytests = [];
const tests = [];
// In all tests, the canvas is 600 by 600 px.
// tests should NOT call ctx.surface.flush()
// flush is done by benchmark.js
function randomColorTwo(CanvasKit, i, j) {
c = [1, 1, 1, 1];
c[i] = Math.random();
c[j] = Math.random();
return CanvasKit.Color4f(...c);
}
function randomColor(CanvasKit) {
return CanvasKit.Color4f(Math.random(), Math.random(), Math.random(), Math.random());
}
function starPath(CanvasKit, X=128, Y=128, R=116) {
const p = new CanvasKit.SkPath();
p.moveTo(X + R, Y);
for (let i = 1; i < 8; i++) {
let a = 2.6927937 * i;
p.lineTo(X + R * Math.cos(a), Y + R * Math.sin(a));
}
p.close();
return p;
}
tests.push({
description: 'Draw 10K colored rect clips',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
},
test: function(CanvasKit, ctx) {
// Draw a lot of colored squares.
for (let i=0; i<10000; i++) {
const x = Math.random()*550;
const y = Math.random()*550;
ctx.canvas.save();
ctx.canvas.clipRect(CanvasKit.LTRBRect(x, y, x+50, y+50),
CanvasKit.ClipOp.Intersect, false);
ctx.canvas.drawColor(randomColorTwo(CanvasKit, 0, 1), CanvasKit.BlendMode.SrcOver);
ctx.canvas.restore();
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'canvas_drawColor',
});
tests.push({
description: 'Draw 10K colored ellipses',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.paint = new CanvasKit.SkPaint();
ctx.paint.setAntiAlias(true);
ctx.paint.setStyle(CanvasKit.PaintStyle.Fill);
},
test: function(CanvasKit, ctx) {
for (let i=0; i<10000; i++) {
const x = Math.random()*550;
const y = Math.random()*550;
ctx.paint.setColor(randomColorTwo(CanvasKit, 1, 2));
ctx.canvas.drawOval(CanvasKit.LTRBRect(x, y, x+50, y+50), ctx.paint);
}
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
},
perfKey: 'canvas_drawOval',
});
tests.push({
description: 'Draw 10K colored roundRects',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.paint = new CanvasKit.SkPaint();
ctx.paint.setAntiAlias(true);
ctx.paint.setStyle(CanvasKit.PaintStyle.Fill);
},
test: function(CanvasKit, ctx) {
for (let i=0; i<10000; i++) {
const x = Math.random()*550;
const y = Math.random()*550;
ctx.paint.setColor(randomColorTwo(CanvasKit, 0, 2));
const rr = CanvasKit.RRectXY(CanvasKit.LTRBRect(x, y, x+50, y+50), 10, 10,);
ctx.canvas.drawRRect(rr, ctx.paint);
}
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
},
perfKey: 'canvas_drawRRect',
});
tests.push({
description: 'Draw 10K colored rects',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.paint = new CanvasKit.SkPaint();
ctx.paint.setAntiAlias(true);
ctx.paint.setStyle(CanvasKit.PaintStyle.Fill);
},
test: function(CanvasKit, ctx) {
for (let i=0; i<10000; i++) {
const x = Math.random()*550;
const y = Math.random()*550;
ctx.paint.setColor(randomColorTwo(CanvasKit, 1, 2));
ctx.canvas.drawRect(CanvasKit.LTRBRect(x, y, x+50, y+50), ctx.paint);
}
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
},
perfKey: 'canvas_drawRect',
});
tests.push({
description: "Draw 10K colored rects with malloc'd rect",
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.paint = new CanvasKit.SkPaint();
ctx.paint.setAntiAlias(true);
ctx.paint.setStyle(CanvasKit.PaintStyle.Fill);
ctx.rect = CanvasKit.Malloc(Float32Array, 4);
},
test: function(CanvasKit, ctx) {
for (let i=0; i<10000; i++) {
ctx.paint.setColor(randomColorTwo(CanvasKit, 1, 2));
const ta = ctx.rect.toTypedArray();
ta[0] = Math.random()*550; // x
ta[1] = Math.random()*550; // y
ta[2] = ta[0] + 50;
ta[3] = ta[1] + 50;
ctx.canvas.drawRect(ta, ctx.paint);
}
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
CanvasKit.Free(ctx.rect);
},
perfKey: 'canvas_drawRect_malloc',
});
tests.push({
description: 'Draw 10K colored rects using 4 float API',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.paint = new CanvasKit.SkPaint();
ctx.paint.setAntiAlias(true);
ctx.paint.setStyle(CanvasKit.PaintStyle.Fill);
},
test: function(CanvasKit, ctx) {
for (let i=0; i<10000; i++) {
const x = Math.random()*550;
const y = Math.random()*550;
ctx.paint.setColor(randomColorTwo(CanvasKit, 1, 2));
ctx.canvas.drawRect4f(x, y, x+50, y+50, ctx.paint);
}
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
},
perfKey: 'canvas_drawRect4f',
});
tests.push({
description: 'Compute tonal colors',
setup: function(CanvasKit, ctx) {},
test: function(CanvasKit, ctx) {
for (let i = 0; i < 10; i++) {
const input = {
ambient: randomColor(CanvasKit),
spot: randomColor(CanvasKit),
};
const out = CanvasKit.computeTonalColors(input);
if (out.spot[2] > 10 || out.ambient[3] > 10) {
// Something to make sure v8 can't optimize away the return value
throw 'not possible';
}
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'computeTonalColors',
});
tests.push({
description: 'Get and set the color to a paint',
setup: function(CanvasKit, ctx) {
ctx.paint = new CanvasKit.SkPaint();
},
test: function(CanvasKit, ctx) {
for (let i = 0; i < 10; i++) {
ctx.paint.setColor(randomColor(CanvasKit));
const color = ctx.paint.getColor();
if (color[3] > 4) {
// Something to make sure v8 can't optimize away the return value
throw 'not possible';
}
}
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
},
perfKey: 'paint_setColor_getColor',
});
tests.push({
description: 'Set the color to a paint by components',
setup: function(CanvasKit, ctx) {
ctx.paint = new CanvasKit.SkPaint();
},
test: function(CanvasKit, ctx) {
const r = Math.random();
const g = Math.random();
const b = Math.random();
const a = Math.random();
for (let i = 0; i < 10000; i++) {
ctx.paint.setColorComponents(r, g, b, a);
}
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
},
perfKey: 'paint_setColorComponents',
});
tests.push({
description: 'Draw a shadow with tonal colors',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.input = {
ambient: CanvasKit.Color4f(0.2, 0.1, 0.3, 0.5),
spot: CanvasKit.Color4f(0.8, 0.8, 0.9, 0.9),
};
ctx.lightRadius = 30;
ctx.flags = 0;
ctx.lightPos = [250,150,300];
ctx.zPlaneParams = [0,0,1];
ctx.path = starPath(CanvasKit);
},
test: function(CanvasKit, ctx) {
const out = CanvasKit.computeTonalColors(ctx.input);
ctx.canvas.drawShadow(ctx.path, ctx.zPlaneParams, ctx.lightPos, ctx.lightRadius,
out.ambient, out.spot, ctx.flags);
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'canvas_drawShadow',
});
tests.push({
description: 'Draw a gradient with an array of 10K colors',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
},
test: function(CanvasKit, ctx) {
ctx.canvas.clear(CanvasKit.WHITE);
const num = 10000;
colors = Array(num);
positions = Array(num);
// Create an array of colors spaced evenly along the 0..1 range of positions.
for (let i=0; i<num; i++) {
colors[i] = randomColorTwo(CanvasKit, 2, 3);
positions[i] = i/num;
}
// make a gradient from those colors
const shader = CanvasKit.SkShader.MakeRadialGradient(
[300, 300], 50, // center, radius
colors, positions,
CanvasKit.TileMode.Mirror,
);
// Fill the canvas using the gradient shader.
const paint = new CanvasKit.SkPaint();
paint.setStyle(CanvasKit.PaintStyle.Fill);
paint.setShader(shader);
ctx.canvas.drawPaint(paint);
shader.delete();
paint.delete();
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'canvas_drawHugeGradient',
});
tests.push({
description: 'Draw a png image',
setup: async function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.paint = new CanvasKit.SkPaint();
ctx.img = CanvasKit.MakeImageFromEncoded(ctx.files['test_512x512.png']);
ctx.frame = 0;
},
test: function(CanvasKit, ctx) {
ctx.canvas.clear(CanvasKit.WHITE);
// Make the image to move so you can see visually that the test is running.
ctx.canvas.drawImage(ctx.img, ctx.frame, ctx.frame, ctx.paint);
ctx.frame++;
},
teardown: function(CanvasKit, ctx) {
ctx.img.delete();
ctx.paint.delete();
},
perfKey: 'canvas_drawPngImage',
});
function htmlImageElementToDataURL(htmlImageElement) {
const canvas = document.createElement('canvas');
canvas.height = htmlImageElement.height;
canvas.width = htmlImageElement.width;
const ctx = canvas.getContext('2d')
ctx.drawImage(htmlImageElement, 0, 0);
return canvas.toDataURL();
}
// This for loop generates two perf cases for each test image. One uses browser APIs
// to decode an image, and the other uses codecs included in the CanvasKit wasm to decode an
// image. wasm codec Image decoding is faster (50 microseconds vs 20000 microseconds), but
// including codecs in wasm increases the size of the CanvasKit wasm binary.
for (const testImageFilename of ['test_64x64.png', 'test_512x512.png', 'test_1500x959.jpg']) {
const htmlImageElement = new Image();
htmlImageElementLoadPromise = new Promise((resolve) =>
htmlImageElement.addEventListener('load', resolve));
// Create a data url of the image so that load and decode time can be measured
// while ignoring the time of getting the image from disk / the network.
imageDataURLPromise = htmlImageElementLoadPromise.then(() =>
htmlImageElementToDataURL(htmlImageElement));
htmlImageElement.src = `/static/assets/${testImageFilename}`;
tests.push({
description: 'Decode an image using HTMLImageElement and Canvas2D',
setup: async function(CanvasKit, ctx) {
ctx.imageDataURL = await imageDataURLPromise;
},
test: async function(CanvasKit, ctx) {
const image = new Image();
// Testing showed that waiting for the load event is faster than waiting for
// image.decode().
// Despite the name, both of them would decode the image, it was loaded in setup.
// HTMLImageElement.decode() reference:
// https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement/decode
const promise = new Promise((resolve) => image.addEventListener('load', resolve));
image.src = ctx.imageDataURL;
await promise;
const img = await CanvasKit.MakeImageFromCanvasImageSource(image);
img.delete();
},
teardown: function(CanvasKit, ctx) {},
perfKey: `canvas_${testImageFilename}_HTMLImageElementDecoding`,
});
tests.push({
description: 'Decode an image using codecs in wasm',
setup: function(CanvasKit, ctx) {},
test: function(CanvasKit, ctx) {
const img = CanvasKit.MakeImageFromEncoded(ctx.files[testImageFilename]);
img.delete();
},
teardown: function(CanvasKit, ctx) {},
perfKey: '`canvas_${testImageFilename}_wasmImageDecoding`',
});
}
// 3x3 matrix ops
tests.push({
description: 'Multiply 3x3 matrices together',
setup: function(CanvasKit, ctx) {
ctx.first = CanvasKit.SkMatrix.rotated(Math.PI/2, 10, 20);
ctx.second = CanvasKit.SkMatrix.scaled(1, 2, 3, 4);
},
test: function(CanvasKit, ctx) {
ctx.result = CanvasKit.SkMatrix.multiply(ctx.first, ctx.second);
if (ctx.result.length === 18) {
throw 'this is here to keep the result from being optimized away';
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'skmatrix_multiply',
});
tests.push({
description: 'Transform a point using a matrix (mapPoint)',
setup: function(CanvasKit, ctx) {
ctx.matr = CanvasKit.SkMatrix.multiply(
CanvasKit.SkMatrix.rotated(Math.PI/2, 10, 20),
CanvasKit.SkMatrix.scaled(1, 2, 3, 4),
); // make an arbitrary, but interesting matrix
},
test: function(CanvasKit, ctx) {
for (let i = 0; i < 30; i++) {
const pt = CanvasKit.SkMatrix.mapPoints(ctx.matr, [i, i]);
if (pt.length === 18) {
throw 'this is here to keep pt from being optimized away';
}
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'skmatrix_transformPoint',
});
tests.push({
description: 'Invert a 3x3 matrix',
setup: function(CanvasKit, ctx) {
ctx.matr = CanvasKit.SkMatrix.multiply(
CanvasKit.SkMatrix.rotated(Math.PI/2, 10, 20),
CanvasKit.SkMatrix.scaled(1, 2, 3, 4),
);
},
test: function(CanvasKit, ctx) {
ctx.result = CanvasKit.SkMatrix.invert(ctx.matr);
if (ctx.result.length === 18) {
throw 'this is here to keep the result from being optimized away';
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'skmatrix_invert',
});
tests.push({
description: 'Create a shader from a 3x3 matrix',
setup: function(CanvasKit, ctx) {
ctx.matr = CanvasKit.SkMatrix.multiply(
CanvasKit.SkMatrix.rotated(Math.PI/2, 10, 20),
CanvasKit.SkMatrix.scaled(1, 2, 3, 4),
);
},
test: function(CanvasKit, ctx) {
const shader = CanvasKit.SkShader.MakeSweepGradient(
100, 100,
[CanvasKit.GREEN, CanvasKit.BLUE],
[0.0, 1.0],
CanvasKit.TileMode.Clamp,
ctx.matr);
shader.delete();
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'skmatrix_makeShader',
});
tests.push({
description: 'Concat 3x3 matrix on a canvas',
setup: function(CanvasKit, ctx) {
ctx.canvas = new CanvasKit.SkCanvas();
ctx.matr = CanvasKit.SkMatrix.multiply(
CanvasKit.SkMatrix.rotated(Math.PI/2, 10, 20),
CanvasKit.SkMatrix.scaled(1, 2, 3, 4),
);
},
test: function(CanvasKit, ctx) {
ctx.canvas.concat(ctx.matr);
},
teardown: function(CanvasKit, ctx) {
ctx.canvas.delete();
},
perfKey: 'skmatrix_concat',
});
// 4x4 matrix operations
tests.push({
description: 'Multiply 4x4 matrices together',
setup: function(CanvasKit, ctx) {
ctx.first = CanvasKit.SkM44.rotated([10, 20], Math.PI/2);
ctx.second = CanvasKit.SkM44.scaled([1, 2, 3]);
},
test: function(CanvasKit, ctx) {
ctx.result = CanvasKit.SkM44.multiply(ctx.first, ctx.second);
if (ctx.result.length === 18) {
throw 'this is here to keep the result from being optimized away';
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'skm44_multiply',
});
tests.push({
description: 'Invert a 4x4 matrix',
setup: function(CanvasKit, ctx) {
ctx.matr = CanvasKit.SkM44.multiply(
CanvasKit.SkM44.rotated([10, 20], Math.PI/2),
CanvasKit.SkM44.scaled([1, 2, 3]),
);
},
test: function(CanvasKit, ctx) {
ctx.result = CanvasKit.SkM44.invert(ctx.matr);
if (ctx.result.length === 18) {
throw 'this is here to keep the result from being optimized away';
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'skm44_invert',
});
tests.push({
description: 'Concat 4x4 matrix on a canvas',
setup: function(CanvasKit, ctx) {
ctx.canvas = new CanvasKit.SkCanvas();
ctx.matr = CanvasKit.SkM44.multiply(
CanvasKit.SkM44.rotated([10, 20], Math.PI/2),
CanvasKit.SkM44.scaled([1, 2, 3]),
);
},
test: function(CanvasKit, ctx) {
ctx.canvas.concat(ctx.matr);
},
teardown: function(CanvasKit, ctx) {
ctx.canvas.delete();
},
perfKey: 'skm44_concat',
});
// DOMMatrix operations
tests.push({
description: 'Multiply DOM matrices together',
setup: function(CanvasKit, ctx) {
ctx.first = new DOMMatrix().translate(10, 20).rotate(90).translate(-10, -20);
ctx.second = new DOMMatrix().translate(3, 4).scale(1, 2).translate(-3, -4);
},
test: function(CanvasKit, ctx) {
const result = ctx.first.multiply(ctx.second);
if (result.length === 18) {
throw 'this is here to keep the result from being optimized away';
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'dommatrix_multiply',
});
tests.push({
description: 'Transform a point using a matrix (transformPoint)',
setup: function(CanvasKit, ctx) {
ctx.matr = new DOMMatrix().translate(10, 20).rotate(90).translate(-10, -20)
.multiply(new DOMMatrix().translate(3, 4).scale(1, 2).translate(-3, -4));
ctx.reusablePt = new DOMPoint(0, 0)
},
test: function(CanvasKit, ctx) {
for (let i = 0; i < 30; i++) {
ctx.reusablePt.X = i; ctx.reusablePt.Y = i;
const pt = ctx.matr.transformPoint(ctx.reusablePt);
if (pt.length === 18) {
throw 'this is here to keep pt from being optimized away';
}
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'dommatrix_transformPoint',
});
tests.push({
description: 'Invert a DOM matrix',
setup: function(CanvasKit, ctx) {
ctx.matr = new DOMMatrix().translate(10, 20).rotate(90).translate(-10, -20)
.multiply(new DOMMatrix().translate(3, 4).scale(1, 2).translate(-3, -4));
},
test: function(CanvasKit, ctx) {
const inverted = ctx.matr.inverse();
if (inverted.length === 18) {
throw 'this is here to keep the result from being optimized away';
}
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'dommatrix_invert',
});
tests.push({
description: 'make a shader from a DOMMatrix',
setup: function(CanvasKit, ctx) {
ctx.matr = new DOMMatrix().translate(10, 20).rotate(90).translate(-10, -20)
.multiply(new DOMMatrix().translate(3, 4).scale(1, 2).translate(-3, -4));
},
test: function(CanvasKit, ctx) {
const shader = CanvasKit.SkShader.MakeSweepGradient(
100, 100,
[CanvasKit.GREEN, CanvasKit.BLUE],
[0.0, 1.0],
CanvasKit.TileMode.Clamp,
ctx.matr);
shader.delete();
},
teardown: function(CanvasKit, ctx) {},
perfKey: 'dommatrix_makeShader',
});
// Tests the layout and drawing of a paragraph with hundreds of words.
// In the second variant, the colors change every frame
// In the third variant, the font size cycles between three sizes.
// In the fourth variant, the layout width changes.
// in the fifth variant, all of those properties change at the same time.
for (const variant of ['static', 'color_changing', 'size_changing', 'layout_changing', 'everything']) {
tests.push({
description: `Layout and draw a ${variant} paragraph`,
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.fontMgr = CanvasKit.SkFontMgr.FromData([ctx.files['Roboto-Regular.ttf']]);
ctx.paraStyle = new CanvasKit.ParagraphStyle({
textStyle: {
color: CanvasKit.WHITE,
fontFamilies: ['Roboto'],
fontSize: 11,
},
textAlign: CanvasKit.TextAlign.Left,
});
ctx.frame = 0;
ctx.text = "annap sap sa ladipidapidi rapadip sam dim dap dim dap do raka dip da da badip badip badipidipidipadisuten din dab do ".repeat(40);
},
test: function(CanvasKit, ctx) {
ctx.canvas.clear(CanvasKit.BLACK);
const builder = CanvasKit.ParagraphBuilder.Make(ctx.paraStyle, ctx.fontMgr);
let pos = 0;
let color = CanvasKit.WHITE;
while (pos < ctx.text.length) {
let size = 11;
if (variant === 'size_changing' || variant === 'everything') {
// the bigger this modulo, the more work it takes to fill the glyph cache
size += ctx.frame % 4;
}
if (variant === 'color_changing' || variant === 'everything') {
color = randomColorTwo(CanvasKit, 0, 1);
}
builder.pushStyle(CanvasKit.TextStyle({
color: color,
fontFamilies: ['Roboto'],
fontSize: size,
fontStyle: {
weight: CanvasKit.FontWeight.Bold,
},
}));
const len = Math.floor(Math.random()*5+2);
builder.addText(ctx.text.slice(pos, pos+len));
builder.pop();
pos += len;
}
const paragraph = builder.build();
let w = 0;
const base_width = 520;
const varying_width_modulo = 70;
if (variant === 'layout_changing' || variant === 'everything') {
w = ctx.frame % varying_width_modulo;
}
paragraph.layout(base_width + w); // width in pixels to use when wrapping text
ctx.canvas.drawParagraph(paragraph, 10, 10);
ctx.frame++;
builder.delete();
paragraph.delete();
},
teardown: function(CanvasKit, ctx) {
ctx.fontMgr.delete();
},
perfKey: 'canvas_drawParagraph_'+variant,
});
}
tests.push({
description: 'Draw a path with a blur mask',
setup: function(CanvasKit, ctx) {
ctx.canvas = ctx.surface.getCanvas();
ctx.paint = new CanvasKit.SkPaint();
ctx.paint.setAntiAlias(true);
ctx.paint.setStyle(CanvasKit.PaintStyle.Fill);
ctx.paint.setColor(CanvasKit.Color4f(0.1, 0.7, 0.0, 1.0));
ctx.path = starPath(CanvasKit);
ctx.frame = 0;
},
test: function(CanvasKit, ctx) {
const sigma = 0.1 + (ctx.frame/10);
const blurMask = CanvasKit.SkMaskFilter.MakeBlur(
CanvasKit.BlurStyle.Normal, sigma, true);
ctx.paint.setMaskFilter(blurMask);
ctx.canvas.drawPath(ctx.path, ctx.paint);
blurMask.delete();
ctx.frame++;
},
teardown: function(CanvasKit, ctx) {
ctx.paint.delete();
ctx.path.delete();
},
perfKey: 'canvas_blur_mask_filter',
});