788b91678f
Use std::min and std::max everywhere. SkTPin still exists. We can't use std::clamp yet, and even when we can, it has undefined behavior with NaN. SkTPin is written to ensure that we return a value in the [lo, hi] range. Change-Id: I506852a36e024ae405358d5078a872e2c77fa71e Docs-Preview: https://skia.org/?cl=269357 Reviewed-on: https://skia-review.googlesource.com/c/skia/+/269357 Commit-Queue: Brian Osman <brianosman@google.com> Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com>
417 lines
13 KiB
C++
417 lines
13 KiB
C++
/*
|
|
* Copyright 2012 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "src/pathops/SkIntersections.h"
|
|
#include "src/pathops/SkLineParameters.h"
|
|
#include "src/pathops/SkPathOpsCubic.h"
|
|
#include "src/pathops/SkPathOpsCurve.h"
|
|
#include "src/pathops/SkPathOpsQuad.h"
|
|
#include "src/pathops/SkPathOpsRect.h"
|
|
|
|
// from blackpawn.com/texts/pointinpoly
|
|
static bool pointInTriangle(const SkDPoint fPts[3], const SkDPoint& test) {
|
|
SkDVector v0 = fPts[2] - fPts[0];
|
|
SkDVector v1 = fPts[1] - fPts[0];
|
|
SkDVector v2 = test - fPts[0];
|
|
double dot00 = v0.dot(v0);
|
|
double dot01 = v0.dot(v1);
|
|
double dot02 = v0.dot(v2);
|
|
double dot11 = v1.dot(v1);
|
|
double dot12 = v1.dot(v2);
|
|
// Compute barycentric coordinates
|
|
double denom = dot00 * dot11 - dot01 * dot01;
|
|
double u = dot11 * dot02 - dot01 * dot12;
|
|
double v = dot00 * dot12 - dot01 * dot02;
|
|
// Check if point is in triangle
|
|
if (denom >= 0) {
|
|
return u >= 0 && v >= 0 && u + v < denom;
|
|
}
|
|
return u <= 0 && v <= 0 && u + v > denom;
|
|
}
|
|
|
|
static bool matchesEnd(const SkDPoint fPts[3], const SkDPoint& test) {
|
|
return fPts[0] == test || fPts[2] == test;
|
|
}
|
|
|
|
/* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */
|
|
// Do a quick reject by rotating all points relative to a line formed by
|
|
// a pair of one quad's points. If the 2nd quad's points
|
|
// are on the line or on the opposite side from the 1st quad's 'odd man', the
|
|
// curves at most intersect at the endpoints.
|
|
/* if returning true, check contains true if quad's hull collapsed, making the cubic linear
|
|
if returning false, check contains true if the the quad pair have only the end point in common
|
|
*/
|
|
bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const {
|
|
bool linear = true;
|
|
for (int oddMan = 0; oddMan < kPointCount; ++oddMan) {
|
|
const SkDPoint* endPt[2];
|
|
this->otherPts(oddMan, endPt);
|
|
double origX = endPt[0]->fX;
|
|
double origY = endPt[0]->fY;
|
|
double adj = endPt[1]->fX - origX;
|
|
double opp = endPt[1]->fY - origY;
|
|
double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
|
|
if (approximately_zero(sign)) {
|
|
continue;
|
|
}
|
|
linear = false;
|
|
bool foundOutlier = false;
|
|
for (int n = 0; n < kPointCount; ++n) {
|
|
double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
|
|
if (test * sign > 0 && !precisely_zero(test)) {
|
|
foundOutlier = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!foundOutlier) {
|
|
return false;
|
|
}
|
|
}
|
|
if (linear && !matchesEnd(fPts, q2.fPts[0]) && !matchesEnd(fPts, q2.fPts[2])) {
|
|
// if the end point of the opposite quad is inside the hull that is nearly a line,
|
|
// then representing the quad as a line may cause the intersection to be missed.
|
|
// Check to see if the endpoint is in the triangle.
|
|
if (pointInTriangle(fPts, q2.fPts[0]) || pointInTriangle(fPts, q2.fPts[2])) {
|
|
linear = false;
|
|
}
|
|
}
|
|
*isLinear = linear;
|
|
return true;
|
|
}
|
|
|
|
bool SkDQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const {
|
|
return conic.hullIntersects(*this, isLinear);
|
|
}
|
|
|
|
bool SkDQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
|
|
return cubic.hullIntersects(*this, isLinear);
|
|
}
|
|
|
|
/* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan)
|
|
oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m
|
|
0 1 1 1 0 1
|
|
2 2 2 0 2
|
|
1 1 0 -1 -1 0
|
|
2 3 2 0 2
|
|
2 1 3 1 0 1
|
|
2 0 -2 -1 0
|
|
*/
|
|
void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const {
|
|
for (int opp = 1; opp < kPointCount; ++opp) {
|
|
int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan
|
|
end &= ~(end >> 2); // if the value went negative, set it to zero
|
|
endPt[opp - 1] = &fPts[end];
|
|
}
|
|
}
|
|
|
|
int SkDQuad::AddValidTs(double s[], int realRoots, double* t) {
|
|
int foundRoots = 0;
|
|
for (int index = 0; index < realRoots; ++index) {
|
|
double tValue = s[index];
|
|
if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
|
|
if (approximately_less_than_zero(tValue)) {
|
|
tValue = 0;
|
|
} else if (approximately_greater_than_one(tValue)) {
|
|
tValue = 1;
|
|
}
|
|
for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
|
|
if (approximately_equal(t[idx2], tValue)) {
|
|
goto nextRoot;
|
|
}
|
|
}
|
|
t[foundRoots++] = tValue;
|
|
}
|
|
nextRoot:
|
|
{}
|
|
}
|
|
return foundRoots;
|
|
}
|
|
|
|
// note: caller expects multiple results to be sorted smaller first
|
|
// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
|
|
// analysis of the quadratic equation, suggesting why the following looks at
|
|
// the sign of B -- and further suggesting that the greatest loss of precision
|
|
// is in b squared less two a c
|
|
int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) {
|
|
double s[2];
|
|
int realRoots = RootsReal(A, B, C, s);
|
|
int foundRoots = AddValidTs(s, realRoots, t);
|
|
return foundRoots;
|
|
}
|
|
|
|
static int handle_zero(const double B, const double C, double s[2]) {
|
|
if (approximately_zero(B)) {
|
|
s[0] = 0;
|
|
return C == 0;
|
|
}
|
|
s[0] = -C / B;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
Numeric Solutions (5.6) suggests to solve the quadratic by computing
|
|
Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
|
|
and using the roots
|
|
t1 = Q / A
|
|
t2 = C / Q
|
|
*/
|
|
// this does not discard real roots <= 0 or >= 1
|
|
int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) {
|
|
if (!A) {
|
|
return handle_zero(B, C, s);
|
|
}
|
|
const double p = B / (2 * A);
|
|
const double q = C / A;
|
|
if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
|
|
return handle_zero(B, C, s);
|
|
}
|
|
/* normal form: x^2 + px + q = 0 */
|
|
const double p2 = p * p;
|
|
if (!AlmostDequalUlps(p2, q) && p2 < q) {
|
|
return 0;
|
|
}
|
|
double sqrt_D = 0;
|
|
if (p2 > q) {
|
|
sqrt_D = sqrt(p2 - q);
|
|
}
|
|
s[0] = sqrt_D - p;
|
|
s[1] = -sqrt_D - p;
|
|
return 1 + !AlmostDequalUlps(s[0], s[1]);
|
|
}
|
|
|
|
bool SkDQuad::isLinear(int startIndex, int endIndex) const {
|
|
SkLineParameters lineParameters;
|
|
lineParameters.quadEndPoints(*this, startIndex, endIndex);
|
|
// FIXME: maybe it's possible to avoid this and compare non-normalized
|
|
lineParameters.normalize();
|
|
double distance = lineParameters.controlPtDistance(*this);
|
|
double tiniest = std::min(std::min(std::min(std::min(std::min(fPts[0].fX, fPts[0].fY),
|
|
fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
|
|
double largest = std::max(std::max(std::max(std::max(std::max(fPts[0].fX, fPts[0].fY),
|
|
fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
|
|
largest = std::max(largest, -tiniest);
|
|
return approximately_zero_when_compared_to(distance, largest);
|
|
}
|
|
|
|
SkDVector SkDQuad::dxdyAtT(double t) const {
|
|
double a = t - 1;
|
|
double b = 1 - 2 * t;
|
|
double c = t;
|
|
SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
|
|
a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
|
|
if (result.fX == 0 && result.fY == 0) {
|
|
if (zero_or_one(t)) {
|
|
result = fPts[2] - fPts[0];
|
|
} else {
|
|
// incomplete
|
|
SkDebugf("!q");
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// OPTIMIZE: assert if caller passes in t == 0 / t == 1 ?
|
|
SkDPoint SkDQuad::ptAtT(double t) const {
|
|
if (0 == t) {
|
|
return fPts[0];
|
|
}
|
|
if (1 == t) {
|
|
return fPts[2];
|
|
}
|
|
double one_t = 1 - t;
|
|
double a = one_t * one_t;
|
|
double b = 2 * one_t * t;
|
|
double c = t * t;
|
|
SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
|
|
a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
|
|
return result;
|
|
}
|
|
|
|
static double interp_quad_coords(const double* src, double t) {
|
|
if (0 == t) {
|
|
return src[0];
|
|
}
|
|
if (1 == t) {
|
|
return src[4];
|
|
}
|
|
double ab = SkDInterp(src[0], src[2], t);
|
|
double bc = SkDInterp(src[2], src[4], t);
|
|
double abc = SkDInterp(ab, bc, t);
|
|
return abc;
|
|
}
|
|
|
|
bool SkDQuad::monotonicInX() const {
|
|
return between(fPts[0].fX, fPts[1].fX, fPts[2].fX);
|
|
}
|
|
|
|
bool SkDQuad::monotonicInY() const {
|
|
return between(fPts[0].fY, fPts[1].fY, fPts[2].fY);
|
|
}
|
|
|
|
/*
|
|
Given a quadratic q, t1, and t2, find a small quadratic segment.
|
|
|
|
The new quadratic is defined by A, B, and C, where
|
|
A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1
|
|
C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1
|
|
|
|
To find B, compute the point halfway between t1 and t2:
|
|
|
|
q(at (t1 + t2)/2) == D
|
|
|
|
Next, compute where D must be if we know the value of B:
|
|
|
|
_12 = A/2 + B/2
|
|
12_ = B/2 + C/2
|
|
123 = A/4 + B/2 + C/4
|
|
= D
|
|
|
|
Group the known values on one side:
|
|
|
|
B = D*2 - A/2 - C/2
|
|
*/
|
|
|
|
// OPTIMIZE? : special case t1 = 1 && t2 = 0
|
|
SkDQuad SkDQuad::subDivide(double t1, double t2) const {
|
|
if (0 == t1 && 1 == t2) {
|
|
return *this;
|
|
}
|
|
SkDQuad dst;
|
|
double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1);
|
|
double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1);
|
|
double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
|
|
double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
|
|
double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2);
|
|
double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2);
|
|
/* bx = */ dst[1].fX = 2 * dx - (ax + cx) / 2;
|
|
/* by = */ dst[1].fY = 2 * dy - (ay + cy) / 2;
|
|
return dst;
|
|
}
|
|
|
|
void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
|
|
if (fPts[endIndex].fX == fPts[1].fX) {
|
|
dstPt->fX = fPts[endIndex].fX;
|
|
}
|
|
if (fPts[endIndex].fY == fPts[1].fY) {
|
|
dstPt->fY = fPts[endIndex].fY;
|
|
}
|
|
}
|
|
|
|
SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
|
|
SkASSERT(t1 != t2);
|
|
SkDPoint b;
|
|
SkDQuad sub = subDivide(t1, t2);
|
|
SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
|
|
SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
|
|
SkIntersections i;
|
|
i.intersectRay(b0, b1);
|
|
if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) {
|
|
b = i.pt(0);
|
|
} else {
|
|
SkASSERT(i.used() <= 2);
|
|
return SkDPoint::Mid(b0[1], b1[1]);
|
|
}
|
|
if (t1 == 0 || t2 == 0) {
|
|
align(0, &b);
|
|
}
|
|
if (t1 == 1 || t2 == 1) {
|
|
align(2, &b);
|
|
}
|
|
if (AlmostBequalUlps(b.fX, a.fX)) {
|
|
b.fX = a.fX;
|
|
} else if (AlmostBequalUlps(b.fX, c.fX)) {
|
|
b.fX = c.fX;
|
|
}
|
|
if (AlmostBequalUlps(b.fY, a.fY)) {
|
|
b.fY = a.fY;
|
|
} else if (AlmostBequalUlps(b.fY, c.fY)) {
|
|
b.fY = c.fY;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
/* classic one t subdivision */
|
|
static void interp_quad_coords(const double* src, double* dst, double t) {
|
|
double ab = SkDInterp(src[0], src[2], t);
|
|
double bc = SkDInterp(src[2], src[4], t);
|
|
dst[0] = src[0];
|
|
dst[2] = ab;
|
|
dst[4] = SkDInterp(ab, bc, t);
|
|
dst[6] = bc;
|
|
dst[8] = src[4];
|
|
}
|
|
|
|
SkDQuadPair SkDQuad::chopAt(double t) const
|
|
{
|
|
SkDQuadPair dst;
|
|
interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t);
|
|
interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t);
|
|
return dst;
|
|
}
|
|
|
|
static int valid_unit_divide(double numer, double denom, double* ratio)
|
|
{
|
|
if (numer < 0) {
|
|
numer = -numer;
|
|
denom = -denom;
|
|
}
|
|
if (denom == 0 || numer == 0 || numer >= denom) {
|
|
return 0;
|
|
}
|
|
double r = numer / denom;
|
|
if (r == 0) { // catch underflow if numer <<<< denom
|
|
return 0;
|
|
}
|
|
*ratio = r;
|
|
return 1;
|
|
}
|
|
|
|
/** Quad'(t) = At + B, where
|
|
A = 2(a - 2b + c)
|
|
B = 2(b - a)
|
|
Solve for t, only if it fits between 0 < t < 1
|
|
*/
|
|
int SkDQuad::FindExtrema(const double src[], double tValue[1]) {
|
|
/* At + B == 0
|
|
t = -B / A
|
|
*/
|
|
double a = src[0];
|
|
double b = src[2];
|
|
double c = src[4];
|
|
return valid_unit_divide(a - b, a - b - b + c, tValue);
|
|
}
|
|
|
|
/* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t)
|
|
*
|
|
* a = A - 2*B + C
|
|
* b = 2*B - 2*C
|
|
* c = C
|
|
*/
|
|
void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) {
|
|
*a = quad[0]; // a = A
|
|
*b = 2 * quad[2]; // b = 2*B
|
|
*c = quad[4]; // c = C
|
|
*b -= *c; // b = 2*B - C
|
|
*a -= *b; // a = A - 2*B + C
|
|
*b -= *c; // b = 2*B - 2*C
|
|
}
|
|
|
|
int SkTQuad::intersectRay(SkIntersections* i, const SkDLine& line) const {
|
|
return i->intersectRay(fQuad, line);
|
|
}
|
|
|
|
bool SkTQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const {
|
|
return conic.hullIntersects(fQuad, isLinear);
|
|
}
|
|
|
|
bool SkTQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
|
|
return cubic.hullIntersects(fQuad, isLinear);
|
|
}
|
|
|
|
void SkTQuad::setBounds(SkDRect* rect) const {
|
|
rect->setBounds(fQuad);
|
|
}
|