skia2/bench/GrMemoryPoolBench.cpp
Michael Ludwig 9abd568371 Reland "Avoid loop-dependent behavior in GrMemoryPoolBench"
This reverts commit dff4c1d5fd.

Reason for revert: Fix WIP

Original change's description:
> Revert "Avoid loop-dependent behavior in GrMemoryPoolBench"
> 
> This reverts commit f811fc331a.
> 
> Reason for revert: breaks on iOS
> 
> Original change's description:
> > Avoid loop-dependent behavior in GrMemoryPoolBench
> > 
> > This helps stability of benchmark across repeated runs, and across code
> > changes. Previously, a change to the tuned loop count could radically
> > change the allocation behavior within the loop's iteration and lead to
> > unfair comparisons.
> > 
> > In addition, this separates the stack allocation pattern into N allocations
> > followed by N LIFO releases, and a push-pop alternating pattern of N
> > allocates and releases (so still LIFO, but reuses the memory at the start
> > of a block).
> > 
> > In later CLs experimenting on the memory pool, I found that there were
> > surprising effects on performance linked to the specific interaction between
> > the allocation size, per-allocation metadata, and per-block metadata. To
> > help differentiate these coincidences, this adds two modes of allocation
> > where one should already be aligned.
> > 
> > It also moves away from a global pool, so that it's possible to benchmark
> > on different block sizes and factor in the allocation/release cost of the
> > actual blocks (vs. the cursor management of a larger sized pool). As part
> > of this, the new/delete reference operator is added as an explicit benchmark.
> > 
> > Change-Id: I12b8c11cb75db0df70460fe2e8cf6c029db7eb22
> > Reviewed-on: https://skia-review.googlesource.com/c/skia/+/262936
> > Commit-Queue: Michael Ludwig <michaelludwig@google.com>
> > Reviewed-by: Brian Salomon <bsalomon@google.com>
> 
> TBR=bsalomon@google.com,michaelludwig@google.com
> 
> Change-Id: I16f2810699a378eb5a516ab9fb1834c10b65f01b
> No-Presubmit: true
> No-Tree-Checks: true
> No-Try: true
> Reviewed-on: https://skia-review.googlesource.com/c/skia/+/263029
> Reviewed-by: Michael Ludwig <michaelludwig@google.com>
> Commit-Queue: Michael Ludwig <michaelludwig@google.com>

Change-Id: I51a9db111c26b49572c3fa0928e26ef6e5a7a74c
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/263196
Commit-Queue: Michael Ludwig <michaelludwig@google.com>
Commit-Queue: Brian Salomon <bsalomon@google.com>
Auto-Submit: Michael Ludwig <michaelludwig@google.com>
Reviewed-by: Brian Salomon <bsalomon@google.com>
2020-01-08 21:09:43 +00:00

217 lines
8.4 KiB
C++

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "bench/Benchmark.h"
#include "include/private/GrTypesPriv.h"
#include "include/utils/SkRandom.h"
#include "src/gpu/GrMemoryPool.h"
#include <type_traits>
namespace {
// sizeof is a multiple of GrMemoryPool::kAlignment for 4, 8, or 16 byte alignment
using Aligned = std::aligned_storage<32, GrMemoryPool::kAlignment>::type;
static_assert(sizeof(Aligned) == 32);
static_assert(sizeof(Aligned) % GrMemoryPool::kAlignment == 0);
// sizeof is not a multiple of GrMemoryPool::kAlignment (will not be a multiple of max_align_t
// if it's 4, 8, or 16, as desired).
using Unaligned = std::aligned_storage<30, 2>::type;
static_assert(sizeof(Unaligned) == 30);
static_assert(sizeof(Unaligned) % GrMemoryPool::kAlignment != 0);
// When max_align_t == 16, 8, or 4 the padded Unaligned will also be 32
static_assert(GrAlignTo(sizeof(Unaligned), GrMemoryPool::kAlignment) == sizeof(Aligned));
// All benchmarks create and delete the same number of objects. The key difference is the order
// of operations, the size of the objects being allocated, and the size of the pool.
typedef void (*RunBenchProc)(GrMemoryPool*, int);
}
// N objects are created, and then destroyed in reverse order (fully unwinding the cursor within
// each block of the memory pool).
template <typename T>
static void run_stack(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < loops; ++i) {
// Push N objects into the pool (or heap if pool is null)
for (int j = 0; j < kMaxObjects; ++j) {
objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
}
// Pop N objects off in LIFO order
for (int j = kMaxObjects - 1; j >= 0; --j) {
if (pool) {
pool->release(objs[j]);
} else {
delete objs[j];
}
}
// Everything has been cleaned up for the next loop
}
}
// N objects are created, and then destroyed in creation order (is not able to unwind the cursor
// within each block, but can reclaim the block once everything is destroyed).
template <typename T>
static void run_queue(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < loops; ++i) {
// Push N objects into the pool (or heap if pool is null)
for (int j = 0; j < kMaxObjects; ++j) {
objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
}
// Pop N objects off in FIFO order
for (int j = 0; j < kMaxObjects; ++j) {
if (pool) {
pool->release(objs[j]);
} else {
delete objs[j];
}
}
// Everything has been cleaned up for the next loop
}
}
// N objects are created and immediately destroyed, so space at the start of the pool should be
// immediately reclaimed.
template <typename T>
static void run_pushpop(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < loops; ++i) {
// Push N objects into the pool (or heap if pool is null)
for (int j = 0; j < kMaxObjects; ++j) {
if (pool) {
objs[j] = (T*) pool->allocate(sizeof(T));
pool->release(objs[j]);
} else {
objs[j] = new T;
delete objs[j];
}
}
// Everything has been cleaned up for the next loop
}
}
// N object creations and destructions are invoked in random order.
template <typename T>
static void run_random(GrMemoryPool* pool, int loops) {
static const int kMaxObjects = 4 * (1 << 10);
T* objs[kMaxObjects];
for (int i = 0; i < kMaxObjects; ++i) {
objs[i] = nullptr;
}
auto del = [&](int j) {
// Delete
if (pool) {
pool->release(objs[j]);
} else {
delete objs[j];
}
objs[j] = nullptr;
};
SkRandom r;
for (int i = 0; i < loops; ++i) {
// Execute 2*kMaxObjects operations, which should average to N create and N destroy,
// followed by a small number of remaining deletions.
for (int j = 0; j < 2 * kMaxObjects; ++j) {
int k = r.nextRangeU(0, kMaxObjects-1);
if (objs[k]) {
del(k);
} else {
// Create
objs[k] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
}
}
// Ensure everything is null for the next loop
for (int j = 0; j < kMaxObjects; ++j) {
if (objs[j]) {
del(j);
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
class GrMemoryPoolBench : public Benchmark {
public:
GrMemoryPoolBench(const char* name, RunBenchProc proc, int poolSize)
: fPoolSize(poolSize)
, fProc(proc) {
fName.printf("grmemorypool_%s", name);
}
bool isSuitableFor(Backend backend) override {
return backend == kNonRendering_Backend;
}
protected:
const char* onGetName() override {
return fName.c_str();
}
void onDraw(int loops, SkCanvas*) override {
std::unique_ptr<GrMemoryPool> pool;
if (fPoolSize > 0) {
pool = GrMemoryPool::Make(fPoolSize, fPoolSize);
} // else keep it null to test regular new/delete performance
fProc(pool.get(), loops);
}
SkString fName;
int fPoolSize;
RunBenchProc fProc;
typedef Benchmark INHERITED;
};
///////////////////////////////////////////////////////////////////////////////////////////////////
static const int kLargePool = 10 * (1 << 10);
static const int kSmallPool = GrMemoryPool::kMinAllocationSize;
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_lg", run_stack<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_sm", run_stack<Aligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_ref", run_stack<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_lg", run_stack<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_sm", run_stack<Unaligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_ref", run_stack<Unaligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_lg", run_queue<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_sm", run_queue<Aligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_ref", run_queue<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_lg", run_queue<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_sm", run_queue<Unaligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_ref", run_queue<Unaligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_lg", run_pushpop<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_sm", run_pushpop<Aligned>, kSmallPool); )
// DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_ref", run_pushpop<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_lg", run_pushpop<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_sm", run_pushpop<Unaligned>, kSmallPool); )
// DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_ref", run_pushpop<Unaligned>, 0); )
// pushpop_x_ref are not meaningful because the compiler completely optimizes away new T; delete *.
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_lg", run_random<Aligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_sm", run_random<Aligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("random_aligned_ref", run_random<Aligned>, 0); )
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_lg", run_random<Unaligned>, kLargePool); )
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_sm", run_random<Unaligned>, kSmallPool); )
DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_ref", run_random<Unaligned>, 0); )