skia2/include/core/SkBitmap.h
reed@android.com cafc9f9e80 fixes around isOpaque and dithering
- copyTo() now preserves isOpaqueness, and BitmapCopyTest tests it
- bitmap shader doesn't claim to have shadespan16 if dithering is on, since its
  sampler doesn't auto-dither (note that gradients do auto-dither in their
  16bit sampler)
- blitter setup just relies on the shader to report if its 16bit sampler can be
  called (allowing gradients to say yes regardless of dither, but bitmaps to say
  no if dithering is on)



git-svn-id: http://skia.googlecode.com/svn/trunk@331 2bbb7eff-a529-9590-31e7-b0007b416f81
2009-08-22 03:44:57 +00:00

679 lines
26 KiB
C++

/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SkBitmap_DEFINED
#define SkBitmap_DEFINED
#include "Sk64.h"
#include "SkColor.h"
#include "SkPoint.h"
#include "SkRefCnt.h"
struct SkIRect;
class SkColorTable;
class SkPaint;
class SkPixelRef;
class SkRegion;
class SkFlattenableReadBuffer;
class SkFlattenableWriteBuffer;
/** \class SkBitmap
The SkBitmap class specifies a raster bitmap. A bitmap has an integer width
and height, and a format (config), and a pointer to the actual pixels.
Bitmaps can be drawn into a SkCanvas, but they are also used to specify the target
of a SkCanvas' drawing operations.
*/
class SkBitmap {
public:
class Allocator;
enum Config {
kNo_Config, //!< bitmap has not been configured
kA1_Config, //!< 1-bit per pixel, (0 is transparent, 1 is opaque)
kA8_Config, //!< 8-bits per pixel, with only alpha specified (0 is transparent, 0xFF is opaque)
kIndex8_Config, //!< 8-bits per pixel, using SkColorTable to specify the colors
kRGB_565_Config, //!< 16-bits per pixel, (see SkColorPriv.h for packing)
kARGB_4444_Config, //!< 16-bits per pixel, (see SkColorPriv.h for packing)
kARGB_8888_Config, //!< 32-bits per pixel, (see SkColorPriv.h for packing)
kRLE_Index8_Config,
kConfigCount
};
/** Default construct creates a bitmap with zero width and height, and no pixels.
Its config is set to kNo_Config.
*/
SkBitmap();
/** Constructor initializes the new bitmap by copying the src bitmap. All fields are copied,
but ownership of the pixels remains with the src bitmap.
*/
SkBitmap(const SkBitmap& src);
/** Decrements our (shared) pixel ownership if needed.
*/
~SkBitmap();
/** Copies the src bitmap into this bitmap. Ownership of the src bitmap's pixels remains
with the src bitmap.
*/
SkBitmap& operator=(const SkBitmap& src);
/** Swap the fields of the two bitmaps. This routine is guaranteed to never fail or throw.
*/
// This method is not exported to java.
void swap(SkBitmap& other);
/** Return true iff the bitmap has empty dimensions.
*/
bool empty() const { return 0 == fWidth || 0 == fHeight; }
/** Return true iff the bitmap has no pixels nor a pixelref. Note: this can
return true even if the dimensions of the bitmap are > 0 (see empty()).
*/
bool isNull() const { return NULL == fPixels && NULL == fPixelRef; }
/** Return the config for the bitmap.
*/
Config config() const { return (Config)fConfig; }
/** DEPRECATED, use config()
*/
Config getConfig() const { return this->config(); }
/** Return the bitmap's width, in pixels.
*/
int width() const { return fWidth; }
/** Return the bitmap's height, in pixels.
*/
int height() const { return fHeight; }
/** Return the number of bytes between subsequent rows of the bitmap.
*/
int rowBytes() const { return fRowBytes; }
/** Return the shift amount per pixel (i.e. 0 for 1-byte per pixel, 1 for
2-bytes per pixel configs, 2 for 4-bytes per pixel configs). Return 0
for configs that are not at least 1-byte per pixel (e.g. kA1_Config
or kNo_Config)
*/
int shiftPerPixel() const { return fBytesPerPixel >> 1; }
/** Return the number of bytes per pixel based on the config. If the config
does not have at least 1 byte per (e.g. kA1_Config) then 0 is returned.
*/
int bytesPerPixel() const { return fBytesPerPixel; }
/** Return the rowbytes expressed as a number of pixels (like width and
height). Note, for 1-byte per pixel configs like kA8_Config, this will
return the same as rowBytes(). Is undefined for configs that are less
than 1-byte per pixel (e.g. kA1_Config)
*/
int rowBytesAsPixels() const { return fRowBytes >> (fBytesPerPixel >> 1); }
/** Return the address of the pixels for this SkBitmap.
*/
void* getPixels() const { return fPixels; }
/** Return the byte size of the pixels, based on the height and rowBytes.
Note this truncates the result to 32bits. Call getSize64() to detect
if the real size exceeds 32bits.
*/
size_t getSize() const { return fHeight * fRowBytes; }
/** Return the byte size of the pixels, based on the height and rowBytes.
This routine is slightly slower than getSize(), but does not truncate
the answer to 32bits.
*/
Sk64 getSize64() const {
Sk64 size;
size.setMul(fHeight, fRowBytes);
return size;
}
/** Returns true if the bitmap is opaque (has no translucent/transparent pixels).
*/
bool isOpaque() const;
/** Specify if this bitmap's pixels are all opaque or not. Is only meaningful for configs
that support per-pixel alpha (RGB32, A1, A8).
*/
void setIsOpaque(bool);
/** Reset the bitmap to its initial state (see default constructor). If we are a (shared)
owner of the pixels, that ownership is decremented.
*/
void reset();
/** Given a config and a width, this computes the optimal rowBytes value. This is called automatically
if you pass 0 for rowBytes to setConfig().
*/
static int ComputeRowBytes(Config c, int width);
/** Return the bytes-per-pixel for the specified config. If the config is
not at least 1-byte per pixel, return 0, including for kNo_Config.
*/
static int ComputeBytesPerPixel(Config c);
/** Return the shift-per-pixel for the specified config. If the config is
not at least 1-byte per pixel, return 0, including for kNo_Config.
*/
static int ComputeShiftPerPixel(Config c) {
return ComputeBytesPerPixel(c) >> 1;
}
static Sk64 ComputeSize64(Config, int width, int height);
static size_t ComputeSize(Config, int width, int height);
/** Set the bitmap's config and dimensions. If rowBytes is 0, then
ComputeRowBytes() is called to compute the optimal value. This resets
any pixel/colortable ownership, just like reset().
*/
void setConfig(Config, int width, int height, int rowBytes = 0);
/** Use this to assign a new pixel address for an existing bitmap. This
will automatically release any pixelref previously installed. Only call
this if you are handling ownership/lifetime of the pixel memory.
If the bitmap retains a reference to the colortable (assuming it is
not null) it will take care of incrementing the reference count.
@param pixels Address for the pixels, managed by the caller.
@param ctable ColorTable (or null) that matches the specified pixels
*/
void setPixels(void* p, SkColorTable* ctable = NULL);
/** Use the standard HeapAllocator to create the pixelref that manages the
pixel memory. It will be sized based on the current width/height/config.
If this is called multiple times, a new pixelref object will be created
each time.
If the bitmap retains a reference to the colortable (assuming it is
not null) it will take care of incrementing the reference count.
@param ctable ColorTable (or null) to use with the pixels that will
be allocated. Only used if config == Index8_Config
@return true if the allocation succeeds. If not the pixelref field of
the bitmap will be unchanged.
*/
bool allocPixels(SkColorTable* ctable = NULL) {
return this->allocPixels(NULL, ctable);
}
/** Use the specified Allocator to create the pixelref that manages the
pixel memory. It will be sized based on the current width/height/config.
If this is called multiple times, a new pixelref object will be created
each time.
If the bitmap retains a reference to the colortable (assuming it is
not null) it will take care of incrementing the reference count.
@param allocator The Allocator to use to create a pixelref that can
manage the pixel memory for the current
width/height/config. If allocator is NULL, the standard
HeapAllocator will be used.
@param ctable ColorTable (or null) to use with the pixels that will
be allocated. Only used if config == Index8_Config.
If it is non-null and the config is not Index8, it will
be ignored.
@return true if the allocation succeeds. If not the pixelref field of
the bitmap will be unchanged.
*/
bool allocPixels(Allocator* allocator, SkColorTable* ctable);
/** Return the current pixelref object, of any
*/
SkPixelRef* pixelRef() const { return fPixelRef; }
/** Return the offset into the pixelref, if any. Will return 0 if there is
no pixelref installed.
*/
size_t pixelRefOffset() const { return fPixelRefOffset; }
/** Assign a pixelref and optional offset. Pixelrefs are reference counted,
so the existing one (if any) will be unref'd and the new one will be
ref'd.
*/
SkPixelRef* setPixelRef(SkPixelRef* pr, size_t offset = 0);
/** Call this to ensure that the bitmap points to the current pixel address
in the pixelref. Balance it with a call to unlockPixels(). These calls
are harmless if there is no pixelref.
*/
void lockPixels() const;
/** When you are finished access the pixel memory, call this to balance a
previous call to lockPixels(). This allows pixelrefs that implement
cached/deferred image decoding to know when there are active clients of
a given image.
*/
void unlockPixels() const;
/** Call this to be sure that the bitmap is valid enough to be drawn (i.e.
it has non-null pixels, and if required by its config, it has a
non-null colortable. Returns true if all of the above are met.
*/
bool readyToDraw() const {
return this->getPixels() != NULL &&
((this->config() != kIndex8_Config && this->config() != kRLE_Index8_Config) ||
fColorTable != NULL);
}
/** Return the bitmap's colortable (if any). Does not affect the colortable's
reference count.
*/
SkColorTable* getColorTable() const { return fColorTable; }
/** Returns a non-zero, unique value corresponding to the pixels in our
pixelref, or 0 if we do not have a pixelref. Each time the pixels are
changed (and notifyPixelsChanged is called), a different generation ID
will be returned.
*/
uint32_t getGenerationID() const;
/** Call this if you have changed the contents of the pixels. This will in-
turn cause a different generation ID value to be returned from
getGenerationID().
*/
void notifyPixelsChanged() const;
/** Initialize the bitmap's pixels with the specified color+alpha, automatically converting into the correct format
for the bitmap's config. If the config is kRGB_565_Config, then the alpha value is ignored.
If the config is kA8_Config, then the r,g,b parameters are ignored.
*/
void eraseARGB(U8CPU a, U8CPU r, U8CPU g, U8CPU b) const;
/** Initialize the bitmap's pixels with the specified color+alpha, automatically converting into the correct format
for the bitmap's config. If the config is kRGB_565_Config, then the alpha value is presumed
to be 0xFF. If the config is kA8_Config, then the r,g,b parameters are ignored and the
pixels are all set to 0xFF.
*/
void eraseRGB(U8CPU r, U8CPU g, U8CPU b) const {
this->eraseARGB(0xFF, r, g, b);
}
/** Initialize the bitmap's pixels with the specified color, automatically converting into the correct format
for the bitmap's config. If the config is kRGB_565_Config, then the color's alpha value is presumed
to be 0xFF. If the config is kA8_Config, then only the color's alpha value is used.
*/
void eraseColor(SkColor c) const {
this->eraseARGB(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c),
SkColorGetB(c));
}
/** Scroll (a subset of) the contents of this bitmap by dx/dy. If there are
no pixels allocated (i.e. getPixels() returns null) the method will
still update the inval region (if present).
@param subset The subset of the bitmap to scroll/move. To scroll the
entire contents, specify [0, 0, width, height] or just
pass null.
@param dx The amount to scroll in X
@param dy The amount to scroll in Y
@param inval Optional (may be null). Returns the area of the bitmap that
was scrolled away. E.g. if dx = dy = 0, then inval would
be set to empty. If dx >= width or dy >= height, then
inval would be set to the entire bounds of the bitmap.
@return true if the scroll was doable. Will return false if the bitmap
uses an unsupported config for scrolling (only kA8,
kIndex8, kRGB_565, kARGB_4444, kARGB_8888 are supported).
If no pixels are present (i.e. getPixels() returns false)
inval will still be updated, and true will be returned.
*/
bool scrollRect(const SkIRect* subset, int dx, int dy,
SkRegion* inval = NULL) const;
/** Returns the address of the specified pixel. This performs a runtime
check to know the size of the pixels, and will return the same answer
as the corresponding size-specific method (e.g. getAddr16). Since the
check happens at runtime, it is much slower than using a size-specific
version. Unlike the size-specific methods, this routine also checks if
getPixels() returns null, and returns that. The size-specific routines
perform a debugging assert that getPixels() is not null, but they do
not do any runtime checks.
*/
void* getAddr(int x, int y) const;
/** Returns the address of the pixel specified by x,y for 32bit pixels.
*/
inline uint32_t* getAddr32(int x, int y) const;
/** Returns the address of the pixel specified by x,y for 16bit pixels.
*/
inline uint16_t* getAddr16(int x, int y) const;
/** Returns the address of the pixel specified by x,y for 8bit pixels.
*/
inline uint8_t* getAddr8(int x, int y) const;
/** Returns the address of the byte containing the pixel specified by x,y
for 1bit pixels.
*/
inline uint8_t* getAddr1(int x, int y) const;
/** Returns the color corresponding to the pixel specified by x,y for
colortable based bitmaps.
*/
inline SkPMColor getIndex8Color(int x, int y) const;
/** Set dst to be a setset of this bitmap. If possible, it will share the
pixel memory, and just point into a subset of it. However, if the config
does not support this, a local copy will be made and associated with
the dst bitmap. If the subset rectangle, intersected with the bitmap's
dimensions is empty, or if there is an unsupported config, false will be
returned and dst will be untouched.
@param dst The bitmap that will be set to a subset of this bitmap
@param subset The rectangle of pixels in this bitmap that dst will
reference.
@return true if the subset copy was successfully made.
*/
bool extractSubset(SkBitmap* dst, const SkIRect& subset) const;
/** Makes a deep copy of this bitmap, respecting the requested config.
Returns false if either there is an error (i.e. the src does not have
pixels) or the request cannot be satisfied (e.g. the src has per-pixel
alpha, and the requested config does not support alpha).
@param dst The bitmap to be sized and allocated
@param c The desired config for dst
@param allocator Allocator used to allocate the pixelref for the dst
bitmap. If this is null, the standard HeapAllocator
will be used.
@return true if the copy could be made.
*/
bool copyTo(SkBitmap* dst, Config c, Allocator* allocator = NULL) const;
/** Returns true if this bitmap can be deep copied into the requested config
by calling copyTo().
*/
bool canCopyTo(Config newConfig) const;
bool hasMipMap() const;
void buildMipMap(bool forceRebuild = false);
void freeMipMap();
/** Given scale factors sx, sy, determine the miplevel available in the
bitmap, and return it (this is the amount to shift matrix iterators
by). If dst is not null, it is set to the correct level.
*/
int extractMipLevel(SkBitmap* dst, SkFixed sx, SkFixed sy);
void extractAlpha(SkBitmap* dst) const {
this->extractAlpha(dst, NULL, NULL);
}
void extractAlpha(SkBitmap* dst, const SkPaint* paint,
SkIPoint* offset) const;
void flatten(SkFlattenableWriteBuffer&) const;
void unflatten(SkFlattenableReadBuffer&);
SkDEBUGCODE(void validate() const;)
class Allocator : public SkRefCnt {
public:
/** Allocate the pixel memory for the bitmap, given its dimensions and
config. Return true on success, where success means either setPixels
or setPixelRef was called. The pixels need not be locked when this
returns. If the config requires a colortable, it also must be
installed via setColorTable. If false is returned, the bitmap and
colortable should be left unchanged.
*/
virtual bool allocPixelRef(SkBitmap*, SkColorTable*) = 0;
};
/** Subclass of Allocator that returns a pixelref that allocates its pixel
memory from the heap. This is the default Allocator invoked by
allocPixels().
*/
class HeapAllocator : public Allocator {
public:
virtual bool allocPixelRef(SkBitmap*, SkColorTable*);
};
class RLEPixels {
public:
RLEPixels(int width, int height);
virtual ~RLEPixels();
uint8_t* packedAtY(int y) const {
SkASSERT((unsigned)y < (unsigned)fHeight);
return fYPtrs[y];
}
// called by subclasses during creation
void setPackedAtY(int y, uint8_t* addr) {
SkASSERT((unsigned)y < (unsigned)fHeight);
fYPtrs[y] = addr;
}
private:
uint8_t** fYPtrs;
int fHeight;
};
private:
struct MipMap;
mutable MipMap* fMipMap;
mutable SkPixelRef* fPixelRef;
mutable size_t fPixelRefOffset;
mutable int fPixelLockCount;
// either user-specified (in which case it is not treated as mutable)
// or a cache of the returned value from fPixelRef->lockPixels()
mutable void* fPixels;
mutable SkColorTable* fColorTable; // only meaningful for kIndex8
enum Flags {
kImageIsOpaque_Flag = 0x01
};
uint32_t fRowBytes;
uint32_t fWidth;
uint32_t fHeight;
uint8_t fConfig;
uint8_t fFlags;
uint8_t fBytesPerPixel; // based on config
/* Unreference any pixelrefs or colortables
*/
void freePixels();
void updatePixelsFromRef() const;
static SkFixed ComputeMipLevel(SkFixed sx, SkFixed dy);
};
/** \class SkColorTable
SkColorTable holds an array SkPMColors (premultiplied 32-bit colors) used by
8-bit bitmaps, where the bitmap bytes are interpreted as indices into the colortable.
*/
class SkColorTable : public SkRefCnt {
public:
/** Makes a deep copy of colors.
*/
SkColorTable(const SkColorTable& src);
/** Preallocates the colortable to have 'count' colors, which
* are initially set to 0.
*/
explicit SkColorTable(int count);
explicit SkColorTable(SkFlattenableReadBuffer&);
SkColorTable(const SkPMColor colors[], int count);
virtual ~SkColorTable();
enum Flags {
kColorsAreOpaque_Flag = 0x01 //!< if set, all of the colors in the table are opaque (alpha==0xFF)
};
/** Returns the flag bits for the color table. These can be changed with setFlags().
*/
unsigned getFlags() const { return fFlags; }
/** Set the flags for the color table. See the Flags enum for possible values.
*/
void setFlags(unsigned flags);
bool isOpaque() const { return (fFlags & kColorsAreOpaque_Flag) != 0; }
void setIsOpaque(bool isOpaque);
/** Returns the number of colors in the table.
*/
int count() const { return fCount; }
/** Returns the specified color from the table. In the debug build, this asserts that
the index is in range (0 <= index < count).
*/
SkPMColor operator[](int index) const {
SkASSERT(fColors != NULL && (unsigned)index < fCount);
return fColors[index];
}
/** Specify the number of colors in the color table. This does not initialize the colors
to any value, just allocates memory for them. To initialize the values, either call
setColors(array, count), or follow setCount(count) with a call to
lockColors()/{set the values}/unlockColors(true).
*/
// void setColors(int count) { this->setColors(NULL, count); }
// void setColors(const SkPMColor[], int count);
/** Return the array of colors for reading and/or writing. This must be
balanced by a call to unlockColors(changed?), telling the colortable if
the colors were changed during the lock.
*/
SkPMColor* lockColors() {
SkDEBUGCODE(fColorLockCount += 1;)
return fColors;
}
/** Balancing call to lockColors(). If the colors have been changed, pass true.
*/
void unlockColors(bool changed);
/** Similar to lockColors(), lock16BitCache() returns the array of
RGB16 colors that mirror the 32bit colors. However, this function
will return null if kColorsAreOpaque_Flag is not set.
Also, unlike lockColors(), the returned array here cannot be modified.
*/
const uint16_t* lock16BitCache();
/** Balancing call to lock16BitCache().
*/
void unlock16BitCache() {
SkASSERT(f16BitCacheLockCount > 0);
SkDEBUGCODE(f16BitCacheLockCount -= 1);
}
void flatten(SkFlattenableWriteBuffer&) const;
private:
SkPMColor* fColors;
uint16_t* f16BitCache;
uint16_t fCount;
uint8_t fFlags;
SkDEBUGCODE(int fColorLockCount;)
SkDEBUGCODE(int f16BitCacheLockCount;)
void inval16BitCache();
};
class SkAutoLockPixels {
public:
SkAutoLockPixels(const SkBitmap& bitmap) : fBitmap(bitmap) {
bitmap.lockPixels();
}
~SkAutoLockPixels() {
fBitmap.unlockPixels();
}
private:
const SkBitmap& fBitmap;
};
/** Helper class that performs the lock/unlockColors calls on a colortable.
The destructor will call unlockColors(false) if it has a bitmap's colortable
*/
class SkAutoLockColors : public SkNoncopyable {
public:
/** Initialize with no bitmap. Call lockColors(bitmap) to lock bitmap's
colortable
*/
SkAutoLockColors() : fCTable(NULL), fColors(NULL) {}
/** Initialize with bitmap, locking its colortable if present
*/
explicit SkAutoLockColors(const SkBitmap& bm) {
fCTable = bm.getColorTable();
fColors = fCTable ? fCTable->lockColors() : NULL;
}
/** Initialize with a colortable (may be null)
*/
explicit SkAutoLockColors(SkColorTable* ctable) {
fCTable = ctable;
fColors = ctable ? ctable->lockColors() : NULL;
}
~SkAutoLockColors() {
if (fCTable) {
fCTable->unlockColors(false);
}
}
/** Return the currently locked colors, or NULL if no bitmap's colortable
is currently locked.
*/
const SkPMColor* colors() const { return fColors; }
/** Locks the table and returns is colors (assuming ctable is not null) and
unlocks the previous table if one was present
*/
const SkPMColor* lockColors(SkColorTable* ctable) {
if (fCTable) {
fCTable->unlockColors(false);
}
fCTable = ctable;
fColors = ctable ? ctable->lockColors() : NULL;
return fColors;
}
const SkPMColor* lockColors(const SkBitmap& bm) {
return this->lockColors(bm.getColorTable());
}
private:
SkColorTable* fCTable;
const SkPMColor* fColors;
};
///////////////////////////////////////////////////////////////////////////////
inline uint32_t* SkBitmap::getAddr32(int x, int y) const {
SkASSERT(fPixels);
SkASSERT(fConfig == kARGB_8888_Config);
SkASSERT((unsigned)x < fWidth && (unsigned)y < fHeight);
return (uint32_t*)((char*)fPixels + y * fRowBytes + (x << 2));
}
inline uint16_t* SkBitmap::getAddr16(int x, int y) const {
SkASSERT(fPixels);
SkASSERT(fConfig == kRGB_565_Config || fConfig == kARGB_4444_Config);
SkASSERT((unsigned)x < fWidth && (unsigned)y < fHeight);
return (uint16_t*)((char*)fPixels + y * fRowBytes + (x << 1));
}
inline uint8_t* SkBitmap::getAddr8(int x, int y) const {
SkASSERT(fPixels);
SkASSERT(fConfig == kA8_Config || fConfig == kIndex8_Config);
SkASSERT((unsigned)x < fWidth && (unsigned)y < fHeight);
return (uint8_t*)fPixels + y * fRowBytes + x;
}
inline SkPMColor SkBitmap::getIndex8Color(int x, int y) const {
SkASSERT(fPixels);
SkASSERT(fConfig == kIndex8_Config);
SkASSERT((unsigned)x < fWidth && (unsigned)y < fHeight);
SkASSERT(fColorTable);
return (*fColorTable)[*((const uint8_t*)fPixels + y * fRowBytes + x)];
}
// returns the address of the byte that contains the x coordinate
inline uint8_t* SkBitmap::getAddr1(int x, int y) const {
SkASSERT(fPixels);
SkASSERT(fConfig == kA1_Config);
SkASSERT((unsigned)x < fWidth && (unsigned)y < fHeight);
return (uint8_t*)fPixels + y * fRowBytes + (x >> 3);
}
#endif