92669014aa
Review URL: http://codereview.appspot.com/5127044/ git-svn-id: http://skia.googlecode.com/svn/trunk@2342 2bbb7eff-a529-9590-31e7-b0007b416f81
400 lines
10 KiB
C++
400 lines
10 KiB
C++
|
|
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef SkTArray_DEFINED
|
|
#define SkTArray_DEFINED
|
|
|
|
#include <new>
|
|
#include "SkTypes.h"
|
|
#include "SkTemplates.h"
|
|
|
|
// DATA_TYPE indicates that T has a trivial cons, destructor
|
|
// and can be shallow-copied
|
|
template <typename T, bool DATA_TYPE = false> class SkTArray {
|
|
public:
|
|
/**
|
|
* Creates an empty array with no initial storage
|
|
*/
|
|
SkTArray() {
|
|
fCount = 0;
|
|
fReserveCount = gMIN_ALLOC_COUNT;
|
|
fAllocCount = 0;
|
|
fMemArray = NULL;
|
|
fPreAllocMemArray = NULL;
|
|
}
|
|
|
|
/**
|
|
* Creates an empty array that will preallocate space for reserveCount
|
|
* elements.
|
|
*/
|
|
explicit SkTArray(int reserveCount) {
|
|
this->init(NULL, 0, NULL, reserveCount);
|
|
}
|
|
|
|
/**
|
|
* Copies one array to another. The new array will be heap allocated.
|
|
*/
|
|
explicit SkTArray(const SkTArray& array) {
|
|
this->init(array.fItemArray, array.fCount, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* Creates a SkTArray by copying contents of a standard C array. The new
|
|
* array will be heap allocated. Be careful not to use this constructor
|
|
* when you really want the (void*, int) version.
|
|
*/
|
|
SkTArray(const T* array, int count) {
|
|
this->init(array, count, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* assign copy of array to this
|
|
*/
|
|
SkTArray& operator =(const SkTArray& array) {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
fCount = 0;
|
|
checkRealloc((int)array.count());
|
|
fCount = array.count();
|
|
if (DATA_TYPE) {
|
|
memcpy(fMemArray, array.fMemArray, sizeof(T) * fCount);
|
|
} else {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
new (fItemArray + i) T(array[i]);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
virtual ~SkTArray() {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
if (fMemArray != fPreAllocMemArray) {
|
|
sk_free(fMemArray);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Resets to count() == 0
|
|
*/
|
|
void reset() { this->pop_back_n(fCount); }
|
|
|
|
/**
|
|
* Number of elements in the array.
|
|
*/
|
|
int count() const { return fCount; }
|
|
|
|
/**
|
|
* Is the array empty.
|
|
*/
|
|
bool empty() const { return !fCount; }
|
|
|
|
/**
|
|
* Adds 1 new default-constructed T value and returns in by reference. Note
|
|
* the reference only remains valid until the next call that adds or removes
|
|
* elements.
|
|
*/
|
|
T& push_back() {
|
|
checkRealloc(1);
|
|
new ((char*)fMemArray+sizeof(T)*fCount) T;
|
|
++fCount;
|
|
return fItemArray[fCount-1];
|
|
}
|
|
|
|
/**
|
|
* Version of above that uses a copy constructor to initialize the new item
|
|
*/
|
|
T& push_back(const T& t) {
|
|
checkRealloc(1);
|
|
new ((char*)fMemArray+sizeof(T)*fCount) T(t);
|
|
++fCount;
|
|
return fItemArray[fCount-1];
|
|
}
|
|
|
|
/**
|
|
* Allocates n more default T values, and returns the address of the start
|
|
* of that new range. Note: this address is only valid until the next API
|
|
* call made on the array that might add or remove elements.
|
|
*/
|
|
T* push_back_n(int n) {
|
|
SkASSERT(n >= 0);
|
|
checkRealloc(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
new (fItemArray + fCount + i) T;
|
|
}
|
|
fCount += n;
|
|
return fItemArray + fCount - n;
|
|
}
|
|
|
|
/**
|
|
* Version of above that uses a copy constructor to initialize all n items
|
|
* to the same T.
|
|
*/
|
|
T* push_back_n(int n, const T& t) {
|
|
SkASSERT(n >= 0);
|
|
checkRealloc(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
new (fItemArray + fCount + i) T(t);
|
|
}
|
|
fCount += n;
|
|
return fItemArray + fCount - n;
|
|
}
|
|
|
|
/**
|
|
* Version of above that uses a copy constructor to initialize the n items
|
|
* to separate T values.
|
|
*/
|
|
T* push_back_n(int n, const T t[]) {
|
|
SkASSERT(n >= 0);
|
|
checkRealloc(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
new (fItemArray + fCount + i) T(t[i]);
|
|
}
|
|
fCount += n;
|
|
return fItemArray + fCount - n;
|
|
}
|
|
|
|
/**
|
|
* Removes the last element. Not safe to call when count() == 0.
|
|
*/
|
|
void pop_back() {
|
|
SkASSERT(fCount > 0);
|
|
--fCount;
|
|
fItemArray[fCount].~T();
|
|
checkRealloc(0);
|
|
}
|
|
|
|
/**
|
|
* Removes the last n elements. Not safe to call when count() < n.
|
|
*/
|
|
void pop_back_n(int n) {
|
|
SkASSERT(n >= 0);
|
|
SkASSERT(fCount >= n);
|
|
fCount -= n;
|
|
for (int i = 0; i < n; ++i) {
|
|
fItemArray[i].~T();
|
|
}
|
|
checkRealloc(0);
|
|
}
|
|
|
|
/**
|
|
* Pushes or pops from the back to resize. Pushes will be default
|
|
* initialized.
|
|
*/
|
|
void resize_back(int newCount) {
|
|
SkASSERT(newCount >= 0);
|
|
|
|
if (newCount > fCount) {
|
|
push_back_n(newCount - fCount);
|
|
} else if (newCount < fCount) {
|
|
pop_back_n(fCount - newCount);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the i^th element.
|
|
*/
|
|
T& operator[] (int i) {
|
|
SkASSERT(i < fCount);
|
|
SkASSERT(i >= 0);
|
|
return fItemArray[i];
|
|
}
|
|
|
|
const T& operator[] (int i) const {
|
|
SkASSERT(i < fCount);
|
|
SkASSERT(i >= 0);
|
|
return fItemArray[i];
|
|
}
|
|
|
|
/**
|
|
* equivalent to operator[](0)
|
|
*/
|
|
T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
|
|
|
|
const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
|
|
|
|
/**
|
|
* equivalent to operator[](count() - 1)
|
|
*/
|
|
T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
|
|
|
|
const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
|
|
|
|
/**
|
|
* equivalent to operator[](count()-1-i)
|
|
*/
|
|
T& fromBack(int i) {
|
|
SkASSERT(i >= 0);
|
|
SkASSERT(i < fCount);
|
|
return fItemArray[fCount - i - 1];
|
|
}
|
|
|
|
const T& fromBack(int i) const {
|
|
SkASSERT(i >= 0);
|
|
SkASSERT(i < fCount);
|
|
return fItemArray[fCount - i - 1];
|
|
}
|
|
|
|
protected:
|
|
/**
|
|
* Creates an empty array that will use the passed storage block until it
|
|
* is insufficiently large to hold the entire array.
|
|
*/
|
|
template <int N>
|
|
SkTArray(SkAlignedSTStorage<N,T>* storage) {
|
|
this->init(NULL, 0, storage->get(), N);
|
|
}
|
|
|
|
/**
|
|
* Copy another array, using preallocated storage if preAllocCount >=
|
|
* array.count(). Otherwise storage will only be used when array shrinks
|
|
* to fit.
|
|
*/
|
|
template <int N>
|
|
SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
|
|
this->init(array.fItemArray, array.fCount, storage->get(), N);
|
|
}
|
|
|
|
/**
|
|
* Copy a C array, using preallocated storage if preAllocCount >=
|
|
* count. Otherwise storage will only be used when array shrinks
|
|
* to fit.
|
|
*/
|
|
template <int N>
|
|
SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
|
|
this->init(array, count, storage->get(), N);
|
|
}
|
|
|
|
void init(const T* array, int count,
|
|
void* preAllocStorage, int preAllocOrReserveCount) {
|
|
GrAssert(count >= 0);
|
|
GrAssert(preAllocOrReserveCount >= 0);
|
|
fCount = count;
|
|
fReserveCount = (preAllocOrReserveCount > 0) ?
|
|
preAllocOrReserveCount :
|
|
gMIN_ALLOC_COUNT;
|
|
fPreAllocMemArray = preAllocStorage;
|
|
if (fReserveCount >= fCount &&
|
|
NULL != preAllocStorage) {
|
|
fAllocCount = fReserveCount;
|
|
fMemArray = preAllocStorage;
|
|
} else {
|
|
fAllocCount = GrMax(fCount, fReserveCount);
|
|
fMemArray = GrMalloc(fAllocCount * sizeof(T));
|
|
}
|
|
|
|
if (DATA_TYPE) {
|
|
memcpy(fMemArray, array, sizeof(T) * fCount);
|
|
} else {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
new (fItemArray + i) T(array[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
static const int gMIN_ALLOC_COUNT = 8;
|
|
|
|
inline void checkRealloc(int delta) {
|
|
SkASSERT(fCount >= 0);
|
|
SkASSERT(fAllocCount >= 0);
|
|
|
|
SkASSERT(-delta <= fCount);
|
|
|
|
int newCount = fCount + delta;
|
|
int fNewAllocCount = fAllocCount;
|
|
|
|
if (newCount > fAllocCount) {
|
|
fNewAllocCount = SkMax32(newCount + ((newCount + 1) >> 1),
|
|
fReserveCount);
|
|
} else if (newCount < fAllocCount / 3) {
|
|
fNewAllocCount = SkMax32(fAllocCount / 2, fReserveCount);
|
|
}
|
|
|
|
if (fNewAllocCount != fAllocCount) {
|
|
|
|
fAllocCount = fNewAllocCount;
|
|
char* fNewMemArray;
|
|
|
|
if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) {
|
|
fNewMemArray = (char*) fPreAllocMemArray;
|
|
} else {
|
|
fNewMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T));
|
|
}
|
|
|
|
if (DATA_TYPE) {
|
|
memcpy(fNewMemArray, fMemArray, fCount * sizeof(T));
|
|
} else {
|
|
for (int i = 0; i < fCount; ++i) {
|
|
new (fNewMemArray + sizeof(T) * i) T(fItemArray[i]);
|
|
fItemArray[i].~T();
|
|
}
|
|
}
|
|
|
|
if (fMemArray != fPreAllocMemArray) {
|
|
sk_free(fMemArray);
|
|
}
|
|
fMemArray = fNewMemArray;
|
|
}
|
|
}
|
|
|
|
int fReserveCount;
|
|
int fCount;
|
|
int fAllocCount;
|
|
void* fPreAllocMemArray;
|
|
union {
|
|
T* fItemArray;
|
|
void* fMemArray;
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Subclass of SkTArray that contains a preallocated memory block for the array.
|
|
*/
|
|
template <int N, typename T, bool DATA_TYPE = false>
|
|
class SkSTArray : public SkTArray<T, DATA_TYPE> {
|
|
private:
|
|
typedef SkTArray<T, DATA_TYPE> INHERITED;
|
|
|
|
public:
|
|
SkSTArray() : INHERITED(&fStorage) {
|
|
}
|
|
|
|
SkSTArray(const SkSTArray& array)
|
|
: INHERITED(array, &fStorage) {
|
|
}
|
|
|
|
explicit SkSTArray(const INHERITED& array)
|
|
: INHERITED(array, &fStorage) {
|
|
}
|
|
|
|
SkSTArray(const T* array, int count)
|
|
: INHERITED(array, count, &fStorage) {
|
|
}
|
|
|
|
SkSTArray& operator= (const SkSTArray& array) {
|
|
return *this = *(const INHERITED*)&array;
|
|
}
|
|
|
|
SkSTArray& operator= (const INHERITED& array) {
|
|
INHERITED::operator=(array);
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
SkAlignedSTStorage<N,T> fStorage;
|
|
};
|
|
|
|
#endif
|
|
|