a2bd2d12ad
This is a baby step toward refactored (and faster in-process) typeface and flattenable factory encoding and decoding. The sooner SkWriteBuffer knows its flags, the better. Next steps will be to rearrange Sk{Read,Write}Buffer members into disjoint strategies to handle typefaces and flattenable factories: one for in-process, one for cross-process, one when validating. BUG=skia: R=reed@google.com, scroggo@google.com Author: mtklein@google.com Review URL: https://codereview.chromium.org/138803005 git-svn-id: http://skia.googlecode.com/svn/trunk@13253 2bbb7eff-a529-9590-31e7-b0007b416f81
333 lines
12 KiB
C++
333 lines
12 KiB
C++
/*
|
|
* Copyright 2013 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkBitmapDevice.h"
|
|
#include "SkBitmapSource.h"
|
|
#include "SkCanvas.h"
|
|
#include "SkMallocPixelRef.h"
|
|
#include "SkWriteBuffer.h"
|
|
#include "SkValidatingReadBuffer.h"
|
|
#include "SkXfermodeImageFilter.h"
|
|
#include "Test.h"
|
|
|
|
static const uint32_t kArraySize = 64;
|
|
|
|
template<typename T>
|
|
static void TestAlignment(T* testObj, skiatest::Reporter* reporter) {
|
|
// Test memory read/write functions directly
|
|
unsigned char dataWritten[1024];
|
|
size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten);
|
|
REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory);
|
|
size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory);
|
|
REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory);
|
|
}
|
|
|
|
template<typename T> struct SerializationUtils {
|
|
// Generic case for flattenables
|
|
static void Write(SkWriteBuffer& writer, const T* flattenable) {
|
|
writer.writeFlattenable(flattenable);
|
|
}
|
|
static void Read(SkValidatingReadBuffer& reader, T** flattenable) {
|
|
*flattenable = (T*)reader.readFlattenable(T::GetFlattenableType());
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<SkMatrix> {
|
|
static void Write(SkWriteBuffer& writer, const SkMatrix* matrix) {
|
|
writer.writeMatrix(*matrix);
|
|
}
|
|
static void Read(SkValidatingReadBuffer& reader, SkMatrix* matrix) {
|
|
reader.readMatrix(matrix);
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<SkPath> {
|
|
static void Write(SkWriteBuffer& writer, const SkPath* path) {
|
|
writer.writePath(*path);
|
|
}
|
|
static void Read(SkValidatingReadBuffer& reader, SkPath* path) {
|
|
reader.readPath(path);
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<SkRegion> {
|
|
static void Write(SkWriteBuffer& writer, const SkRegion* region) {
|
|
writer.writeRegion(*region);
|
|
}
|
|
static void Read(SkValidatingReadBuffer& reader, SkRegion* region) {
|
|
reader.readRegion(region);
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<unsigned char> {
|
|
static void Write(SkWriteBuffer& writer, unsigned char* data, uint32_t arraySize) {
|
|
writer.writeByteArray(data, arraySize);
|
|
}
|
|
static bool Read(SkValidatingReadBuffer& reader, unsigned char* data, uint32_t arraySize) {
|
|
return reader.readByteArray(data, arraySize);
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<SkColor> {
|
|
static void Write(SkWriteBuffer& writer, SkColor* data, uint32_t arraySize) {
|
|
writer.writeColorArray(data, arraySize);
|
|
}
|
|
static bool Read(SkValidatingReadBuffer& reader, SkColor* data, uint32_t arraySize) {
|
|
return reader.readColorArray(data, arraySize);
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<int32_t> {
|
|
static void Write(SkWriteBuffer& writer, int32_t* data, uint32_t arraySize) {
|
|
writer.writeIntArray(data, arraySize);
|
|
}
|
|
static bool Read(SkValidatingReadBuffer& reader, int32_t* data, uint32_t arraySize) {
|
|
return reader.readIntArray(data, arraySize);
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<SkPoint> {
|
|
static void Write(SkWriteBuffer& writer, SkPoint* data, uint32_t arraySize) {
|
|
writer.writePointArray(data, arraySize);
|
|
}
|
|
static bool Read(SkValidatingReadBuffer& reader, SkPoint* data, uint32_t arraySize) {
|
|
return reader.readPointArray(data, arraySize);
|
|
}
|
|
};
|
|
|
|
template<> struct SerializationUtils<SkScalar> {
|
|
static void Write(SkWriteBuffer& writer, SkScalar* data, uint32_t arraySize) {
|
|
writer.writeScalarArray(data, arraySize);
|
|
}
|
|
static bool Read(SkValidatingReadBuffer& reader, SkScalar* data, uint32_t arraySize) {
|
|
return reader.readScalarArray(data, arraySize);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) {
|
|
SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag);
|
|
SerializationUtils<T>::Write(writer, testObj);
|
|
size_t bytesWritten = writer.bytesWritten();
|
|
REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);
|
|
|
|
unsigned char dataWritten[1024];
|
|
writer.writeToMemory(dataWritten);
|
|
|
|
// Make sure this fails when it should (test with smaller size, but still multiple of 4)
|
|
SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4);
|
|
T obj;
|
|
SerializationUtils<T>::Read(buffer, &obj);
|
|
REPORTER_ASSERT(reporter, !buffer.isValid());
|
|
|
|
// Make sure this succeeds when it should
|
|
SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
|
|
const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
|
|
T obj2;
|
|
SerializationUtils<T>::Read(buffer2, &obj2);
|
|
const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
|
|
// This should have succeeded, since there are enough bytes to read this
|
|
REPORTER_ASSERT(reporter, buffer2.isValid());
|
|
REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);
|
|
|
|
TestAlignment(testObj, reporter);
|
|
}
|
|
|
|
template<typename T>
|
|
static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed,
|
|
skiatest::Reporter* reporter) {
|
|
SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag);
|
|
SerializationUtils<T>::Write(writer, testObj);
|
|
size_t bytesWritten = writer.bytesWritten();
|
|
REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten);
|
|
|
|
unsigned char dataWritten[1024];
|
|
SkASSERT(bytesWritten <= sizeof(dataWritten));
|
|
writer.writeToMemory(dataWritten);
|
|
|
|
// Make sure this fails when it should (test with smaller size, but still multiple of 4)
|
|
SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4);
|
|
T* obj = NULL;
|
|
SerializationUtils<T>::Read(buffer, &obj);
|
|
REPORTER_ASSERT(reporter, !buffer.isValid());
|
|
REPORTER_ASSERT(reporter, NULL == obj);
|
|
|
|
// Make sure this succeeds when it should
|
|
SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
|
|
const unsigned char* peekBefore = static_cast<const unsigned char*>(buffer2.skip(0));
|
|
T* obj2 = NULL;
|
|
SerializationUtils<T>::Read(buffer2, &obj2);
|
|
const unsigned char* peekAfter = static_cast<const unsigned char*>(buffer2.skip(0));
|
|
if (shouldSucceed) {
|
|
// This should have succeeded, since there are enough bytes to read this
|
|
REPORTER_ASSERT(reporter, buffer2.isValid());
|
|
REPORTER_ASSERT(reporter, static_cast<size_t>(peekAfter - peekBefore) == bytesWritten);
|
|
REPORTER_ASSERT(reporter, NULL != obj2);
|
|
} else {
|
|
// If the deserialization was supposed to fail, make sure it did
|
|
REPORTER_ASSERT(reporter, !buffer.isValid());
|
|
REPORTER_ASSERT(reporter, NULL == obj2);
|
|
}
|
|
|
|
return obj2; // Return object to perform further validity tests on it
|
|
}
|
|
|
|
template<typename T>
|
|
static void TestArraySerialization(T* data, skiatest::Reporter* reporter) {
|
|
SkWriteBuffer writer(SkWriteBuffer::kValidation_Flag);
|
|
SerializationUtils<T>::Write(writer, data, kArraySize);
|
|
size_t bytesWritten = writer.bytesWritten();
|
|
// This should write the length (in 4 bytes) and the array
|
|
REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten);
|
|
|
|
unsigned char dataWritten[1024];
|
|
writer.writeToMemory(dataWritten);
|
|
|
|
// Make sure this fails when it should
|
|
SkValidatingReadBuffer buffer(dataWritten, bytesWritten);
|
|
T dataRead[kArraySize];
|
|
bool success = SerializationUtils<T>::Read(buffer, dataRead, kArraySize / 2);
|
|
// This should have failed, since the provided size was too small
|
|
REPORTER_ASSERT(reporter, !success);
|
|
|
|
// Make sure this succeeds when it should
|
|
SkValidatingReadBuffer buffer2(dataWritten, bytesWritten);
|
|
success = SerializationUtils<T>::Read(buffer2, dataRead, kArraySize);
|
|
// This should have succeeded, since there are enough bytes to read this
|
|
REPORTER_ASSERT(reporter, success);
|
|
}
|
|
|
|
static void TestBitmapSerialization(const SkBitmap& validBitmap,
|
|
const SkBitmap& invalidBitmap,
|
|
bool shouldSucceed,
|
|
skiatest::Reporter* reporter) {
|
|
SkBitmapSource validBitmapSource(validBitmap);
|
|
SkBitmapSource invalidBitmapSource(invalidBitmap);
|
|
SkAutoTUnref<SkXfermode> mode(SkXfermode::Create(SkXfermode::kSrcOver_Mode));
|
|
SkXfermodeImageFilter xfermodeImageFilter(mode, &invalidBitmapSource, &validBitmapSource);
|
|
|
|
SkAutoTUnref<SkImageFilter> deserializedFilter(
|
|
TestFlattenableSerialization<SkImageFilter>(
|
|
&xfermodeImageFilter, shouldSucceed, reporter));
|
|
|
|
// Try to render a small bitmap using the invalid deserialized filter
|
|
// to make sure we don't crash while trying to render it
|
|
if (shouldSucceed) {
|
|
SkBitmap bitmap;
|
|
bitmap.setConfig(SkBitmap::kARGB_8888_Config, 24, 24);
|
|
bitmap.allocPixels();
|
|
SkBitmapDevice device(bitmap);
|
|
SkCanvas canvas(&device);
|
|
canvas.clear(0x00000000);
|
|
SkPaint paint;
|
|
paint.setImageFilter(deserializedFilter);
|
|
canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24)));
|
|
canvas.drawBitmap(bitmap, 0, 0, &paint);
|
|
}
|
|
}
|
|
|
|
DEF_TEST(Serialization, reporter) {
|
|
// Test matrix serialization
|
|
{
|
|
SkMatrix matrix = SkMatrix::I();
|
|
TestObjectSerialization(&matrix, reporter);
|
|
}
|
|
|
|
// Test path serialization
|
|
{
|
|
SkPath path;
|
|
TestObjectSerialization(&path, reporter);
|
|
}
|
|
|
|
// Test region serialization
|
|
{
|
|
SkRegion region;
|
|
TestObjectSerialization(®ion, reporter);
|
|
}
|
|
|
|
// Test rrect serialization
|
|
{
|
|
// SkRRect does not initialize anything.
|
|
// An uninitialized SkRRect can be serialized,
|
|
// but will branch on uninitialized data when deserialized.
|
|
SkRRect rrect;
|
|
SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30);
|
|
SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} };
|
|
rrect.setRectRadii(rect, corners);
|
|
TestAlignment(&rrect, reporter);
|
|
}
|
|
|
|
// Test readByteArray
|
|
{
|
|
unsigned char data[kArraySize] = { 1, 2, 3 };
|
|
TestArraySerialization(data, reporter);
|
|
}
|
|
|
|
// Test readColorArray
|
|
{
|
|
SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED };
|
|
TestArraySerialization(data, reporter);
|
|
}
|
|
|
|
// Test readIntArray
|
|
{
|
|
int32_t data[kArraySize] = { 1, 2, 4, 8 };
|
|
TestArraySerialization(data, reporter);
|
|
}
|
|
|
|
// Test readPointArray
|
|
{
|
|
SkPoint data[kArraySize] = { {6, 7}, {42, 128} };
|
|
TestArraySerialization(data, reporter);
|
|
}
|
|
|
|
// Test readScalarArray
|
|
{
|
|
SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax };
|
|
TestArraySerialization(data, reporter);
|
|
}
|
|
|
|
// Test invalid deserializations
|
|
{
|
|
SkBitmap validBitmap;
|
|
validBitmap.setConfig(SkBitmap::kARGB_8888_Config, 256, 256);
|
|
|
|
// Create a bitmap with a really large height
|
|
SkBitmap invalidBitmap;
|
|
invalidBitmap.setConfig(SkBitmap::kARGB_8888_Config, 256, 1000000000);
|
|
|
|
// The deserialization should succeed, and the rendering shouldn't crash,
|
|
// even when the device fails to initialize, due to its size
|
|
TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter);
|
|
|
|
// we assert if the pixelref doesn't agree with the config, so skip this
|
|
// test (at least for now)
|
|
#if 0
|
|
// Create a bitmap with a pixel ref too small
|
|
SkImageInfo info;
|
|
info.fWidth = 256;
|
|
info.fHeight = 256;
|
|
info.fColorType = kPMColor_SkColorType;
|
|
info.fAlphaType = kPremul_SkAlphaType;
|
|
|
|
SkBitmap invalidBitmap2;
|
|
invalidBitmap2.setConfig(info);
|
|
|
|
// Hack to force invalid, by making the pixelref smaller than its
|
|
// owning bitmap.
|
|
info.fWidth = 32;
|
|
info.fHeight = 1;
|
|
|
|
invalidBitmap2.setPixelRef(SkMallocPixelRef::NewAllocate(
|
|
info, invalidBitmap2.rowBytes(), NULL))->unref();
|
|
|
|
// The deserialization should detect the pixel ref being too small and fail
|
|
TestBitmapSerialization(validBitmap, invalidBitmap2, false, reporter);
|
|
#endif
|
|
}
|
|
}
|