v8/src/x64/code-stubs-x64.cc

6492 lines
228 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "bootstrapper.h"
#include "code-stubs.h"
#include "regexp-macro-assembler.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ToNumberStub::Generate(MacroAssembler* masm) {
// The ToNumber stub takes one argument in eax.
Label check_heap_number, call_builtin;
__ SmiTest(rax);
__ j(not_zero, &check_heap_number, Label::kNear);
__ Ret();
__ bind(&check_heap_number);
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_builtin, Label::kNear);
__ Ret();
__ bind(&call_builtin);
__ pop(rcx); // Pop return address.
__ push(rax);
__ push(rcx); // Push return address.
__ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
// Create a new closure from the given function info in new
// space. Set the context to the current context in rsi.
Counters* counters = masm->isolate()->counters();
Label gc;
__ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
__ IncrementCounter(counters->fast_new_closure_total(), 1);
// Get the function info from the stack.
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
int map_index = (language_mode_ == CLASSIC_MODE)
? Context::FUNCTION_MAP_INDEX
: Context::STRICT_MODE_FUNCTION_MAP_INDEX;
// Compute the function map in the current global context and set that
// as the map of the allocated object.
__ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, Operand(rcx, Context::SlotOffset(map_index)));
__ movq(FieldOperand(rax, JSObject::kMapOffset), rbx);
// Initialize the rest of the function. We don't have to update the
// write barrier because the allocated object is in new space.
__ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
__ LoadRoot(r8, Heap::kTheHoleValueRootIndex);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
__ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), r8);
__ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
__ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
__ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);
// Initialize the code pointer in the function to be the one
// found in the shared function info object.
// But first check if there is an optimized version for our context.
Label check_optimized;
Label install_unoptimized;
if (FLAG_cache_optimized_code) {
__ movq(rbx,
FieldOperand(rdx, SharedFunctionInfo::kOptimizedCodeMapOffset));
__ testq(rbx, rbx);
__ j(not_zero, &check_optimized, Label::kNear);
}
__ bind(&install_unoptimized);
__ movq(FieldOperand(rax, JSFunction::kNextFunctionLinkOffset),
rdi); // Initialize with undefined.
__ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
__ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
__ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);
// Return and remove the on-stack parameter.
__ ret(1 * kPointerSize);
__ bind(&check_optimized);
__ IncrementCounter(counters->fast_new_closure_try_optimized(), 1);
// rcx holds global context, ebx points to fixed array of 3-element entries
// (global context, optimized code, literals).
// The optimized code map must never be empty, so check the first elements.
Label install_optimized;
// Speculatively move code object into edx.
__ movq(rdx, FieldOperand(rbx, FixedArray::kHeaderSize + kPointerSize));
__ cmpq(rcx, FieldOperand(rbx, FixedArray::kHeaderSize));
__ j(equal, &install_optimized);
// Iterate through the rest of map backwards. rdx holds an index.
Label loop;
Label restore;
__ movq(rdx, FieldOperand(rbx, FixedArray::kLengthOffset));
__ SmiToInteger32(rdx, rdx);
__ bind(&loop);
// Do not double check first entry.
__ cmpq(rdx, Immediate(SharedFunctionInfo::kEntryLength));
__ j(equal, &restore);
__ subq(rdx, Immediate(SharedFunctionInfo::kEntryLength)); // Skip an entry.
__ cmpq(rcx, FieldOperand(rbx,
rdx,
times_pointer_size,
FixedArray::kHeaderSize));
__ j(not_equal, &loop, Label::kNear);
// Hit: fetch the optimized code.
__ movq(rdx, FieldOperand(rbx,
rdx,
times_pointer_size,
FixedArray::kHeaderSize + 1 * kPointerSize));
__ bind(&install_optimized);
__ IncrementCounter(counters->fast_new_closure_install_optimized(), 1);
// TODO(fschneider): Idea: store proper code pointers in the map and either
// unmangle them on marking or do nothing as the whole map is discarded on
// major GC anyway.
__ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
__ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);
// Now link a function into a list of optimized functions.
__ movq(rdx, ContextOperand(rcx, Context::OPTIMIZED_FUNCTIONS_LIST));
__ movq(FieldOperand(rax, JSFunction::kNextFunctionLinkOffset), rdx);
// No need for write barrier as JSFunction (rax) is in the new space.
__ movq(ContextOperand(rcx, Context::OPTIMIZED_FUNCTIONS_LIST), rax);
// Store JSFunction (rax) into rdx before issuing write barrier as
// it clobbers all the registers passed.
__ movq(rdx, rax);
__ RecordWriteContextSlot(
rcx,
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST),
rdx,
rbx,
kDontSaveFPRegs);
// Return and remove the on-stack parameter.
__ ret(1 * kPointerSize);
__ bind(&restore);
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
__ jmp(&install_unoptimized);
// Create a new closure through the slower runtime call.
__ bind(&gc);
__ pop(rcx); // Temporarily remove return address.
__ pop(rdx);
__ push(rsi);
__ push(rdx);
__ PushRoot(Heap::kFalseValueRootIndex);
__ push(rcx); // Restore return address.
__ TailCallRuntime(Runtime::kNewClosure, 3, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
__ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the function from the stack.
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
// Set up the object header.
__ LoadRoot(kScratchRegister, Heap::kFunctionContextMapRootIndex);
__ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
__ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
// Set up the fixed slots.
__ Set(rbx, 0); // Set to NULL.
__ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
__ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rsi);
__ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
// Copy the global object from the previous context.
__ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
// Initialize the rest of the slots to undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
__ movq(Operand(rax, Context::SlotOffset(i)), rbx);
}
// Return and remove the on-stack parameter.
__ movq(rsi, rax);
__ ret(1 * kPointerSize);
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
}
void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [rsp + (1 * kPointerSize)]: function
// [rsp + (2 * kPointerSize)]: serialized scope info
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
__ AllocateInNewSpace(FixedArray::SizeFor(length),
rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the function from the stack.
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
// Get the serialized scope info from the stack.
__ movq(rbx, Operand(rsp, 2 * kPointerSize));
// Set up the object header.
__ LoadRoot(kScratchRegister, Heap::kBlockContextMapRootIndex);
__ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
__ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
// If this block context is nested in the global context we get a smi
// sentinel instead of a function. The block context should get the
// canonical empty function of the global context as its closure which
// we still have to look up.
Label after_sentinel;
__ JumpIfNotSmi(rcx, &after_sentinel, Label::kNear);
if (FLAG_debug_code) {
const char* message = "Expected 0 as a Smi sentinel";
__ cmpq(rcx, Immediate(0));
__ Assert(equal, message);
}
__ movq(rcx, GlobalObjectOperand());
__ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
__ movq(rcx, ContextOperand(rcx, Context::CLOSURE_INDEX));
__ bind(&after_sentinel);
// Set up the fixed slots.
__ movq(ContextOperand(rax, Context::CLOSURE_INDEX), rcx);
__ movq(ContextOperand(rax, Context::PREVIOUS_INDEX), rsi);
__ movq(ContextOperand(rax, Context::EXTENSION_INDEX), rbx);
// Copy the global object from the previous context.
__ movq(rbx, ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(ContextOperand(rax, Context::GLOBAL_INDEX), rbx);
// Initialize the rest of the slots to the hole value.
__ LoadRoot(rbx, Heap::kTheHoleValueRootIndex);
for (int i = 0; i < slots_; i++) {
__ movq(ContextOperand(rax, i + Context::MIN_CONTEXT_SLOTS), rbx);
}
// Return and remove the on-stack parameter.
__ movq(rsi, rax);
__ ret(2 * kPointerSize);
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
}
static void GenerateFastCloneShallowArrayCommon(
MacroAssembler* masm,
int length,
FastCloneShallowArrayStub::Mode mode,
Label* fail) {
// Registers on entry:
//
// rcx: boilerplate literal array.
ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
// All sizes here are multiples of kPointerSize.
int elements_size = 0;
if (length > 0) {
elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
? FixedDoubleArray::SizeFor(length)
: FixedArray::SizeFor(length);
}
int size = JSArray::kSize + elements_size;
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
__ AllocateInNewSpace(size, rax, rbx, rdx, fail, TAG_OBJECT);
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length == 0)) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rax, i), rbx);
}
}
if (length > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
__ lea(rdx, Operand(rax, JSArray::kSize));
__ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
// Copy the elements array.
if (mode == FastCloneShallowArrayStub::CLONE_ELEMENTS) {
for (int i = 0; i < elements_size; i += kPointerSize) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rdx, i), rbx);
}
} else {
ASSERT(mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS);
int i;
for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rdx, i), rbx);
}
while (i < elements_size) {
__ movsd(xmm0, FieldOperand(rcx, i));
__ movsd(FieldOperand(rdx, i), xmm0);
i += kDoubleSize;
}
ASSERT(i == elements_size);
}
}
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [rsp + kPointerSize]: constant elements.
// [rsp + (2 * kPointerSize)]: literal index.
// [rsp + (3 * kPointerSize)]: literals array.
// Load boilerplate object into rcx and check if we need to create a
// boilerplate.
__ movq(rcx, Operand(rsp, 3 * kPointerSize));
__ movq(rax, Operand(rsp, 2 * kPointerSize));
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ movq(rcx,
FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
__ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
Label slow_case;
__ j(equal, &slow_case);
FastCloneShallowArrayStub::Mode mode = mode_;
// rcx is boilerplate object.
Factory* factory = masm->isolate()->factory();
if (mode == CLONE_ANY_ELEMENTS) {
Label double_elements, check_fast_elements;
__ movq(rbx, FieldOperand(rcx, JSArray::kElementsOffset));
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
factory->fixed_cow_array_map());
__ j(not_equal, &check_fast_elements);
GenerateFastCloneShallowArrayCommon(masm, 0,
COPY_ON_WRITE_ELEMENTS, &slow_case);
__ ret(3 * kPointerSize);
__ bind(&check_fast_elements);
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
factory->fixed_array_map());
__ j(not_equal, &double_elements);
GenerateFastCloneShallowArrayCommon(masm, length_,
CLONE_ELEMENTS, &slow_case);
__ ret(3 * kPointerSize);
__ bind(&double_elements);
mode = CLONE_DOUBLE_ELEMENTS;
// Fall through to generate the code to handle double elements.
}
if (FLAG_debug_code) {
const char* message;
Heap::RootListIndex expected_map_index;
if (mode == CLONE_ELEMENTS) {
message = "Expected (writable) fixed array";
expected_map_index = Heap::kFixedArrayMapRootIndex;
} else if (mode == CLONE_DOUBLE_ELEMENTS) {
message = "Expected (writable) fixed double array";
expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
} else {
ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
message = "Expected copy-on-write fixed array";
expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
}
__ push(rcx);
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
__ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
expected_map_index);
__ Assert(equal, message);
__ pop(rcx);
}
GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
__ ret(3 * kPointerSize);
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}
void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [rsp + kPointerSize]: object literal flags.
// [rsp + (2 * kPointerSize)]: constant properties.
// [rsp + (3 * kPointerSize)]: literal index.
// [rsp + (4 * kPointerSize)]: literals array.
// Load boilerplate object into ecx and check if we need to create a
// boilerplate.
Label slow_case;
__ movq(rcx, Operand(rsp, 4 * kPointerSize));
__ movq(rax, Operand(rsp, 3 * kPointerSize));
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ movq(rcx,
FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
__ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
__ j(equal, &slow_case);
// Check that the boilerplate contains only fast properties and we can
// statically determine the instance size.
int size = JSObject::kHeaderSize + length_ * kPointerSize;
__ movq(rax, FieldOperand(rcx, HeapObject::kMapOffset));
__ movzxbq(rax, FieldOperand(rax, Map::kInstanceSizeOffset));
__ cmpq(rax, Immediate(size >> kPointerSizeLog2));
__ j(not_equal, &slow_case);
// Allocate the JS object and copy header together with all in-object
// properties from the boilerplate.
__ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
for (int i = 0; i < size; i += kPointerSize) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rax, i), rbx);
}
// Return and remove the on-stack parameters.
__ ret(4 * kPointerSize);
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
}
// The stub expects its argument on the stack and returns its result in tos_:
// zero for false, and a non-zero value for true.
void ToBooleanStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
Label patch;
const Register argument = rax;
const Register map = rdx;
if (!types_.IsEmpty()) {
__ movq(argument, Operand(rsp, 1 * kPointerSize));
}
// undefined -> false
CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
// Boolean -> its value
CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
// 'null' -> false.
CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
if (types_.Contains(SMI)) {
// Smis: 0 -> false, all other -> true
Label not_smi;
__ JumpIfNotSmi(argument, &not_smi, Label::kNear);
// argument contains the correct return value already
if (!tos_.is(argument)) {
__ movq(tos_, argument);
}
__ ret(1 * kPointerSize);
__ bind(&not_smi);
} else if (types_.NeedsMap()) {
// If we need a map later and have a Smi -> patch.
__ JumpIfSmi(argument, &patch, Label::kNear);
}
if (types_.NeedsMap()) {
__ movq(map, FieldOperand(argument, HeapObject::kMapOffset));
if (types_.CanBeUndetectable()) {
__ testb(FieldOperand(map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
// Undetectable -> false.
Label not_undetectable;
__ j(zero, &not_undetectable, Label::kNear);
__ Set(tos_, 0);
__ ret(1 * kPointerSize);
__ bind(&not_undetectable);
}
}
if (types_.Contains(SPEC_OBJECT)) {
// spec object -> true.
Label not_js_object;
__ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
__ j(below, &not_js_object, Label::kNear);
// argument contains the correct return value already.
if (!tos_.is(argument)) {
__ Set(tos_, 1);
}
__ ret(1 * kPointerSize);
__ bind(&not_js_object);
}
if (types_.Contains(STRING)) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, &not_string, Label::kNear);
__ movq(tos_, FieldOperand(argument, String::kLengthOffset));
__ ret(1 * kPointerSize); // the string length is OK as the return value
__ bind(&not_string);
}
if (types_.Contains(HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number, false_result;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &not_heap_number, Label::kNear);
__ xorps(xmm0, xmm0);
__ ucomisd(xmm0, FieldOperand(argument, HeapNumber::kValueOffset));
__ j(zero, &false_result, Label::kNear);
// argument contains the correct return value already.
if (!tos_.is(argument)) {
__ Set(tos_, 1);
}
__ ret(1 * kPointerSize);
__ bind(&false_result);
__ Set(tos_, 0);
__ ret(1 * kPointerSize);
__ bind(&not_heap_number);
}
__ bind(&patch);
GenerateTypeTransition(masm);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
__ PushCallerSaved(save_doubles_);
const int argument_count = 1;
__ PrepareCallCFunction(argument_count);
#ifdef _WIN64
__ LoadAddress(rcx, ExternalReference::isolate_address());
#else
__ LoadAddress(rdi, ExternalReference::isolate_address());
#endif
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(masm->isolate()),
argument_count);
__ PopCallerSaved(save_doubles_);
__ ret(0);
}
void ToBooleanStub::CheckOddball(MacroAssembler* masm,
Type type,
Heap::RootListIndex value,
bool result) {
const Register argument = rax;
if (types_.Contains(type)) {
// If we see an expected oddball, return its ToBoolean value tos_.
Label different_value;
__ CompareRoot(argument, value);
__ j(not_equal, &different_value, Label::kNear);
if (!result) {
// If we have to return zero, there is no way around clearing tos_.
__ Set(tos_, 0);
} else if (!tos_.is(argument)) {
// If we have to return non-zero, we can re-use the argument if it is the
// same register as the result, because we never see Smi-zero here.
__ Set(tos_, 1);
}
__ ret(1 * kPointerSize);
__ bind(&different_value);
}
}
void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
__ pop(rcx); // Get return address, operand is now on top of stack.
__ Push(Smi::FromInt(tos_.code()));
__ Push(Smi::FromInt(types_.ToByte()));
__ push(rcx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
3,
1);
}
class FloatingPointHelper : public AllStatic {
public:
// Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
// If the operands are not both numbers, jump to not_numbers.
// Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
// NumberOperands assumes both are smis or heap numbers.
static void LoadSSE2SmiOperands(MacroAssembler* masm);
static void LoadSSE2NumberOperands(MacroAssembler* masm);
static void LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers);
// Takes the operands in rdx and rax and loads them as integers in rax
// and rcx.
static void LoadAsIntegers(MacroAssembler* masm,
Label* operand_conversion_failure,
Register heap_number_map);
// As above, but we know the operands to be numbers. In that case,
// conversion can't fail.
static void LoadNumbersAsIntegers(MacroAssembler* masm);
// Tries to convert two values to smis losslessly.
// This fails if either argument is not a Smi nor a HeapNumber,
// or if it's a HeapNumber with a value that can't be converted
// losslessly to a Smi. In that case, control transitions to the
// on_not_smis label.
// On success, either control goes to the on_success label (if one is
// provided), or it falls through at the end of the code (if on_success
// is NULL).
// On success, both first and second holds Smi tagged values.
// One of first or second must be non-Smi when entering.
static void NumbersToSmis(MacroAssembler* masm,
Register first,
Register second,
Register scratch1,
Register scratch2,
Register scratch3,
Label* on_success,
Label* on_not_smis);
};
// Get the integer part of a heap number.
// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
void IntegerConvert(MacroAssembler* masm,
Register result,
Register source) {
// Result may be rcx. If result and source are the same register, source will
// be overwritten.
ASSERT(!result.is(rdi) && !result.is(rbx));
// TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
// cvttsd2si (32-bit version) directly.
Register double_exponent = rbx;
Register double_value = rdi;
Label done, exponent_63_plus;
// Get double and extract exponent.
__ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
// Clear result preemptively, in case we need to return zero.
__ xorl(result, result);
__ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there.
// Double to remove sign bit, shift exponent down to least significant bits.
// and subtract bias to get the unshifted, unbiased exponent.
__ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
__ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
__ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
// Check whether the exponent is too big for a 63 bit unsigned integer.
__ cmpl(double_exponent, Immediate(63));
__ j(above_equal, &exponent_63_plus, Label::kNear);
// Handle exponent range 0..62.
__ cvttsd2siq(result, xmm0);
__ jmp(&done, Label::kNear);
__ bind(&exponent_63_plus);
// Exponent negative or 63+.
__ cmpl(double_exponent, Immediate(83));
// If exponent negative or above 83, number contains no significant bits in
// the range 0..2^31, so result is zero, and rcx already holds zero.
__ j(above, &done, Label::kNear);
// Exponent in rage 63..83.
// Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
// the least significant exponent-52 bits.
// Negate low bits of mantissa if value is negative.
__ addq(double_value, double_value); // Move sign bit to carry.
__ sbbl(result, result); // And convert carry to -1 in result register.
// if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
__ addl(double_value, result);
// Do xor in opposite directions depending on where we want the result
// (depending on whether result is rcx or not).
if (result.is(rcx)) {
__ xorl(double_value, result);
// Left shift mantissa by (exponent - mantissabits - 1) to save the
// bits that have positional values below 2^32 (the extra -1 comes from the
// doubling done above to move the sign bit into the carry flag).
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
__ shll_cl(double_value);
__ movl(result, double_value);
} else {
// As the then-branch, but move double-value to result before shifting.
__ xorl(result, double_value);
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
__ shll_cl(result);
}
__ bind(&done);
}
void UnaryOpStub::Generate(MacroAssembler* masm) {
switch (operand_type_) {
case UnaryOpIC::UNINITIALIZED:
GenerateTypeTransition(masm);
break;
case UnaryOpIC::SMI:
GenerateSmiStub(masm);
break;
case UnaryOpIC::HEAP_NUMBER:
GenerateHeapNumberStub(masm);
break;
case UnaryOpIC::GENERIC:
GenerateGenericStub(masm);
break;
}
}
void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
__ pop(rcx); // Save return address.
__ push(rax); // the operand
__ Push(Smi::FromInt(op_));
__ Push(Smi::FromInt(mode_));
__ Push(Smi::FromInt(operand_type_));
__ push(rcx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateSmiStubSub(masm);
break;
case Token::BIT_NOT:
GenerateSmiStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
Label slow;
GenerateSmiCodeSub(masm, &slow, &slow, Label::kNear, Label::kNear);
__ bind(&slow);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
Label non_smi;
GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
__ bind(&non_smi);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
Label* non_smi,
Label* slow,
Label::Distance non_smi_near,
Label::Distance slow_near) {
Label done;
__ JumpIfNotSmi(rax, non_smi, non_smi_near);
__ SmiNeg(rax, rax, &done, Label::kNear);
__ jmp(slow, slow_near);
__ bind(&done);
__ ret(0);
}
void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
Label* non_smi,
Label::Distance non_smi_near) {
__ JumpIfNotSmi(rax, non_smi, non_smi_near);
__ SmiNot(rax, rax);
__ ret(0);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateHeapNumberStubSub(masm);
break;
case Token::BIT_NOT:
GenerateHeapNumberStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
Label non_smi, slow, call_builtin;
GenerateSmiCodeSub(masm, &non_smi, &call_builtin, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeSub(masm, &slow);
__ bind(&slow);
GenerateTypeTransition(masm);
__ bind(&call_builtin);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateHeapNumberStubBitNot(
MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeBitNot(masm, &slow);
__ bind(&slow);
GenerateTypeTransition(masm);
}
void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
Label* slow) {
// Check if the operand is a heap number.
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, slow);
// Operand is a float, negate its value by flipping the sign bit.
if (mode_ == UNARY_OVERWRITE) {
__ Set(kScratchRegister, 0x01);
__ shl(kScratchRegister, Immediate(63));
__ xor_(FieldOperand(rax, HeapNumber::kValueOffset), kScratchRegister);
} else {
// Allocate a heap number before calculating the answer,
// so we don't have an untagged double around during GC.
Label slow_allocate_heapnumber, heapnumber_allocated;
__ AllocateHeapNumber(rcx, rbx, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(rax);
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ movq(rcx, rax);
__ pop(rax);
}
__ bind(&heapnumber_allocated);
// rcx: allocated 'empty' number
// Copy the double value to the new heap number, flipping the sign.
__ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
__ Set(kScratchRegister, 0x01);
__ shl(kScratchRegister, Immediate(63));
__ xor_(rdx, kScratchRegister); // Flip sign.
__ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
__ movq(rax, rcx);
}
__ ret(0);
}
void UnaryOpStub::GenerateHeapNumberCodeBitNot(MacroAssembler* masm,
Label* slow) {
// Check if the operand is a heap number.
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, slow);
// Convert the heap number in rax to an untagged integer in rcx.
IntegerConvert(masm, rax, rax);
// Do the bitwise operation and smi tag the result.
__ notl(rax);
__ Integer32ToSmi(rax, rax);
__ ret(0);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
switch (op_) {
case Token::SUB:
GenerateGenericStubSub(masm);
break;
case Token::BIT_NOT:
GenerateGenericStubBitNot(masm);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeSub(masm, &non_smi, &slow, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeSub(masm, &slow);
__ bind(&slow);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
Label non_smi, slow;
GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
__ bind(&non_smi);
GenerateHeapNumberCodeBitNot(masm, &slow);
__ bind(&slow);
GenerateGenericCodeFallback(masm);
}
void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
// Handle the slow case by jumping to the JavaScript builtin.
__ pop(rcx); // pop return address
__ push(rax);
__ push(rcx); // push return address
switch (op_) {
case Token::SUB:
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
break;
case Token::BIT_NOT:
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void UnaryOpStub::PrintName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* overwrite_name = NULL; // Make g++ happy.
switch (mode_) {
case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
}
stream->Add("UnaryOpStub_%s_%s_%s",
op_name,
overwrite_name,
UnaryOpIC::GetName(operand_type_));
}
void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
__ pop(rcx); // Save return address.
__ push(rdx);
__ push(rax);
// Left and right arguments are now on top.
// Push this stub's key. Although the operation and the type info are
// encoded into the key, the encoding is opaque, so push them too.
__ Push(Smi::FromInt(MinorKey()));
__ Push(Smi::FromInt(op_));
__ Push(Smi::FromInt(operands_type_));
__ push(rcx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
masm->isolate()),
5,
1);
}
void BinaryOpStub::Generate(MacroAssembler* masm) {
// Explicitly allow generation of nested stubs. It is safe here because
// generation code does not use any raw pointers.
AllowStubCallsScope allow_stub_calls(masm, true);
switch (operands_type_) {
case BinaryOpIC::UNINITIALIZED:
GenerateTypeTransition(masm);
break;
case BinaryOpIC::SMI:
GenerateSmiStub(masm);
break;
case BinaryOpIC::INT32:
UNREACHABLE();
// The int32 case is identical to the Smi case. We avoid creating this
// ic state on x64.
break;
case BinaryOpIC::HEAP_NUMBER:
GenerateHeapNumberStub(masm);
break;
case BinaryOpIC::ODDBALL:
GenerateOddballStub(masm);
break;
case BinaryOpIC::BOTH_STRING:
GenerateBothStringStub(masm);
break;
case BinaryOpIC::STRING:
GenerateStringStub(masm);
break;
case BinaryOpIC::GENERIC:
GenerateGeneric(masm);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::PrintName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
stream->Add("BinaryOpStub_%s_%s_%s",
op_name,
overwrite_name,
BinaryOpIC::GetName(operands_type_));
}
void BinaryOpStub::GenerateSmiCode(
MacroAssembler* masm,
Label* slow,
SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
// Arguments to BinaryOpStub are in rdx and rax.
const Register left = rdx;
const Register right = rax;
// We only generate heapnumber answers for overflowing calculations
// for the four basic arithmetic operations and logical right shift by 0.
bool generate_inline_heapnumber_results =
(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) &&
(op_ == Token::ADD || op_ == Token::SUB ||
op_ == Token::MUL || op_ == Token::DIV || op_ == Token::SHR);
// Smi check of both operands. If op is BIT_OR, the check is delayed
// until after the OR operation.
Label not_smis;
Label use_fp_on_smis;
Label fail;
if (op_ != Token::BIT_OR) {
Comment smi_check_comment(masm, "-- Smi check arguments");
__ JumpIfNotBothSmi(left, right, &not_smis);
}
Label smi_values;
__ bind(&smi_values);
// Perform the operation.
Comment perform_smi(masm, "-- Perform smi operation");
switch (op_) {
case Token::ADD:
ASSERT(right.is(rax));
__ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
break;
case Token::SUB:
__ SmiSub(left, left, right, &use_fp_on_smis);
__ movq(rax, left);
break;
case Token::MUL:
ASSERT(right.is(rax));
__ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
break;
case Token::DIV:
// SmiDiv will not accept left in rdx or right in rax.
__ movq(rbx, rax);
__ movq(rcx, rdx);
__ SmiDiv(rax, rcx, rbx, &use_fp_on_smis);
break;
case Token::MOD:
// SmiMod will not accept left in rdx or right in rax.
__ movq(rbx, rax);
__ movq(rcx, rdx);
__ SmiMod(rax, rcx, rbx, &use_fp_on_smis);
break;
case Token::BIT_OR: {
ASSERT(right.is(rax));
__ SmiOrIfSmis(right, right, left, &not_smis); // BIT_OR is commutative.
break;
}
case Token::BIT_XOR:
ASSERT(right.is(rax));
__ SmiXor(right, right, left); // BIT_XOR is commutative.
break;
case Token::BIT_AND:
ASSERT(right.is(rax));
__ SmiAnd(right, right, left); // BIT_AND is commutative.
break;
case Token::SHL:
__ SmiShiftLeft(left, left, right);
__ movq(rax, left);
break;
case Token::SAR:
__ SmiShiftArithmeticRight(left, left, right);
__ movq(rax, left);
break;
case Token::SHR:
__ SmiShiftLogicalRight(left, left, right, &use_fp_on_smis);
__ movq(rax, left);
break;
default:
UNREACHABLE();
}
// 5. Emit return of result in rax. Some operations have registers pushed.
__ ret(0);
if (use_fp_on_smis.is_linked()) {
// 6. For some operations emit inline code to perform floating point
// operations on known smis (e.g., if the result of the operation
// overflowed the smi range).
__ bind(&use_fp_on_smis);
if (op_ == Token::DIV || op_ == Token::MOD) {
// Restore left and right to rdx and rax.
__ movq(rdx, rcx);
__ movq(rax, rbx);
}
if (generate_inline_heapnumber_results) {
__ AllocateHeapNumber(rcx, rbx, slow);
Comment perform_float(masm, "-- Perform float operation on smis");
if (op_ == Token::SHR) {
__ SmiToInteger32(left, left);
__ cvtqsi2sd(xmm0, left);
} else {
FloatingPointHelper::LoadSSE2SmiOperands(masm);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
}
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
} else {
__ jmp(&fail);
}
}
// 7. Non-smi operands reach the end of the code generated by
// GenerateSmiCode, and fall through to subsequent code,
// with the operands in rdx and rax.
// But first we check if non-smi values are HeapNumbers holding
// values that could be smi.
__ bind(&not_smis);
Comment done_comment(masm, "-- Enter non-smi code");
FloatingPointHelper::NumbersToSmis(masm, left, right, rbx, rdi, rcx,
&smi_values, &fail);
__ jmp(&smi_values);
__ bind(&fail);
}
void BinaryOpStub::GenerateFloatingPointCode(MacroAssembler* masm,
Label* allocation_failure,
Label* non_numeric_failure) {
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
FloatingPointHelper::LoadSSE2UnknownOperands(masm, non_numeric_failure);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
GenerateHeapResultAllocation(masm, allocation_failure);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
__ ret(0);
break;
}
case Token::MOD: {
// For MOD we jump to the allocation_failure label, to call runtime.
__ jmp(allocation_failure);
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
Label non_smi_shr_result;
Register heap_number_map = r9;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
FloatingPointHelper::LoadAsIntegers(masm, non_numeric_failure,
heap_number_map);
switch (op_) {
case Token::BIT_OR: __ orl(rax, rcx); break;
case Token::BIT_AND: __ andl(rax, rcx); break;
case Token::BIT_XOR: __ xorl(rax, rcx); break;
case Token::SAR: __ sarl_cl(rax); break;
case Token::SHL: __ shll_cl(rax); break;
case Token::SHR: {
__ shrl_cl(rax);
// Check if result is negative. This can only happen for a shift
// by zero.
__ testl(rax, rax);
__ j(negative, &non_smi_shr_result);
break;
}
default: UNREACHABLE();
}
STATIC_ASSERT(kSmiValueSize == 32);
// Tag smi result and return.
__ Integer32ToSmi(rax, rax);
__ Ret();
// Logical shift right can produce an unsigned int32 that is not
// an int32, and so is not in the smi range. Allocate a heap number
// in that case.
if (op_ == Token::SHR) {
__ bind(&non_smi_shr_result);
Label allocation_failed;
__ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
// Allocate heap number in new space.
// Not using AllocateHeapNumber macro in order to reuse
// already loaded heap_number_map.
__ AllocateInNewSpace(HeapNumber::kSize,
rax,
rdx,
no_reg,
&allocation_failed,
TAG_OBJECT);
// Set the map.
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
__ movq(FieldOperand(rax, HeapObject::kMapOffset),
heap_number_map);
__ cvtqsi2sd(xmm0, rbx);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
__ Ret();
__ bind(&allocation_failed);
// We need tagged values in rdx and rax for the following code,
// not int32 in rax and rcx.
__ Integer32ToSmi(rax, rcx);
__ Integer32ToSmi(rdx, rbx);
__ jmp(allocation_failure);
}
break;
}
default: UNREACHABLE(); break;
}
// No fall-through from this generated code.
if (FLAG_debug_code) {
__ Abort("Unexpected fall-through in "
"BinaryStub::GenerateFloatingPointCode.");
}
}
void BinaryOpStub::GenerateStringAddCode(MacroAssembler* masm) {
ASSERT(op_ == Token::ADD);
Label left_not_string, call_runtime;
// Registers containing left and right operands respectively.
Register left = rdx;
Register right = rax;
// Test if left operand is a string.
__ JumpIfSmi(left, &left_not_string, Label::kNear);
__ CmpObjectType(left, FIRST_NONSTRING_TYPE, rcx);
__ j(above_equal, &left_not_string, Label::kNear);
StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_left_stub);
// Left operand is not a string, test right.
__ bind(&left_not_string);
__ JumpIfSmi(right, &call_runtime, Label::kNear);
__ CmpObjectType(right, FIRST_NONSTRING_TYPE, rcx);
__ j(above_equal, &call_runtime, Label::kNear);
StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_right_stub);
// Neither argument is a string.
__ bind(&call_runtime);
}
void BinaryOpStub::GenerateCallRuntimeCode(MacroAssembler* masm) {
GenerateRegisterArgsPush(masm);
switch (op_) {
case Token::ADD:
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
case Token::SUB:
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Label call_runtime;
if (result_type_ == BinaryOpIC::UNINITIALIZED ||
result_type_ == BinaryOpIC::SMI) {
// Only allow smi results.
GenerateSmiCode(masm, NULL, NO_HEAPNUMBER_RESULTS);
} else {
// Allow heap number result and don't make a transition if a heap number
// cannot be allocated.
GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
}
// Code falls through if the result is not returned as either a smi or heap
// number.
GenerateTypeTransition(masm);
if (call_runtime.is_linked()) {
__ bind(&call_runtime);
GenerateCallRuntimeCode(masm);
}
}
void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
ASSERT(operands_type_ == BinaryOpIC::STRING);
ASSERT(op_ == Token::ADD);
GenerateStringAddCode(masm);
// Try to add arguments as strings, otherwise, transition to the generic
// BinaryOpIC type.
GenerateTypeTransition(masm);
}
void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
Label call_runtime;
ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
ASSERT(op_ == Token::ADD);
// If both arguments are strings, call the string add stub.
// Otherwise, do a transition.
// Registers containing left and right operands respectively.
Register left = rdx;
Register right = rax;
// Test if left operand is a string.
__ JumpIfSmi(left, &call_runtime);
__ CmpObjectType(left, FIRST_NONSTRING_TYPE, rcx);
__ j(above_equal, &call_runtime);
// Test if right operand is a string.
__ JumpIfSmi(right, &call_runtime);
__ CmpObjectType(right, FIRST_NONSTRING_TYPE, rcx);
__ j(above_equal, &call_runtime);
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_stub);
__ bind(&call_runtime);
GenerateTypeTransition(masm);
}
void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Label call_runtime;
if (op_ == Token::ADD) {
// Handle string addition here, because it is the only operation
// that does not do a ToNumber conversion on the operands.
GenerateStringAddCode(masm);
}
// Convert oddball arguments to numbers.
Label check, done;
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &check, Label::kNear);
if (Token::IsBitOp(op_)) {
__ xor_(rdx, rdx);
} else {
__ LoadRoot(rdx, Heap::kNanValueRootIndex);
}
__ jmp(&done, Label::kNear);
__ bind(&check);
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &done, Label::kNear);
if (Token::IsBitOp(op_)) {
__ xor_(rax, rax);
} else {
__ LoadRoot(rax, Heap::kNanValueRootIndex);
}
__ bind(&done);
GenerateHeapNumberStub(masm);
}
void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Label gc_required, not_number;
GenerateFloatingPointCode(masm, &gc_required, &not_number);
__ bind(&not_number);
GenerateTypeTransition(masm);
__ bind(&gc_required);
GenerateCallRuntimeCode(masm);
}
void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Label call_runtime, call_string_add_or_runtime;
GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
GenerateFloatingPointCode(masm, &call_runtime, &call_string_add_or_runtime);
__ bind(&call_string_add_or_runtime);
if (op_ == Token::ADD) {
GenerateStringAddCode(masm);
}
__ bind(&call_runtime);
GenerateCallRuntimeCode(masm);
}
void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
Label* alloc_failure) {
Label skip_allocation;
OverwriteMode mode = mode_;
switch (mode) {
case OVERWRITE_LEFT: {
// If the argument in rdx is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(rdx, &skip_allocation);
// Allocate a heap number for the result. Keep eax and edx intact
// for the possible runtime call.
__ AllocateHeapNumber(rbx, rcx, alloc_failure);
// Now rdx can be overwritten losing one of the arguments as we are
// now done and will not need it any more.
__ movq(rdx, rbx);
__ bind(&skip_allocation);
// Use object in rdx as a result holder
__ movq(rax, rdx);
break;
}
case OVERWRITE_RIGHT:
// If the argument in rax is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
// Allocate a heap number for the result. Keep rax and rdx intact
// for the possible runtime call.
__ AllocateHeapNumber(rbx, rcx, alloc_failure);
// Now rax can be overwritten losing one of the arguments as we are
// now done and will not need it any more.
__ movq(rax, rbx);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
}
void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
__ pop(rcx);
__ push(rdx);
__ push(rax);
__ push(rcx);
}
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// TAGGED case:
// Input:
// rsp[8]: argument (should be number).
// rsp[0]: return address.
// Output:
// rax: tagged double result.
// UNTAGGED case:
// Input::
// rsp[0]: return address.
// xmm1: untagged double input argument
// Output:
// xmm1: untagged double result.
Label runtime_call;
Label runtime_call_clear_stack;
Label skip_cache;
const bool tagged = (argument_type_ == TAGGED);
if (tagged) {
Label input_not_smi, loaded;
// Test that rax is a number.
__ movq(rax, Operand(rsp, kPointerSize));
__ JumpIfNotSmi(rax, &input_not_smi, Label::kNear);
// Input is a smi. Untag and load it onto the FPU stack.
// Then load the bits of the double into rbx.
__ SmiToInteger32(rax, rax);
__ subq(rsp, Immediate(kDoubleSize));
__ cvtlsi2sd(xmm1, rax);
__ movsd(Operand(rsp, 0), xmm1);
__ movq(rbx, xmm1);
__ movq(rdx, xmm1);
__ fld_d(Operand(rsp, 0));
__ addq(rsp, Immediate(kDoubleSize));
__ jmp(&loaded, Label::kNear);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ LoadRoot(rbx, Heap::kHeapNumberMapRootIndex);
__ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ j(not_equal, &runtime_call);
// Input is a HeapNumber. Push it on the FPU stack and load its
// bits into rbx.
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rdx, rbx);
__ bind(&loaded);
} else { // UNTAGGED.
__ movq(rbx, xmm1);
__ movq(rdx, xmm1);
}
// ST[0] == double value, if TAGGED.
// rbx = bits of double value.
// rdx = also bits of double value.
// Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
// h = h0 = bits ^ (bits >> 32);
// h ^= h >> 16;
// h ^= h >> 8;
// h = h & (cacheSize - 1);
// or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
__ sar(rdx, Immediate(32));
__ xorl(rdx, rbx);
__ movl(rcx, rdx);
__ movl(rax, rdx);
__ movl(rdi, rdx);
__ sarl(rdx, Immediate(8));
__ sarl(rcx, Immediate(16));
__ sarl(rax, Immediate(24));
__ xorl(rcx, rdx);
__ xorl(rax, rdi);
__ xorl(rcx, rax);
ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
__ andl(rcx, Immediate(TranscendentalCache::SubCache::kCacheSize - 1));
// ST[0] == double value.
// rbx = bits of double value.
// rcx = TranscendentalCache::hash(double value).
ExternalReference cache_array =
ExternalReference::transcendental_cache_array_address(masm->isolate());
__ movq(rax, cache_array);
int cache_array_index =
type_ * sizeof(Isolate::Current()->transcendental_cache()->caches_[0]);
__ movq(rax, Operand(rax, cache_array_index));
// rax points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ testq(rax, rax);
__ j(zero, &runtime_call_clear_stack); // Only clears stack if TAGGED.
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ // NOLINT - doesn't like a single brace on a line.
TranscendentalCache::SubCache::Element test_elem[2];
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
// Two uint_32's and a pointer per element.
CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
}
#endif
// Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
__ addl(rcx, rcx);
__ lea(rcx, Operand(rax, rcx, times_8, 0));
// Check if cache matches: Double value is stored in uint32_t[2] array.
Label cache_miss;
__ cmpq(rbx, Operand(rcx, 0));
__ j(not_equal, &cache_miss, Label::kNear);
// Cache hit!
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->transcendental_cache_hit(), 1);
__ movq(rax, Operand(rcx, 2 * kIntSize));
if (tagged) {
__ fstp(0); // Clear FPU stack.
__ ret(kPointerSize);
} else { // UNTAGGED.
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ Ret();
}
__ bind(&cache_miss);
__ IncrementCounter(counters->transcendental_cache_miss(), 1);
// Update cache with new value.
if (tagged) {
__ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
} else { // UNTAGGED.
__ AllocateHeapNumber(rax, rdi, &skip_cache);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1);
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
}
GenerateOperation(masm, type_);
__ movq(Operand(rcx, 0), rbx);
__ movq(Operand(rcx, 2 * kIntSize), rax);
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
if (tagged) {
__ ret(kPointerSize);
} else { // UNTAGGED.
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ Ret();
// Skip cache and return answer directly, only in untagged case.
__ bind(&skip_cache);
__ subq(rsp, Immediate(kDoubleSize));
__ movsd(Operand(rsp, 0), xmm1);
__ fld_d(Operand(rsp, 0));
GenerateOperation(masm, type_);
__ fstp_d(Operand(rsp, 0));
__ movsd(xmm1, Operand(rsp, 0));
__ addq(rsp, Immediate(kDoubleSize));
// We return the value in xmm1 without adding it to the cache, but
// we cause a scavenging GC so that future allocations will succeed.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Allocate an unused object bigger than a HeapNumber.
__ Push(Smi::FromInt(2 * kDoubleSize));
__ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
}
__ Ret();
}
// Call runtime, doing whatever allocation and cleanup is necessary.
if (tagged) {
__ bind(&runtime_call_clear_stack);
__ fstp(0);
__ bind(&runtime_call);
__ TailCallExternalReference(
ExternalReference(RuntimeFunction(), masm->isolate()), 1, 1);
} else { // UNTAGGED.
__ bind(&runtime_call_clear_stack);
__ bind(&runtime_call);
__ AllocateHeapNumber(rax, rdi, &skip_cache);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(rax);
__ CallRuntime(RuntimeFunction(), 1);
}
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ Ret();
}
}
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
switch (type_) {
// Add more cases when necessary.
case TranscendentalCache::SIN: return Runtime::kMath_sin;
case TranscendentalCache::COS: return Runtime::kMath_cos;
case TranscendentalCache::TAN: return Runtime::kMath_tan;
case TranscendentalCache::LOG: return Runtime::kMath_log;
default:
UNIMPLEMENTED();
return Runtime::kAbort;
}
}
void TranscendentalCacheStub::GenerateOperation(
MacroAssembler* masm, TranscendentalCache::Type type) {
// Registers:
// rax: Newly allocated HeapNumber, which must be preserved.
// rbx: Bits of input double. Must be preserved.
// rcx: Pointer to cache entry. Must be preserved.
// st(0): Input double
Label done;
if (type == TranscendentalCache::SIN ||
type == TranscendentalCache::COS ||
type == TranscendentalCache::TAN) {
// Both fsin and fcos require arguments in the range +/-2^63 and
// return NaN for infinities and NaN. They can share all code except
// the actual fsin/fcos operation.
Label in_range;
// If argument is outside the range -2^63..2^63, fsin/cos doesn't
// work. We must reduce it to the appropriate range.
__ movq(rdi, rbx);
// Move exponent and sign bits to low bits.
__ shr(rdi, Immediate(HeapNumber::kMantissaBits));
// Remove sign bit.
__ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
__ cmpl(rdi, Immediate(supported_exponent_limit));
__ j(below, &in_range);
// Check for infinity and NaN. Both return NaN for sin.
__ cmpl(rdi, Immediate(0x7ff));
Label non_nan_result;
__ j(not_equal, &non_nan_result, Label::kNear);
// Input is +/-Infinity or NaN. Result is NaN.
__ fstp(0);
// NaN is represented by 0x7ff8000000000000.
__ subq(rsp, Immediate(kPointerSize));
__ movl(Operand(rsp, 4), Immediate(0x7ff80000));
__ movl(Operand(rsp, 0), Immediate(0x00000000));
__ fld_d(Operand(rsp, 0));
__ addq(rsp, Immediate(kPointerSize));
__ jmp(&done);
__ bind(&non_nan_result);
// Use fpmod to restrict argument to the range +/-2*PI.
__ movq(rdi, rax); // Save rax before using fnstsw_ax.
__ fldpi();
__ fadd(0);
__ fld(1);
// FPU Stack: input, 2*pi, input.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word.
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
Label partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem1();
__ fwait();
__ fnstsw_ax();
__ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word.
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
// FPU Stack: input, 2*pi, input % 2*pi
__ fstp(2);
// FPU Stack: input % 2*pi, 2*pi,
__ fstp(0);
// FPU Stack: input % 2*pi
__ movq(rax, rdi); // Restore rax, pointer to the new HeapNumber.
__ bind(&in_range);
switch (type) {
case TranscendentalCache::SIN:
__ fsin();
break;
case TranscendentalCache::COS:
__ fcos();
break;
case TranscendentalCache::TAN:
// FPTAN calculates tangent onto st(0) and pushes 1.0 onto the
// FP register stack.
__ fptan();
__ fstp(0); // Pop FP register stack.
break;
default:
UNREACHABLE();
}
__ bind(&done);
} else {
ASSERT(type == TranscendentalCache::LOG);
__ fldln2();
__ fxch();
__ fyl2x();
}
}
// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
// Check float operands.
Label done;
Label rax_is_smi;
Label rax_is_object;
Label rdx_is_object;
__ JumpIfNotSmi(rdx, &rdx_is_object);
__ SmiToInteger32(rdx, rdx);
__ JumpIfSmi(rax, &rax_is_smi);
__ bind(&rax_is_object);
IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
__ jmp(&done);
__ bind(&rdx_is_object);
IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
__ JumpIfNotSmi(rax, &rax_is_object);
__ bind(&rax_is_smi);
__ SmiToInteger32(rcx, rax);
__ bind(&done);
__ movl(rax, rdx);
}
// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
// Jump to conversion_failure: rdx and rax are unchanged.
void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
Label* conversion_failure,
Register heap_number_map) {
// Check float operands.
Label arg1_is_object, check_undefined_arg1;
Label arg2_is_object, check_undefined_arg2;
Label load_arg2, done;
__ JumpIfNotSmi(rdx, &arg1_is_object);
__ SmiToInteger32(r8, rdx);
__ jmp(&load_arg2);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg1);
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ Set(r8, 0);
__ jmp(&load_arg2);
__ bind(&arg1_is_object);
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, &check_undefined_arg1);
// Get the untagged integer version of the rdx heap number in rcx.
IntegerConvert(masm, r8, rdx);
// Here r8 has the untagged integer, rax has a Smi or a heap number.
__ bind(&load_arg2);
// Test if arg2 is a Smi.
__ JumpIfNotSmi(rax, &arg2_is_object);
__ SmiToInteger32(rcx, rax);
__ jmp(&done);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg2);
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ Set(rcx, 0);
__ jmp(&done);
__ bind(&arg2_is_object);
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, &check_undefined_arg2);
// Get the untagged integer version of the rax heap number in rcx.
IntegerConvert(masm, rcx, rax);
__ bind(&done);
__ movl(rax, r8);
}
void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
}
void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
// Load operand in rdx into xmm0.
__ JumpIfSmi(rdx, &load_smi_rdx);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
// Load operand in rax into xmm1.
__ JumpIfSmi(rax, &load_smi_rax);
__ bind(&load_nonsmi_rax);
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_rdx);
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
__ bind(&load_smi_rax);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
__ bind(&done);
}
void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers) {
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
// Load operand in rdx into xmm0, or branch to not_numbers.
__ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
__ JumpIfSmi(rdx, &load_smi_rdx);
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers); // Argument in rdx is not a number.
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
// Load operand in rax into xmm1, or branch to not_numbers.
__ JumpIfSmi(rax, &load_smi_rax);
__ bind(&load_nonsmi_rax);
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers);
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_rdx);
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
__ bind(&load_smi_rax);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
__ bind(&done);
}
void FloatingPointHelper::NumbersToSmis(MacroAssembler* masm,
Register first,
Register second,
Register scratch1,
Register scratch2,
Register scratch3,
Label* on_success,
Label* on_not_smis) {
Register heap_number_map = scratch3;
Register smi_result = scratch1;
Label done;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
Label first_smi;
__ JumpIfSmi(first, &first_smi, Label::kNear);
__ cmpq(FieldOperand(first, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, on_not_smis);
// Convert HeapNumber to smi if possible.
__ movsd(xmm0, FieldOperand(first, HeapNumber::kValueOffset));
__ movq(scratch2, xmm0);
__ cvttsd2siq(smi_result, xmm0);
// Check if conversion was successful by converting back and
// comparing to the original double's bits.
__ cvtlsi2sd(xmm1, smi_result);
__ movq(kScratchRegister, xmm1);
__ cmpq(scratch2, kScratchRegister);
__ j(not_equal, on_not_smis);
__ Integer32ToSmi(first, smi_result);
__ JumpIfSmi(second, (on_success != NULL) ? on_success : &done);
__ bind(&first_smi);
if (FLAG_debug_code) {
// Second should be non-smi if we get here.
__ AbortIfSmi(second);
}
__ cmpq(FieldOperand(second, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, on_not_smis);
// Convert second to smi, if possible.
__ movsd(xmm0, FieldOperand(second, HeapNumber::kValueOffset));
__ movq(scratch2, xmm0);
__ cvttsd2siq(smi_result, xmm0);
__ cvtlsi2sd(xmm1, smi_result);
__ movq(kScratchRegister, xmm1);
__ cmpq(scratch2, kScratchRegister);
__ j(not_equal, on_not_smis);
__ Integer32ToSmi(second, smi_result);
if (on_success != NULL) {
__ jmp(on_success);
} else {
__ bind(&done);
}
}
void MathPowStub::Generate(MacroAssembler* masm) {
// Choose register conforming to calling convention (when bailing out).
#ifdef _WIN64
const Register exponent = rdx;
#else
const Register exponent = rdi;
#endif
const Register base = rax;
const Register scratch = rcx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ movq(scratch, Immediate(1));
__ cvtlsi2sd(double_result, scratch);
if (exponent_type_ == ON_STACK) {
Label base_is_smi, unpack_exponent;
// The exponent and base are supplied as arguments on the stack.
// This can only happen if the stub is called from non-optimized code.
// Load input parameters from stack.
__ movq(base, Operand(rsp, 2 * kPointerSize));
__ movq(exponent, Operand(rsp, 1 * kPointerSize));
__ JumpIfSmi(base, &base_is_smi, Label::kNear);
__ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
__ jmp(&unpack_exponent, Label::kNear);
__ bind(&base_is_smi);
__ SmiToInteger32(base, base);
__ cvtlsi2sd(double_base, base);
__ bind(&unpack_exponent);
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiToInteger32(exponent, exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
} else if (exponent_type_ == TAGGED) {
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiToInteger32(exponent, exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type_ != INTEGER) {
Label fast_power;
// Detect integer exponents stored as double.
__ cvttsd2si(exponent, double_exponent);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cmpl(exponent, Immediate(0x80000000u));
__ j(equal, &call_runtime);
__ cvtlsi2sd(double_scratch, exponent);
// Already ruled out NaNs for exponent.
__ ucomisd(double_exponent, double_scratch);
__ j(equal, &int_exponent);
if (exponent_type_ == ON_STACK) {
// Detect square root case. Crankshaft detects constant +/-0.5 at
// compile time and uses DoMathPowHalf instead. We then skip this check
// for non-constant cases of +/-0.5 as these hardly occur.
Label continue_sqrt, continue_rsqrt, not_plus_half;
// Test for 0.5.
// Load double_scratch with 0.5.
__ movq(scratch, V8_UINT64_C(0x3FE0000000000000), RelocInfo::NONE);
__ movq(double_scratch, scratch);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &not_plus_half, Label::kNear);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
// According to IEEE-754, double-precision -Infinity has the highest
// 12 bits set and the lowest 52 bits cleared.
__ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE);
__ movq(double_scratch, scratch);
__ ucomisd(double_scratch, double_base);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_sqrt, Label::kNear);
__ j(carry, &continue_sqrt, Label::kNear);
// Set result to Infinity in the special case.
__ xorps(double_result, double_result);
__ subsd(double_result, double_scratch);
__ jmp(&done);
__ bind(&continue_sqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(double_scratch, double_scratch);
__ addsd(double_scratch, double_base); // Convert -0 to 0.
__ sqrtsd(double_result, double_scratch);
__ jmp(&done);
// Test for -0.5.
__ bind(&not_plus_half);
// Load double_scratch with -0.5 by substracting 1.
__ subsd(double_scratch, double_result);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &fast_power, Label::kNear);
// Calculates reciprocal of square root of base. Check for the special
// case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
// According to IEEE-754, double-precision -Infinity has the highest
// 12 bits set and the lowest 52 bits cleared.
__ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE);
__ movq(double_scratch, scratch);
__ ucomisd(double_scratch, double_base);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_rsqrt, Label::kNear);
__ j(carry, &continue_rsqrt, Label::kNear);
// Set result to 0 in the special case.
__ xorps(double_result, double_result);
__ jmp(&done);
__ bind(&continue_rsqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(double_exponent, double_exponent);
__ addsd(double_exponent, double_base); // Convert -0 to +0.
__ sqrtsd(double_exponent, double_exponent);
__ divsd(double_result, double_exponent);
__ jmp(&done);
}
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ subq(rsp, Immediate(kDoubleSize));
__ movsd(Operand(rsp, 0), double_exponent);
__ fld_d(Operand(rsp, 0)); // E
__ movsd(Operand(rsp, 0), double_base);
__ fld_d(Operand(rsp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 1, 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1);
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(rsp, 0));
__ movsd(double_result, Operand(rsp, 0));
__ addq(rsp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ addq(rsp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
// Back up exponent as we need to check if exponent is negative later.
__ movq(scratch, exponent); // Back up exponent.
__ movsd(double_scratch, double_base); // Back up base.
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, no_multiply;
__ testl(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ negl(scratch);
__ bind(&no_neg);
__ bind(&while_true);
__ shrl(scratch, Immediate(1));
__ j(not_carry, &no_multiply, Label::kNear);
__ mulsd(double_result, double_scratch);
__ bind(&no_multiply);
__ mulsd(double_scratch, double_scratch);
__ j(not_zero, &while_true);
// If the exponent is negative, return 1/result.
__ testl(exponent, exponent);
__ j(greater, &done);
__ divsd(double_scratch2, double_result);
__ movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ xorps(double_scratch2, double_scratch2);
__ ucomisd(double_scratch2, double_result);
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// input was a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ cvtlsi2sd(double_exponent, exponent);
// Returning or bailing out.
Counters* counters = masm->isolate()->counters();
if (exponent_type_ == ON_STACK) {
// The arguments are still on the stack.
__ bind(&call_runtime);
__ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
// The stub is called from non-optimized code, which expects the result
// as heap number in eax.
__ bind(&done);
__ AllocateHeapNumber(rax, rcx, &call_runtime);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
__ IncrementCounter(counters->math_pow(), 1);
__ ret(2 * kPointerSize);
} else {
__ bind(&call_runtime);
// Move base to the correct argument register. Exponent is already in xmm1.
__ movsd(xmm0, double_base);
ASSERT(double_exponent.is(xmm1));
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::power_double_double_function(masm->isolate()), 2);
}
// Return value is in xmm0.
__ movsd(double_result, xmm0);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ bind(&done);
__ IncrementCounter(counters->math_pow(), 1);
__ ret(0);
}
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The key is in rdx and the parameter count is in rax.
// The displacement is used for skipping the frame pointer on the
// stack. It is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement = 1 * kPointerSize;
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(rdx, &slow);
// Check if the calling frame is an arguments adaptor frame. We look at the
// context offset, and if the frame is not a regular one, then we find a
// Smi instead of the context. We can't use SmiCompare here, because that
// only works for comparing two smis.
Label adaptor;
__ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor);
// Check index against formal parameters count limit passed in
// through register rax. Use unsigned comparison to get negative
// check for free.
__ cmpq(rdx, rax);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmpq(rdx, rcx);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
__ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ pop(rbx); // Return address.
__ push(rdx);
__ push(rbx);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
// Stack layout:
// rsp[0] : return address
// rsp[8] : number of parameters (tagged)
// rsp[16] : receiver displacement
// rsp[24] : function
// Registers used over the whole function:
// rbx: the mapped parameter count (untagged)
// rax: the allocated object (tagged).
Factory* factory = masm->isolate()->factory();
__ SmiToInteger64(rbx, Operand(rsp, 1 * kPointerSize));
// rbx = parameter count (untagged)
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
Label adaptor_frame, try_allocate;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
__ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor_frame);
// No adaptor, parameter count = argument count.
__ movq(rcx, rbx);
__ jmp(&try_allocate, Label::kNear);
// We have an adaptor frame. Patch the parameters pointer.
__ bind(&adaptor_frame);
__ SmiToInteger64(rcx,
Operand(rdx,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ lea(rdx, Operand(rdx, rcx, times_pointer_size,
StandardFrameConstants::kCallerSPOffset));
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
// rbx = parameter count (untagged)
// rcx = argument count (untagged)
// Compute the mapped parameter count = min(rbx, rcx) in rbx.
__ cmpq(rbx, rcx);
__ j(less_equal, &try_allocate, Label::kNear);
__ movq(rbx, rcx);
__ bind(&try_allocate);
// Compute the sizes of backing store, parameter map, and arguments object.
// 1. Parameter map, has 2 extra words containing context and backing store.
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
Label no_parameter_map;
__ xor_(r8, r8);
__ testq(rbx, rbx);
__ j(zero, &no_parameter_map, Label::kNear);
__ lea(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
__ bind(&no_parameter_map);
// 2. Backing store.
__ lea(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize));
// 3. Arguments object.
__ addq(r8, Immediate(Heap::kArgumentsObjectSize));
// Do the allocation of all three objects in one go.
__ AllocateInNewSpace(r8, rax, rdx, rdi, &runtime, TAG_OBJECT);
// rax = address of new object(s) (tagged)
// rcx = argument count (untagged)
// Get the arguments boilerplate from the current (global) context into rdi.
Label has_mapped_parameters, copy;
__ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
__ testq(rbx, rbx);
__ j(not_zero, &has_mapped_parameters, Label::kNear);
const int kIndex = Context::ARGUMENTS_BOILERPLATE_INDEX;
__ movq(rdi, Operand(rdi, Context::SlotOffset(kIndex)));
__ jmp(&copy, Label::kNear);
const int kAliasedIndex = Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX;
__ bind(&has_mapped_parameters);
__ movq(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex)));
__ bind(&copy);
// rax = address of new object (tagged)
// rbx = mapped parameter count (untagged)
// rcx = argument count (untagged)
// rdi = address of boilerplate object (tagged)
// Copy the JS object part.
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
__ movq(rdx, FieldOperand(rdi, i));
__ movq(FieldOperand(rax, i), rdx);
}
// Set up the callee in-object property.
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
__ movq(rdx, Operand(rsp, 3 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize +
Heap::kArgumentsCalleeIndex * kPointerSize),
rdx);
// Use the length (smi tagged) and set that as an in-object property too.
// Note: rcx is tagged from here on.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
__ Integer32ToSmi(rcx, rcx);
__ movq(FieldOperand(rax, JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize),
rcx);
// Set up the elements pointer in the allocated arguments object.
// If we allocated a parameter map, edi will point there, otherwise to the
// backing store.
__ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
// rax = address of new object (tagged)
// rbx = mapped parameter count (untagged)
// rcx = argument count (tagged)
// rdi = address of parameter map or backing store (tagged)
// Initialize parameter map. If there are no mapped arguments, we're done.
Label skip_parameter_map;
__ testq(rbx, rbx);
__ j(zero, &skip_parameter_map);
__ LoadRoot(kScratchRegister, Heap::kNonStrictArgumentsElementsMapRootIndex);
// rbx contains the untagged argument count. Add 2 and tag to write.
__ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
__ Integer64PlusConstantToSmi(r9, rbx, 2);
__ movq(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
__ movq(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
__ lea(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
__ movq(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. They index the context,
// where parameters are stored in reverse order, at
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
// The mapped parameter thus need to get indices
// MIN_CONTEXT_SLOTS+parameter_count-1 ..
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
// We loop from right to left.
Label parameters_loop, parameters_test;
// Load tagged parameter count into r9.
__ Integer32ToSmi(r9, rbx);
__ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
__ addq(r8, Operand(rsp, 1 * kPointerSize));
__ subq(r8, r9);
__ Move(r11, factory->the_hole_value());
__ movq(rdx, rdi);
__ lea(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
// r9 = loop variable (tagged)
// r8 = mapping index (tagged)
// r11 = the hole value
// rdx = address of parameter map (tagged)
// rdi = address of backing store (tagged)
__ jmp(&parameters_test, Label::kNear);
__ bind(&parameters_loop);
__ SmiSubConstant(r9, r9, Smi::FromInt(1));
__ SmiToInteger64(kScratchRegister, r9);
__ movq(FieldOperand(rdx, kScratchRegister,
times_pointer_size,
kParameterMapHeaderSize),
r8);
__ movq(FieldOperand(rdi, kScratchRegister,
times_pointer_size,
FixedArray::kHeaderSize),
r11);
__ SmiAddConstant(r8, r8, Smi::FromInt(1));
__ bind(&parameters_test);
__ SmiTest(r9);
__ j(not_zero, &parameters_loop, Label::kNear);
__ bind(&skip_parameter_map);
// rcx = argument count (tagged)
// rdi = address of backing store (tagged)
// Copy arguments header and remaining slots (if there are any).
__ Move(FieldOperand(rdi, FixedArray::kMapOffset),
factory->fixed_array_map());
__ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
Label arguments_loop, arguments_test;
__ movq(r8, rbx);
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
// Untag rcx for the loop below.
__ SmiToInteger64(rcx, rcx);
__ lea(kScratchRegister, Operand(r8, times_pointer_size, 0));
__ subq(rdx, kScratchRegister);
__ jmp(&arguments_test, Label::kNear);
__ bind(&arguments_loop);
__ subq(rdx, Immediate(kPointerSize));
__ movq(r9, Operand(rdx, 0));
__ movq(FieldOperand(rdi, r8,
times_pointer_size,
FixedArray::kHeaderSize),
r9);
__ addq(r8, Immediate(1));
__ bind(&arguments_test);
__ cmpq(r8, rcx);
__ j(less, &arguments_loop, Label::kNear);
// Return and remove the on-stack parameters.
__ ret(3 * kPointerSize);
// Do the runtime call to allocate the arguments object.
// rcx = argument count (untagged)
__ bind(&runtime);
__ Integer32ToSmi(rcx, rcx);
__ movq(Operand(rsp, 1 * kPointerSize), rcx); // Patch argument count.
__ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
// esp[0] : return address
// esp[8] : number of parameters
// esp[16] : receiver displacement
// esp[24] : function
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
__ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &runtime);
// Patch the arguments.length and the parameters pointer.
__ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ movq(Operand(rsp, 1 * kPointerSize), rcx);
__ SmiToInteger64(rcx, rcx);
__ lea(rdx, Operand(rdx, rcx, times_pointer_size,
StandardFrameConstants::kCallerSPOffset));
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
// rsp[0] : return address
// rsp[8] : number of parameters
// rsp[16] : receiver displacement
// rsp[24] : function
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
__ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor_frame);
// Get the length from the frame.
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
__ SmiToInteger64(rcx, rcx);
__ jmp(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ movq(Operand(rsp, 1 * kPointerSize), rcx);
__ SmiToInteger64(rcx, rcx);
__ lea(rdx, Operand(rdx, rcx, times_pointer_size,
StandardFrameConstants::kCallerSPOffset));
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
// Try the new space allocation. Start out with computing the size of
// the arguments object and the elements array.
Label add_arguments_object;
__ bind(&try_allocate);
__ testq(rcx, rcx);
__ j(zero, &add_arguments_object, Label::kNear);
__ lea(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
__ bind(&add_arguments_object);
__ addq(rcx, Immediate(Heap::kArgumentsObjectSizeStrict));
// Do the allocation of both objects in one go.
__ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
// Get the arguments boilerplate from the current (global) context.
__ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
const int offset =
Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX);
__ movq(rdi, Operand(rdi, offset));
// Copy the JS object part.
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
__ movq(rbx, FieldOperand(rdi, i));
__ movq(FieldOperand(rax, i), rbx);
}
// Get the length (smi tagged) and set that as an in-object property too.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize),
rcx);
// If there are no actual arguments, we're done.
Label done;
__ testq(rcx, rcx);
__ j(zero, &done);
// Get the parameters pointer from the stack.
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
// Set up the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ lea(rdi, Operand(rax, Heap::kArgumentsObjectSizeStrict));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
__ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
__ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
__ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
// Untag the length for the loop below.
__ SmiToInteger64(rcx, rcx);
// Copy the fixed array slots.
Label loop;
__ bind(&loop);
__ movq(rbx, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
__ movq(FieldOperand(rdi, FixedArray::kHeaderSize), rbx);
__ addq(rdi, Immediate(kPointerSize));
__ subq(rdx, Immediate(kPointerSize));
__ decq(rcx);
__ j(not_zero, &loop);
// Return and remove the on-stack parameters.
__ bind(&done);
__ ret(3 * kPointerSize);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: last_match_info (expected JSArray)
// rsp[16]: previous index
// rsp[24]: subject string
// rsp[32]: JSRegExp object
static const int kLastMatchInfoOffset = 1 * kPointerSize;
static const int kPreviousIndexOffset = 2 * kPointerSize;
static const int kSubjectOffset = 3 * kPointerSize;
static const int kJSRegExpOffset = 4 * kPointerSize;
Label runtime;
// Ensure that a RegExp stack is allocated.
Isolate* isolate = masm->isolate();
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate);
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate);
__ Load(kScratchRegister, address_of_regexp_stack_memory_size);
__ testq(kScratchRegister, kScratchRegister);
__ j(zero, &runtime);
// Check that the first argument is a JSRegExp object.
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ movq(rax, FieldOperand(rax, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
Condition is_smi = masm->CheckSmi(rax);
__ Check(NegateCondition(is_smi),
"Unexpected type for RegExp data, FixedArray expected");
__ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
__ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
}
// rax: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
__ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
__ j(not_equal, &runtime);
// rax: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ SmiToInteger32(rdx,
FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ leal(rdx, Operand(rdx, rdx, times_1, 2));
// Check that the static offsets vector buffer is large enough.
__ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize));
__ j(above, &runtime);
// rax: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the second argument is a string.
__ movq(rdi, Operand(rsp, kSubjectOffset));
__ JumpIfSmi(rdi, &runtime);
Condition is_string = masm->IsObjectStringType(rdi, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// rdi: Subject string.
// rax: RegExp data (FixedArray).
// rdx: Number of capture registers.
// Check that the third argument is a positive smi less than the string
// length. A negative value will be greater (unsigned comparison).
__ movq(rbx, Operand(rsp, kPreviousIndexOffset));
__ JumpIfNotSmi(rbx, &runtime);
__ SmiCompare(rbx, FieldOperand(rdi, String::kLengthOffset));
__ j(above_equal, &runtime);
// rax: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the fourth object is a JSArray object.
__ movq(rdi, Operand(rsp, kLastMatchInfoOffset));
__ JumpIfSmi(rdi, &runtime);
__ CmpObjectType(rdi, JS_ARRAY_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the JSArray is in fast case.
__ movq(rbx, FieldOperand(rdi, JSArray::kElementsOffset));
__ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information. Ensure no overflow in add.
STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
__ SmiToInteger32(rdi, FieldOperand(rbx, FixedArray::kLengthOffset));
__ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
__ cmpl(rdx, rdi);
__ j(greater, &runtime);
// Reset offset for possibly sliced string.
__ Set(r14, 0);
// rax: RegExp data (FixedArray)
// Check the representation and encoding of the subject string.
Label seq_ascii_string, seq_two_byte_string, check_code;
__ movq(rdi, Operand(rsp, kSubjectOffset));
// Make a copy of the original subject string.
__ movq(r15, rdi);
__ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
// First check for flat two byte string.
__ andb(rbx, Immediate(kIsNotStringMask |
kStringRepresentationMask |
kStringEncodingMask |
kShortExternalStringMask));
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string, Label::kNear);
// Any other flat string must be a flat ASCII string. None of the following
// string type tests will succeed if subject is not a string or a short
// external string.
__ andb(rbx, Immediate(kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask));
__ j(zero, &seq_ascii_string, Label::kNear);
// rbx: whether subject is a string and if yes, its string representation
// Check for flat cons string or sliced string.
// A flat cons string is a cons string where the second part is the empty
// string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string.
// In the case of a sliced string its offset has to be taken into account.
Label cons_string, external_string, check_encoding;
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ cmpq(rbx, Immediate(kExternalStringTag));
__ j(less, &cons_string, Label::kNear);
__ j(equal, &external_string);
// Catch non-string subject or short external string.
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
__ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
__ j(not_zero, &runtime);
// String is sliced.
__ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
__ movq(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
// r14: slice offset
// r15: original subject string
// rdi: parent string
__ jmp(&check_encoding, Label::kNear);
// String is a cons string, check whether it is flat.
__ bind(&cons_string);
__ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
Heap::kEmptyStringRootIndex);
__ j(not_equal, &runtime);
__ movq(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
// rdi: first part of cons string or parent of sliced string.
// rbx: map of first part of cons string or map of parent of sliced string.
// Is first part of cons or parent of slice a flat two byte string?
__ bind(&check_encoding);
__ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
Immediate(kStringRepresentationMask | kStringEncodingMask));
STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string, Label::kNear);
// Any other flat string must be sequential ASCII or external.
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
Immediate(kStringRepresentationMask));
__ j(not_zero, &external_string);
__ bind(&seq_ascii_string);
// rdi: subject string (sequential ASCII)
// rax: RegExp data (FixedArray)
__ movq(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset));
__ Set(rcx, 1); // Type is ASCII.
__ jmp(&check_code, Label::kNear);
__ bind(&seq_two_byte_string);
// rdi: subject string (flat two-byte)
// rax: RegExp data (FixedArray)
__ movq(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
__ Set(rcx, 0); // Type is two byte.
__ bind(&check_code);
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// smi (code flushing support)
__ JumpIfSmi(r11, &runtime);
// rdi: subject string
// rcx: encoding of subject string (1 if ASCII, 0 if two_byte);
// r11: code
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
__ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
// rdi: subject string
// rbx: previous index
// rcx: encoding of subject string (1 if ASCII 0 if two_byte);
// r11: code
// All checks done. Now push arguments for native regexp code.
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->regexp_entry_native(), 1);
// Isolates: note we add an additional parameter here (isolate pointer).
static const int kRegExpExecuteArguments = 9;
int argument_slots_on_stack =
masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
__ EnterApiExitFrame(argument_slots_on_stack);
// Argument 9: Pass current isolate address.
// __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
// Immediate(ExternalReference::isolate_address()));
__ LoadAddress(kScratchRegister, ExternalReference::isolate_address());
__ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
kScratchRegister);
// Argument 8: Indicate that this is a direct call from JavaScript.
__ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize),
Immediate(1));
// Argument 7: Start (high end) of backtracking stack memory area.
__ movq(kScratchRegister, address_of_regexp_stack_memory_address);
__ movq(r9, Operand(kScratchRegister, 0));
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
__ addq(r9, Operand(kScratchRegister, 0));
__ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r9);
// Argument 6: Set the number of capture registers to zero to force global
// regexps to behave as non-global. This does not affect non-global regexps.
// Argument 6 is passed in r9 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 4) * kPointerSize),
Immediate(0));
#else
__ Set(r9, 0);
#endif
// Argument 5: static offsets vector buffer.
__ LoadAddress(r8,
ExternalReference::address_of_static_offsets_vector(isolate));
// Argument 5 passed in r8 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 5) * kPointerSize), r8);
#endif
// First four arguments are passed in registers on both Linux and Windows.
#ifdef _WIN64
Register arg4 = r9;
Register arg3 = r8;
Register arg2 = rdx;
Register arg1 = rcx;
#else
Register arg4 = rcx;
Register arg3 = rdx;
Register arg2 = rsi;
Register arg1 = rdi;
#endif
// Keep track on aliasing between argX defined above and the registers used.
// rdi: subject string
// rbx: previous index
// rcx: encoding of subject string (1 if ASCII 0 if two_byte);
// r11: code
// r14: slice offset
// r15: original subject string
// Argument 2: Previous index.
__ movq(arg2, rbx);
// Argument 4: End of string data
// Argument 3: Start of string data
Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
// Prepare start and end index of the input.
// Load the length from the original sliced string if that is the case.
__ addq(rbx, r14);
__ SmiToInteger32(arg3, FieldOperand(r15, String::kLengthOffset));
__ addq(r14, arg3); // Using arg3 as scratch.
// rbx: start index of the input
// r14: end index of the input
// r15: original subject string
__ testb(rcx, rcx); // Last use of rcx as encoding of subject string.
__ j(zero, &setup_two_byte, Label::kNear);
__ lea(arg4, FieldOperand(rdi, r14, times_1, SeqAsciiString::kHeaderSize));
__ lea(arg3, FieldOperand(rdi, rbx, times_1, SeqAsciiString::kHeaderSize));
__ jmp(&setup_rest, Label::kNear);
__ bind(&setup_two_byte);
__ lea(arg4, FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
__ lea(arg3, FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
__ bind(&setup_rest);
// Argument 1: Original subject string.
// The original subject is in the previous stack frame. Therefore we have to
// use rbp, which points exactly to one pointer size below the previous rsp.
// (Because creating a new stack frame pushes the previous rbp onto the stack
// and thereby moves up rsp by one kPointerSize.)
__ movq(arg1, r15);
// Locate the code entry and call it.
__ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(r11);
__ LeaveApiExitFrame();
// Check the result.
Label success;
Label exception;
__ cmpl(rax, Immediate(1));
// We expect exactly one result since we force the called regexp to behave
// as non-global.
__ j(equal, &success, Label::kNear);
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
__ j(equal, &exception);
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
// If none of the above, it can only be retry.
// Handle that in the runtime system.
__ j(not_equal, &runtime);
// For failure return null.
__ LoadRoot(rax, Heap::kNullValueRootIndex);
__ ret(4 * kPointerSize);
// Load RegExp data.
__ bind(&success);
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
__ SmiToInteger32(rax,
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ leal(rdx, Operand(rax, rax, times_1, 2));
// rdx: Number of capture registers
// Load last_match_info which is still known to be a fast case JSArray.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
// rbx: last_match_info backing store (FixedArray)
// rdx: number of capture registers
// Store the capture count.
__ Integer32ToSmi(kScratchRegister, rdx);
__ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
kScratchRegister);
// Store last subject and last input.
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
__ RecordWriteField(rbx,
RegExpImpl::kLastSubjectOffset,
rax,
rdi,
kDontSaveFPRegs);
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
__ RecordWriteField(rbx,
RegExpImpl::kLastInputOffset,
rax,
rdi,
kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
__ LoadAddress(rcx,
ExternalReference::address_of_static_offsets_vector(isolate));
// rbx: last_match_info backing store (FixedArray)
// rcx: offsets vector
// rdx: number of capture registers
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
__ bind(&next_capture);
__ subq(rdx, Immediate(1));
__ j(negative, &done, Label::kNear);
// Read the value from the static offsets vector buffer and make it a smi.
__ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
__ Integer32ToSmi(rdi, rdi);
// Store the smi value in the last match info.
__ movq(FieldOperand(rbx,
rdx,
times_pointer_size,
RegExpImpl::kFirstCaptureOffset),
rdi);
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ ret(4 * kPointerSize);
__ bind(&exception);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate);
Operand pending_exception_operand =
masm->ExternalOperand(pending_exception_address, rbx);
__ movq(rax, pending_exception_operand);
__ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
__ cmpq(rax, rdx);
__ j(equal, &runtime);
__ movq(pending_exception_operand, rdx);
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
Label termination_exception;
__ j(equal, &termination_exception, Label::kNear);
__ Throw(rax);
__ bind(&termination_exception);
__ ThrowUncatchable(rax);
// External string. Short external strings have already been ruled out.
// rdi: subject string (expected to be external)
// rbx: scratch
__ bind(&external_string);
__ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ testb(rbx, Immediate(kIsIndirectStringMask));
__ Assert(zero, "external string expected, but not found");
}
__ movq(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
__ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kTwoByteStringTag == 0);
__ testb(rbx, Immediate(kStringEncodingMask));
__ j(not_zero, &seq_ascii_string);
__ jmp(&seq_two_byte_string);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif // V8_INTERPRETED_REGEXP
}
void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
const int kMaxInlineLength = 100;
Label slowcase;
Label done;
__ movq(r8, Operand(rsp, kPointerSize * 3));
__ JumpIfNotSmi(r8, &slowcase);
__ SmiToInteger32(rbx, r8);
__ cmpl(rbx, Immediate(kMaxInlineLength));
__ j(above, &slowcase);
// Smi-tagging is equivalent to multiplying by 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
// Allocate RegExpResult followed by FixedArray with size in rbx.
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
// Elements: [Map][Length][..elements..]
__ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
times_pointer_size,
rbx, // In: Number of elements.
rax, // Out: Start of allocation (tagged).
rcx, // Out: End of allocation.
rdx, // Scratch register
&slowcase,
TAG_OBJECT);
// rax: Start of allocated area, object-tagged.
// rbx: Number of array elements as int32.
// r8: Number of array elements as smi.
// Set JSArray map to global.regexp_result_map().
__ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset));
__ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX));
__ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx);
// Set empty properties FixedArray.
__ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex);
__ movq(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister);
// Set elements to point to FixedArray allocated right after the JSArray.
__ lea(rcx, Operand(rax, JSRegExpResult::kSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);
// Set input, index and length fields from arguments.
__ movq(r8, Operand(rsp, kPointerSize * 1));
__ movq(FieldOperand(rax, JSRegExpResult::kInputOffset), r8);
__ movq(r8, Operand(rsp, kPointerSize * 2));
__ movq(FieldOperand(rax, JSRegExpResult::kIndexOffset), r8);
__ movq(r8, Operand(rsp, kPointerSize * 3));
__ movq(FieldOperand(rax, JSArray::kLengthOffset), r8);
// Fill out the elements FixedArray.
// rax: JSArray.
// rcx: FixedArray.
// rbx: Number of elements in array as int32.
// Set map.
__ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
__ movq(FieldOperand(rcx, HeapObject::kMapOffset), kScratchRegister);
// Set length.
__ Integer32ToSmi(rdx, rbx);
__ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx);
// Fill contents of fixed-array with the-hole.
__ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
__ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize));
// Fill fixed array elements with hole.
// rax: JSArray.
// rbx: Number of elements in array that remains to be filled, as int32.
// rcx: Start of elements in FixedArray.
// rdx: the hole.
Label loop;
__ testl(rbx, rbx);
__ bind(&loop);
__ j(less_equal, &done); // Jump if rcx is negative or zero.
__ subl(rbx, Immediate(1));
__ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx);
__ jmp(&loop);
__ bind(&done);
__ ret(3 * kPointerSize);
__ bind(&slowcase);
__ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
}
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch1;
Register scratch = scratch2;
// Load the number string cache.
__ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
__ SmiToInteger32(
mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
__ shrl(mask, Immediate(1));
__ subq(mask, Immediate(1)); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label is_smi;
Label load_result_from_cache;
Factory* factory = masm->isolate()->factory();
if (!object_is_smi) {
__ JumpIfSmi(object, &is_smi);
__ CheckMap(object,
factory->heap_number_map(),
not_found,
DONT_DO_SMI_CHECK);
STATIC_ASSERT(8 == kDoubleSize);
__ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
GenerateConvertHashCodeToIndex(masm, scratch, mask);
Register index = scratch;
Register probe = mask;
__ movq(probe,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
__ JumpIfSmi(probe, not_found);
__ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
__ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
__ ucomisd(xmm0, xmm1);
__ j(parity_even, not_found); // Bail out if NaN is involved.
__ j(not_equal, not_found); // The cache did not contain this value.
__ jmp(&load_result_from_cache);
}
__ bind(&is_smi);
__ SmiToInteger32(scratch, object);
GenerateConvertHashCodeToIndex(masm, scratch, mask);
Register index = scratch;
// Check if the entry is the smi we are looking for.
__ cmpq(object,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
__ j(not_equal, not_found);
// Get the result from the cache.
__ bind(&load_result_from_cache);
__ movq(result,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize + kPointerSize));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->number_to_string_native(), 1);
}
void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
Register hash,
Register mask) {
__ and_(hash, mask);
// Each entry in string cache consists of two pointer sized fields,
// but times_twice_pointer_size (multiplication by 16) scale factor
// is not supported by addrmode on x64 platform.
// So we have to premultiply entry index before lookup.
__ shl(hash, Immediate(kPointerSizeLog2 + 1));
}
void NumberToStringStub::Generate(MacroAssembler* masm) {
Label runtime;
__ movq(rbx, Operand(rsp, kPointerSize));
// Generate code to lookup number in the number string cache.
GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
__ ret(1 * kPointerSize);
__ bind(&runtime);
// Handle number to string in the runtime system if not found in the cache.
__ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
}
static int NegativeComparisonResult(Condition cc) {
ASSERT(cc != equal);
ASSERT((cc == less) || (cc == less_equal)
|| (cc == greater) || (cc == greater_equal));
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}
void CompareStub::Generate(MacroAssembler* masm) {
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
Label check_unequal_objects, done;
Factory* factory = masm->isolate()->factory();
// Compare two smis if required.
if (include_smi_compare_) {
Label non_smi, smi_done;
__ JumpIfNotBothSmi(rax, rdx, &non_smi);
__ subq(rdx, rax);
__ j(no_overflow, &smi_done);
__ not_(rdx); // Correct sign in case of overflow. rdx cannot be 0 here.
__ bind(&smi_done);
__ movq(rax, rdx);
__ ret(0);
__ bind(&non_smi);
} else if (FLAG_debug_code) {
Label ok;
__ JumpIfNotSmi(rdx, &ok);
__ JumpIfNotSmi(rax, &ok);
__ Abort("CompareStub: smi operands");
__ bind(&ok);
}
// The compare stub returns a positive, negative, or zero 64-bit integer
// value in rax, corresponding to result of comparing the two inputs.
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Two identical objects are equal unless they are both NaN or undefined.
{
Label not_identical;
__ cmpq(rax, rdx);
__ j(not_equal, &not_identical, Label::kNear);
if (cc_ != equal) {
// Check for undefined. undefined OP undefined is false even though
// undefined == undefined.
Label check_for_nan;
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &check_for_nan, Label::kNear);
__ Set(rax, NegativeComparisonResult(cc_));
__ ret(0);
__ bind(&check_for_nan);
}
// Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(),
// so we do the second best thing - test it ourselves.
// Note: if cc_ != equal, never_nan_nan_ is not used.
// We cannot set rax to EQUAL until just before return because
// rax must be unchanged on jump to not_identical.
if (never_nan_nan_ && (cc_ == equal)) {
__ Set(rax, EQUAL);
__ ret(0);
} else {
Label heap_number;
// If it's not a heap number, then return equal for (in)equality operator.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
factory->heap_number_map());
__ j(equal, &heap_number, Label::kNear);
if (cc_ != equal) {
// Call runtime on identical objects. Otherwise return equal.
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(above_equal, &not_identical, Label::kNear);
}
__ Set(rax, EQUAL);
__ ret(0);
__ bind(&heap_number);
// It is a heap number, so return equal if it's not NaN.
// For NaN, return 1 for every condition except greater and
// greater-equal. Return -1 for them, so the comparison yields
// false for all conditions except not-equal.
__ Set(rax, EQUAL);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ ucomisd(xmm0, xmm0);
__ setcc(parity_even, rax);
// rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
if (cc_ == greater_equal || cc_ == greater) {
__ neg(rax);
}
__ ret(0);
}
__ bind(&not_identical);
}
if (cc_ == equal) { // Both strict and non-strict.
Label slow; // Fallthrough label.
// If we're doing a strict equality comparison, we don't have to do
// type conversion, so we generate code to do fast comparison for objects
// and oddballs. Non-smi numbers and strings still go through the usual
// slow-case code.
if (strict_) {
// If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case.
{
Label not_smis;
__ SelectNonSmi(rbx, rax, rdx, &not_smis);
// Check if the non-smi operand is a heap number.
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
factory->heap_number_map());
// If heap number, handle it in the slow case.
__ j(equal, &slow);
// Return non-equal. ebx (the lower half of rbx) is not zero.
__ movq(rax, rbx);
__ ret(0);
__ bind(&not_smis);
}
// If either operand is a JSObject or an oddball value, then they are not
// equal since their pointers are different
// There is no test for undetectability in strict equality.
// If the first object is a JS object, we have done pointer comparison.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
Label first_non_object;
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(below, &first_non_object, Label::kNear);
// Return non-zero (eax (not rax) is not zero)
Label return_not_equal;
STATIC_ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal);
__ ret(0);
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
__ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(above_equal, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
// Fall through to the general case.
}
__ bind(&slow);
}
// Generate the number comparison code.
if (include_number_compare_) {
Label non_number_comparison;
Label unordered;
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
__ xorl(rax, rax);
__ xorl(rcx, rcx);
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
// Return a result of -1, 0, or 1, based on EFLAGS.
__ setcc(above, rax);
__ setcc(below, rcx);
__ subq(rax, rcx);
__ ret(0);
// If one of the numbers was NaN, then the result is always false.
// The cc is never not-equal.
__ bind(&unordered);
ASSERT(cc_ != not_equal);
if (cc_ == less || cc_ == less_equal) {
__ Set(rax, 1);
} else {
__ Set(rax, -1);
}
__ ret(0);
// The number comparison code did not provide a valid result.
__ bind(&non_number_comparison);
}
// Fast negative check for symbol-to-symbol equality.
Label check_for_strings;
if (cc_ == equal) {
BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
// We've already checked for object identity, so if both operands
// are symbols they aren't equal. Register eax (not rax) already holds a
// non-zero value, which indicates not equal, so just return.
__ ret(0);
}
__ bind(&check_for_strings);
__ JumpIfNotBothSequentialAsciiStrings(
rdx, rax, rcx, rbx, &check_unequal_objects);
// Inline comparison of ASCII strings.
if (cc_ == equal) {
StringCompareStub::GenerateFlatAsciiStringEquals(masm,
rdx,
rax,
rcx,
rbx);
} else {
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
rdx,
rax,
rcx,
rbx,
rdi,
r8);
}
#ifdef DEBUG
__ Abort("Unexpected fall-through from string comparison");
#endif
__ bind(&check_unequal_objects);
if (cc_ == equal && !strict_) {
// Not strict equality. Objects are unequal if
// they are both JSObjects and not undetectable,
// and their pointers are different.
Label not_both_objects, return_unequal;
// At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagMask == 1);
__ lea(rcx, Operand(rax, rdx, times_1, 0));
__ testb(rcx, Immediate(kSmiTagMask));
__ j(not_zero, &not_both_objects, Label::kNear);
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
__ j(below, &not_both_objects, Label::kNear);
__ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(below, &not_both_objects, Label::kNear);
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal, Label::kNear);
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal, Label::kNear);
// The objects are both undetectable, so they both compare as the value
// undefined, and are equal.
__ Set(rax, EQUAL);
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in rax,
// or return equal if we fell through to here.
__ ret(0);
__ bind(&not_both_objects);
}
// Push arguments below the return address to prepare jump to builtin.
__ pop(rcx);
__ push(rdx);
__ push(rax);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript builtin;
if (cc_ == equal) {
builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
builtin = Builtins::COMPARE;
__ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
}
// Restore return address on the stack.
__ push(rcx);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(builtin, JUMP_FUNCTION);
}
void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
Label* label,
Register object,
Register scratch) {
__ JumpIfSmi(object, label);
__ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
__ movzxbq(scratch,
FieldOperand(scratch, Map::kInstanceTypeOffset));
// Ensure that no non-strings have the symbol bit set.
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
STATIC_ASSERT(kSymbolTag != 0);
__ testb(scratch, Immediate(kIsSymbolMask));
__ j(zero, label);
}
void StackCheckStub::Generate(MacroAssembler* masm) {
__ TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
void InterruptStub::Generate(MacroAssembler* masm) {
__ TailCallRuntime(Runtime::kInterrupt, 0, 1);
}
static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a global property cell. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
// rbx : cache cell for call target
// rdi : the function to call
Isolate* isolate = masm->isolate();
Label initialize, done;
// Load the cache state into rcx.
__ movq(rcx, FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
__ cmpq(rcx, rdi);
__ j(equal, &done, Label::kNear);
__ Cmp(rcx, TypeFeedbackCells::MegamorphicSentinel(isolate));
__ j(equal, &done, Label::kNear);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ Cmp(rcx, TypeFeedbackCells::UninitializedSentinel(isolate));
__ j(equal, &initialize, Label::kNear);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ Move(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset),
TypeFeedbackCells::MegamorphicSentinel(isolate));
__ jmp(&done, Label::kNear);
// An uninitialized cache is patched with the function.
__ bind(&initialize);
__ movq(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset), rdi);
// No need for a write barrier here - cells are rescanned.
__ bind(&done);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
// rbx : cache cell for call target
// rdi : the function to call
Isolate* isolate = masm->isolate();
Label slow, non_function;
// The receiver might implicitly be the global object. This is
// indicated by passing the hole as the receiver to the call
// function stub.
if (ReceiverMightBeImplicit()) {
Label call;
// Get the receiver from the stack.
// +1 ~ return address
__ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
// Call as function is indicated with the hole.
__ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &call, Label::kNear);
// Patch the receiver on the stack with the global receiver object.
__ movq(rcx, GlobalObjectOperand());
__ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rcx);
__ bind(&call);
}
// Check that the function really is a JavaScript function.
__ JumpIfSmi(rdi, &non_function);
// Goto slow case if we do not have a function.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm);
}
// Fast-case: Just invoke the function.
ParameterCount actual(argc_);
if (ReceiverMightBeImplicit()) {
Label call_as_function;
__ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
__ j(equal, &call_as_function);
__ InvokeFunction(rdi,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
CALL_AS_METHOD);
__ bind(&call_as_function);
}
__ InvokeFunction(rdi,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
CALL_AS_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
if (RecordCallTarget()) {
// If there is a call target cache, mark it megamorphic in the
// non-function case. MegamorphicSentinel is an immortal immovable
// object (undefined) so no write barrier is needed.
__ Move(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset),
TypeFeedbackCells::MegamorphicSentinel(isolate));
}
// Check for function proxy.
__ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
__ j(not_equal, &non_function);
__ pop(rcx);
__ push(rdi); // put proxy as additional argument under return address
__ push(rcx);
__ Set(rax, argc_ + 1);
__ Set(rbx, 0);
__ SetCallKind(rcx, CALL_AS_METHOD);
__ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
{
Handle<Code> adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
__ jmp(adaptor, RelocInfo::CODE_TARGET);
}
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ bind(&non_function);
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
__ Set(rax, argc_);
__ Set(rbx, 0);
__ SetCallKind(rcx, CALL_AS_METHOD);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
Handle<Code> adaptor =
Isolate::Current()->builtins()->ArgumentsAdaptorTrampoline();
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
void CallConstructStub::Generate(MacroAssembler* masm) {
// rax : number of arguments
// rbx : cache cell for call target
// rdi : constructor function
Label slow, non_function_call;
// Check that function is not a smi.
__ JumpIfSmi(rdi, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm);
}
// Jump to the function-specific construct stub.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset));
__ lea(rbx, FieldOperand(rbx, Code::kHeaderSize));
__ jmp(rbx);
// rdi: called object
// rax: number of arguments
// rcx: object map
Label do_call;
__ bind(&slow);
__ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
__ j(not_equal, &non_function_call);
__ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
__ jmp(&do_call);
__ bind(&non_function_call);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ bind(&do_call);
// Set expected number of arguments to zero (not changing rax).
__ Set(rbx, 0);
__ SetCallKind(rcx, CALL_AS_METHOD);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
bool CEntryStub::NeedsImmovableCode() {
return false;
}
bool CEntryStub::IsPregenerated() {
#ifdef _WIN64
return result_size_ == 1;
#else
return true;
#endif
}
void CodeStub::GenerateStubsAheadOfTime() {
CEntryStub::GenerateAheadOfTime();
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
// It is important that the store buffer overflow stubs are generated first.
RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
}
void CodeStub::GenerateFPStubs() {
}
void CEntryStub::GenerateAheadOfTime() {
CEntryStub stub(1, kDontSaveFPRegs);
stub.GetCode()->set_is_pregenerated(true);
CEntryStub save_doubles(1, kSaveFPRegs);
save_doubles.GetCode()->set_is_pregenerated(true);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate_scope) {
// rax: result parameter for PerformGC, if any.
// rbx: pointer to C function (C callee-saved).
// rbp: frame pointer (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r15: pointer to the first argument (C callee-saved).
// This pointer is reused in LeaveExitFrame(), so it is stored in a
// callee-saved register.
// Simple results returned in rax (both AMD64 and Win64 calling conventions).
// Complex results must be written to address passed as first argument.
// AMD64 calling convention: a struct of two pointers in rax+rdx
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
if (do_gc) {
// Pass failure code returned from last attempt as first argument to
// PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
// stack is known to be aligned. This function takes one argument which is
// passed in register.
#ifdef _WIN64
__ movq(rcx, rax);
#else // _WIN64
__ movq(rdi, rax);
#endif
__ movq(kScratchRegister,
FUNCTION_ADDR(Runtime::PerformGC),
RelocInfo::RUNTIME_ENTRY);
__ call(kScratchRegister);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
if (always_allocate_scope) {
Operand scope_depth_operand = masm->ExternalOperand(scope_depth);
__ incl(scope_depth_operand);
}
// Call C function.
#ifdef _WIN64
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
// Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
__ movq(StackSpaceOperand(0), r14); // argc.
__ movq(StackSpaceOperand(1), r15); // argv.
if (result_size_ < 2) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax).
__ lea(rcx, StackSpaceOperand(0));
__ LoadAddress(rdx, ExternalReference::isolate_address());
} else {
ASSERT_EQ(2, result_size_);
// Pass a pointer to the result location as the first argument.
__ lea(rcx, StackSpaceOperand(2));
// Pass a pointer to the Arguments object as the second argument.
__ lea(rdx, StackSpaceOperand(0));
__ LoadAddress(r8, ExternalReference::isolate_address());
}
#else // _WIN64
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
__ movq(rdi, r14); // argc.
__ movq(rsi, r15); // argv.
__ movq(rdx, ExternalReference::isolate_address());
#endif
__ call(rbx);
// Result is in rax - do not destroy this register!
if (always_allocate_scope) {
Operand scope_depth_operand = masm->ExternalOperand(scope_depth);
__ decl(scope_depth_operand);
}
// Check for failure result.
Label failure_returned;
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
#ifdef _WIN64
// If return value is on the stack, pop it to registers.
if (result_size_ > 1) {
ASSERT_EQ(2, result_size_);
// Read result values stored on stack. Result is stored
// above the four argument mirror slots and the two
// Arguments object slots.
__ movq(rax, Operand(rsp, 6 * kPointerSize));
__ movq(rdx, Operand(rsp, 7 * kPointerSize));
}
#endif
__ lea(rcx, Operand(rax, 1));
// Lower 2 bits of rcx are 0 iff rax has failure tag.
__ testl(rcx, Immediate(kFailureTagMask));
__ j(zero, &failure_returned);
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles_);
__ ret(0);
// Handling of failure.
__ bind(&failure_returned);
Label retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry, Label::kNear);
// Special handling of out of memory exceptions.
__ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ cmpq(rax, kScratchRegister);
__ j(equal, throw_out_of_memory_exception);
// Retrieve the pending exception and clear the variable.
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, masm->isolate());
Operand pending_exception_operand =
masm->ExternalOperand(pending_exception_address);
__ movq(rax, pending_exception_operand);
__ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
__ movq(pending_exception_operand, rdx);
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
__ j(equal, throw_termination_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
// Retry.
__ bind(&retry);
}
void CEntryStub::Generate(MacroAssembler* masm) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
// Enter the exit frame that transitions from JavaScript to C++.
#ifdef _WIN64
int arg_stack_space = (result_size_ < 2 ? 2 : 4);
#else
int arg_stack_space = 0;
#endif
__ EnterExitFrame(arg_stack_space, save_doubles_);
// rax: Holds the context at this point, but should not be used.
// On entry to code generated by GenerateCore, it must hold
// a failure result if the collect_garbage argument to GenerateCore
// is true. This failure result can be the result of code
// generated by a previous call to GenerateCore. The value
// of rax is then passed to Runtime::PerformGC.
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r15: argv pointer (C callee-saved).
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
false,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ movq(rax, failure, RelocInfo::NONE);
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
true);
__ bind(&throw_out_of_memory_exception);
// Set external caught exception to false.
Isolate* isolate = masm->isolate();
ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
isolate);
__ Set(rax, static_cast<int64_t>(false));
__ Store(external_caught, rax);
// Set pending exception and rax to out of memory exception.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
isolate);
__ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ Store(pending_exception, rax);
// Fall through to the next label.
__ bind(&throw_termination_exception);
__ ThrowUncatchable(rax);
__ bind(&throw_normal_exception);
__ Throw(rax);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
{ // NOLINT. Scope block confuses linter.
MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
// Set up frame.
__ push(rbp);
__ movq(rbp, rsp);
// Push the stack frame type marker twice.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
// Scratch register is neither callee-save, nor an argument register on any
// platform. It's free to use at this point.
// Cannot use smi-register for loading yet.
__ movq(kScratchRegister,
reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
RelocInfo::NONE);
__ push(kScratchRegister); // context slot
__ push(kScratchRegister); // function slot
// Save callee-saved registers (X64/Win64 calling conventions).
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
#ifdef _WIN64
__ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
__ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
__ push(rbx);
// TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
// callee save as well.
// Set up the roots and smi constant registers.
// Needs to be done before any further smi loads.
__ InitializeSmiConstantRegister();
__ InitializeRootRegister();
}
Isolate* isolate = masm->isolate();
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
{
Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
__ push(c_entry_fp_operand);
}
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
__ Load(rax, js_entry_sp);
__ testq(rax, rax);
__ j(not_zero, &not_outermost_js);
__ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ movq(rax, rbp);
__ Store(js_entry_sp, rax);
Label cont;
__ jmp(&cont);
__ bind(&not_outermost_js);
__ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
isolate);
__ Store(pending_exception, rax);
__ movq(rax, Failure::Exception(), RelocInfo::NONE);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain. There's only one
// handler block in this code object, so its index is 0.
__ bind(&invoke);
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
// Clear any pending exceptions.
__ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
__ Store(pending_exception, rax);
// Fake a receiver (NULL).
__ push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return. We load the address from an
// external reference instead of inlining the call target address directly
// in the code, because the builtin stubs may not have been generated yet
// at the time this code is generated.
if (is_construct) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
isolate);
__ Load(rax, construct_entry);
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline, isolate);
__ Load(rax, entry);
}
__ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
__ call(kScratchRegister);
// Unlink this frame from the handler chain.
__ PopTryHandler();
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ pop(rbx);
__ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, &not_outermost_js_2);
__ movq(kScratchRegister, js_entry_sp);
__ movq(Operand(kScratchRegister, 0), Immediate(0));
__ bind(&not_outermost_js_2);
// Restore the top frame descriptor from the stack.
{ Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
__ pop(c_entry_fp_operand);
}
// Restore callee-saved registers (X64 conventions).
__ pop(rbx);
#ifdef _WIN64
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
__ pop(rsi);
__ pop(rdi);
#endif
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(rbp);
__ ret(0);
}
void InstanceofStub::Generate(MacroAssembler* masm) {
// Implements "value instanceof function" operator.
// Expected input state with no inline cache:
// rsp[0] : return address
// rsp[1] : function pointer
// rsp[2] : value
// Expected input state with an inline one-element cache:
// rsp[0] : return address
// rsp[1] : offset from return address to location of inline cache
// rsp[2] : function pointer
// rsp[3] : value
// Returns a bitwise zero to indicate that the value
// is and instance of the function and anything else to
// indicate that the value is not an instance.
static const int kOffsetToMapCheckValue = 2;
static const int kOffsetToResultValue = 18;
// The last 4 bytes of the instruction sequence
// movq(rdi, FieldOperand(rax, HeapObject::kMapOffset))
// Move(kScratchRegister, FACTORY->the_hole_value())
// in front of the hole value address.
static const unsigned int kWordBeforeMapCheckValue = 0xBA49FF78;
// The last 4 bytes of the instruction sequence
// __ j(not_equal, &cache_miss);
// __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
// before the offset of the hole value in the root array.
static const unsigned int kWordBeforeResultValue = 0x458B4909;
// Only the inline check flag is supported on X64.
ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck());
int extra_stack_space = HasCallSiteInlineCheck() ? kPointerSize : 0;
// Get the object - go slow case if it's a smi.
Label slow;
__ movq(rax, Operand(rsp, 2 * kPointerSize + extra_stack_space));
__ JumpIfSmi(rax, &slow);
// Check that the left hand is a JS object. Leave its map in rax.
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax);
__ j(below, &slow);
__ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE);
__ j(above, &slow);
// Get the prototype of the function.
__ movq(rdx, Operand(rsp, 1 * kPointerSize + extra_stack_space));
// rdx is function, rax is map.
// If there is a call site cache don't look in the global cache, but do the
// real lookup and update the call site cache.
if (!HasCallSiteInlineCheck()) {
// Look up the function and the map in the instanceof cache.
Label miss;
__ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
__ j(not_equal, &miss, Label::kNear);
__ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
__ j(not_equal, &miss, Label::kNear);
__ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize);
__ bind(&miss);
}
__ TryGetFunctionPrototype(rdx, rbx, &slow, true);
// Check that the function prototype is a JS object.
__ JumpIfSmi(rbx, &slow);
__ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
__ j(below, &slow);
__ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE);
__ j(above, &slow);
// Register mapping:
// rax is object map.
// rdx is function.
// rbx is function prototype.
if (!HasCallSiteInlineCheck()) {
__ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
} else {
// Get return address and delta to inlined map check.
__ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize));
__ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
if (FLAG_debug_code) {
__ movl(rdi, Immediate(kWordBeforeMapCheckValue));
__ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi);
__ Assert(equal, "InstanceofStub unexpected call site cache (check).");
}
__ movq(kScratchRegister,
Operand(kScratchRegister, kOffsetToMapCheckValue));
__ movq(Operand(kScratchRegister, 0), rax);
}
__ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
// Loop through the prototype chain looking for the function prototype.
Label loop, is_instance, is_not_instance;
__ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
__ bind(&loop);
__ cmpq(rcx, rbx);
__ j(equal, &is_instance, Label::kNear);
__ cmpq(rcx, kScratchRegister);
// The code at is_not_instance assumes that kScratchRegister contains a
// non-zero GCable value (the null object in this case).
__ j(equal, &is_not_instance, Label::kNear);
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
__ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
__ jmp(&loop);
__ bind(&is_instance);
if (!HasCallSiteInlineCheck()) {
__ xorl(rax, rax);
// Store bitwise zero in the cache. This is a Smi in GC terms.
STATIC_ASSERT(kSmiTag == 0);
__ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
} else {
// Store offset of true in the root array at the inline check site.
int true_offset = 0x100 +
(Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
// Assert it is a 1-byte signed value.
ASSERT(true_offset >= 0 && true_offset < 0x100);
__ movl(rax, Immediate(true_offset));
__ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize));
__ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
__ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
if (FLAG_debug_code) {
__ movl(rax, Immediate(kWordBeforeResultValue));
__ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
__ Assert(equal, "InstanceofStub unexpected call site cache (mov).");
}
__ Set(rax, 0);
}
__ ret(2 * kPointerSize + extra_stack_space);
__ bind(&is_not_instance);
if (!HasCallSiteInlineCheck()) {
// We have to store a non-zero value in the cache.
__ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
} else {
// Store offset of false in the root array at the inline check site.
int false_offset = 0x100 +
(Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
// Assert it is a 1-byte signed value.
ASSERT(false_offset >= 0 && false_offset < 0x100);
__ movl(rax, Immediate(false_offset));
__ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize));
__ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize));
__ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
if (FLAG_debug_code) {
__ movl(rax, Immediate(kWordBeforeResultValue));
__ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
__ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
}
}
__ ret(2 * kPointerSize + extra_stack_space);
// Slow-case: Go through the JavaScript implementation.
__ bind(&slow);
if (HasCallSiteInlineCheck()) {
// Remove extra value from the stack.
__ pop(rcx);
__ pop(rax);
__ push(rcx);
}
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}
// Passing arguments in registers is not supported.
Register InstanceofStub::left() { return no_reg; }
Register InstanceofStub::right() { return no_reg; }
int CompareStub::MinorKey() {
// Encode the three parameters in a unique 16 bit value. To avoid duplicate
// stubs the never NaN NaN condition is only taken into account if the
// condition is equals.
ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
return ConditionField::encode(static_cast<unsigned>(cc_))
| RegisterField::encode(false) // lhs_ and rhs_ are not used
| StrictField::encode(strict_)
| NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
| IncludeNumberCompareField::encode(include_number_compare_)
| IncludeSmiCompareField::encode(include_smi_compare_);
}
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
void CompareStub::PrintName(StringStream* stream) {
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
const char* cc_name;
switch (cc_) {
case less: cc_name = "LT"; break;
case greater: cc_name = "GT"; break;
case less_equal: cc_name = "LE"; break;
case greater_equal: cc_name = "GE"; break;
case equal: cc_name = "EQ"; break;
case not_equal: cc_name = "NE"; break;
default: cc_name = "UnknownCondition"; break;
}
bool is_equality = cc_ == equal || cc_ == not_equal;
stream->Add("CompareStub_%s", cc_name);
if (strict_ && is_equality) stream->Add("_STRICT");
if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
if (!include_number_compare_) stream->Add("_NO_NUMBER");
if (!include_smi_compare_) stream->Add("_NO_SMI");
}
// -------------------------------------------------------------------------
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
Label flat_string;
Label ascii_string;
Label got_char_code;
Label sliced_string;
// If the receiver is a smi trigger the non-string case.
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ testb(result_, Immediate(kIsNotStringMask));
__ j(not_zero, receiver_not_string_);
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
__ j(above_equal, index_out_of_range_);
__ SmiToInteger32(index_, index_);
StringCharLoadGenerator::Generate(
masm, object_, index_, result_, &call_runtime_);
__ Integer32ToSmi(result_, result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
Factory* factory = masm->isolate()->factory();
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
factory->heap_number_map(),
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
__ push(object_);
__ push(index_); // Consumed by runtime conversion function.
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kNumberToSmi, 1);
}
if (!index_.is(rax)) {
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ movq(index_, rax);
}
__ pop(object_);
// Reload the instance type.
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ push(object_);
__ Integer32ToSmi(index_, index_);
__ push(index_);
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
if (!result_.is(rax)) {
__ movq(result_, rax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
__ JumpIfNotSmi(code_, &slow_case_);
__ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
__ j(above, &slow_case_);
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
__ movq(result_, FieldOperand(result_, index.reg, index.scale,
FixedArray::kHeaderSize));
__ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
__ j(equal, &slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharFromCode slow case");
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
if (!result_.is(rax)) {
__ movq(result_, rax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharFromCode slow case");
}
// -------------------------------------------------------------------------
// StringCharAtGenerator
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
void StringCharAtGenerator::GenerateSlow(
MacroAssembler* masm,
const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
void StringAddStub::Generate(MacroAssembler* masm) {
Label call_runtime, call_builtin;
Builtins::JavaScript builtin_id = Builtins::ADD;
// Load the two arguments.
__ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument (left).
__ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument (right).
// Make sure that both arguments are strings if not known in advance.
if (flags_ == NO_STRING_ADD_FLAGS) {
__ JumpIfSmi(rax, &call_runtime);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
__ j(above_equal, &call_runtime);
// First argument is a a string, test second.
__ JumpIfSmi(rdx, &call_runtime);
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
__ j(above_equal, &call_runtime);
} else {
// Here at least one of the arguments is definitely a string.
// We convert the one that is not known to be a string.
if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
GenerateConvertArgument(masm, 2 * kPointerSize, rax, rbx, rcx, rdi,
&call_builtin);
builtin_id = Builtins::STRING_ADD_RIGHT;
} else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
GenerateConvertArgument(masm, 1 * kPointerSize, rdx, rbx, rcx, rdi,
&call_builtin);
builtin_id = Builtins::STRING_ADD_LEFT;
}
}
// Both arguments are strings.
// rax: first string
// rdx: second string
// Check if either of the strings are empty. In that case return the other.
Label second_not_zero_length, both_not_zero_length;
__ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
__ SmiTest(rcx);
__ j(not_zero, &second_not_zero_length, Label::kNear);
// Second string is empty, result is first string which is already in rax.
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&second_not_zero_length);
__ movq(rbx, FieldOperand(rax, String::kLengthOffset));
__ SmiTest(rbx);
__ j(not_zero, &both_not_zero_length, Label::kNear);
// First string is empty, result is second string which is in rdx.
__ movq(rax, rdx);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
// Both strings are non-empty.
// rax: first string
// rbx: length of first string
// rcx: length of second string
// rdx: second string
// r8: map of first string (if flags_ == NO_STRING_ADD_FLAGS)
// r9: map of second string (if flags_ == NO_STRING_ADD_FLAGS)
Label string_add_flat_result, longer_than_two;
__ bind(&both_not_zero_length);
// If arguments where known to be strings, maps are not loaded to r8 and r9
// by the code above.
if (flags_ != NO_STRING_ADD_FLAGS) {
__ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
__ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
}
// Get the instance types of the two strings as they will be needed soon.
__ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
__ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
// Look at the length of the result of adding the two strings.
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
__ SmiAdd(rbx, rbx, rcx);
// Use the symbol table when adding two one character strings, as it
// helps later optimizations to return a symbol here.
__ SmiCompare(rbx, Smi::FromInt(2));
__ j(not_equal, &longer_than_two);
// Check that both strings are non-external ASCII strings.
__ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
&call_runtime);
// Get the two characters forming the sub string.
__ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
__ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
// Try to lookup two character string in symbol table. If it is not found
// just allocate a new one.
Label make_two_character_string, make_flat_ascii_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, rbx, rcx, r14, r11, rdi, r15, &make_two_character_string);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&make_two_character_string);
__ Set(rdi, 2);
__ AllocateAsciiString(rax, rdi, r8, r9, r11, &call_runtime);
// rbx - first byte: first character
// rbx - second byte: *maybe* second character
// Make sure that the second byte of rbx contains the second character.
__ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
__ shll(rcx, Immediate(kBitsPerByte));
__ orl(rbx, rcx);
// Write both characters to the new string.
__ movw(FieldOperand(rax, SeqAsciiString::kHeaderSize), rbx);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&longer_than_two);
// Check if resulting string will be flat.
__ SmiCompare(rbx, Smi::FromInt(ConsString::kMinLength));
__ j(below, &string_add_flat_result);
// Handle exceptionally long strings in the runtime system.
STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
__ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
__ j(above, &call_runtime);
// If result is not supposed to be flat, allocate a cons string object. If
// both strings are ASCII the result is an ASCII cons string.
// rax: first string
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of second string
Label non_ascii, allocated, ascii_data;
__ movl(rcx, r8);
__ and_(rcx, r9);
STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ testl(rcx, Immediate(kStringEncodingMask));
__ j(zero, &non_ascii);
__ bind(&ascii_data);
// Allocate an ASCII cons string.
__ AllocateAsciiConsString(rcx, rdi, no_reg, &call_runtime);
__ bind(&allocated);
// Fill the fields of the cons string.
__ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
__ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
Immediate(String::kEmptyHashField));
__ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
__ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
__ movq(rax, rcx);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&non_ascii);
// At least one of the strings is two-byte. Check whether it happens
// to contain only ASCII characters.
// rcx: first instance type AND second instance type.
// r8: first instance type.
// r9: second instance type.
__ testb(rcx, Immediate(kAsciiDataHintMask));
__ j(not_zero, &ascii_data);
__ xor_(r8, r9);
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ j(equal, &ascii_data);
// Allocate a two byte cons string.
__ AllocateTwoByteConsString(rcx, rdi, no_reg, &call_runtime);
__ jmp(&allocated);
// We cannot encounter sliced strings or cons strings here since:
STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
// Handle creating a flat result from either external or sequential strings.
// Locate the first characters' locations.
// rax: first string
// rbx: length of resulting flat string as smi
// rdx: second string
// r8: instance type of first string
// r9: instance type of first string
Label first_prepared, second_prepared;
Label first_is_sequential, second_is_sequential;
__ bind(&string_add_flat_result);
__ SmiToInteger32(r14, FieldOperand(rax, SeqString::kLengthOffset));
// r14: length of first string
STATIC_ASSERT(kSeqStringTag == 0);
__ testb(r8, Immediate(kStringRepresentationMask));
__ j(zero, &first_is_sequential, Label::kNear);
// Rule out short external string and load string resource.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ testb(r8, Immediate(kShortExternalStringMask));
__ j(not_zero, &call_runtime);
__ movq(rcx, FieldOperand(rax, ExternalString::kResourceDataOffset));
__ jmp(&first_prepared, Label::kNear);
__ bind(&first_is_sequential);
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
__ lea(rcx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
__ bind(&first_prepared);
// Check whether both strings have same encoding.
__ xorl(r8, r9);
__ testb(r8, Immediate(kStringEncodingMask));
__ j(not_zero, &call_runtime);
__ SmiToInteger32(r15, FieldOperand(rdx, SeqString::kLengthOffset));
// r15: length of second string
STATIC_ASSERT(kSeqStringTag == 0);
__ testb(r9, Immediate(kStringRepresentationMask));
__ j(zero, &second_is_sequential, Label::kNear);
// Rule out short external string and load string resource.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ testb(r9, Immediate(kShortExternalStringMask));
__ j(not_zero, &call_runtime);
__ movq(rdx, FieldOperand(rdx, ExternalString::kResourceDataOffset));
__ jmp(&second_prepared, Label::kNear);
__ bind(&second_is_sequential);
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
__ lea(rdx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
__ bind(&second_prepared);
Label non_ascii_string_add_flat_result;
// r9: instance type of second string
// First string and second string have the same encoding.
STATIC_ASSERT(kTwoByteStringTag == 0);
__ SmiToInteger32(rbx, rbx);
__ testb(r9, Immediate(kStringEncodingMask));
__ j(zero, &non_ascii_string_add_flat_result);
__ bind(&make_flat_ascii_string);
// Both strings are ASCII strings. As they are short they are both flat.
__ AllocateAsciiString(rax, rbx, rdi, r8, r9, &call_runtime);
// rax: result string
// Locate first character of result.
__ lea(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
// rcx: first char of first string
// rbx: first character of result
// r14: length of first string
StringHelper::GenerateCopyCharacters(masm, rbx, rcx, r14, true);
// rbx: next character of result
// rdx: first char of second string
// r15: length of second string
StringHelper::GenerateCopyCharacters(masm, rbx, rdx, r15, true);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&non_ascii_string_add_flat_result);
// Both strings are ASCII strings. As they are short they are both flat.
__ AllocateTwoByteString(rax, rbx, rdi, r8, r9, &call_runtime);
// rax: result string
// Locate first character of result.
__ lea(rbx, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
// rcx: first char of first string
// rbx: first character of result
// r14: length of first string
StringHelper::GenerateCopyCharacters(masm, rbx, rcx, r14, false);
// rbx: next character of result
// rdx: first char of second string
// r15: length of second string
StringHelper::GenerateCopyCharacters(masm, rbx, rdx, r15, false);
__ IncrementCounter(counters->string_add_native(), 1);
__ ret(2 * kPointerSize);
// Just jump to runtime to add the two strings.
__ bind(&call_runtime);
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
if (call_builtin.is_linked()) {
__ bind(&call_builtin);
__ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
}
}
void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
int stack_offset,
Register arg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* slow) {
// First check if the argument is already a string.
Label not_string, done;
__ JumpIfSmi(arg, &not_string);
__ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1);
__ j(below, &done);
// Check the number to string cache.
Label not_cached;
__ bind(&not_string);
// Puts the cached result into scratch1.
NumberToStringStub::GenerateLookupNumberStringCache(masm,
arg,
scratch1,
scratch2,
scratch3,
false,
&not_cached);
__ movq(arg, scratch1);
__ movq(Operand(rsp, stack_offset), arg);
__ jmp(&done);
// Check if the argument is a safe string wrapper.
__ bind(&not_cached);
__ JumpIfSmi(arg, slow);
__ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1.
__ j(not_equal, slow);
__ testb(FieldOperand(scratch1, Map::kBitField2Offset),
Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
__ j(zero, slow);
__ movq(arg, FieldOperand(arg, JSValue::kValueOffset));
__ movq(Operand(rsp, stack_offset), arg);
__ bind(&done);
}
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
Label loop;
__ bind(&loop);
// This loop just copies one character at a time, as it is only used for very
// short strings.
if (ascii) {
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ incq(src);
__ incq(dest);
} else {
__ movzxwl(kScratchRegister, Operand(src, 0));
__ movw(Operand(dest, 0), kScratchRegister);
__ addq(src, Immediate(2));
__ addq(dest, Immediate(2));
}
__ decl(count);
__ j(not_zero, &loop);
}
void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
// Copy characters using rep movs of doublewords. Align destination on 4 byte
// boundary before starting rep movs. Copy remaining characters after running
// rep movs.
// Count is positive int32, dest and src are character pointers.
ASSERT(dest.is(rdi)); // rep movs destination
ASSERT(src.is(rsi)); // rep movs source
ASSERT(count.is(rcx)); // rep movs count
// Nothing to do for zero characters.
Label done;
__ testl(count, count);
__ j(zero, &done, Label::kNear);
// Make count the number of bytes to copy.
if (!ascii) {
STATIC_ASSERT(2 == sizeof(uc16));
__ addl(count, count);
}
// Don't enter the rep movs if there are less than 4 bytes to copy.
Label last_bytes;
__ testl(count, Immediate(~7));
__ j(zero, &last_bytes, Label::kNear);
// Copy from edi to esi using rep movs instruction.
__ movl(kScratchRegister, count);
__ shr(count, Immediate(3)); // Number of doublewords to copy.
__ repmovsq();
// Find number of bytes left.
__ movl(count, kScratchRegister);
__ and_(count, Immediate(7));
// Check if there are more bytes to copy.
__ bind(&last_bytes);
__ testl(count, count);
__ j(zero, &done, Label::kNear);
// Copy remaining characters.
Label loop;
__ bind(&loop);
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ incq(src);
__ incq(dest);
__ decl(count);
__ j(not_zero, &loop);
__ bind(&done);
}
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* not_found) {
// Register scratch3 is the general scratch register in this function.
Register scratch = scratch3;
// Make sure that both characters are not digits as such strings has a
// different hash algorithm. Don't try to look for these in the symbol table.
Label not_array_index;
__ leal(scratch, Operand(c1, -'0'));
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(above, &not_array_index, Label::kNear);
__ leal(scratch, Operand(c2, -'0'));
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(below_equal, not_found);
__ bind(&not_array_index);
// Calculate the two character string hash.
Register hash = scratch1;
GenerateHashInit(masm, hash, c1, scratch);
GenerateHashAddCharacter(masm, hash, c2, scratch);
GenerateHashGetHash(masm, hash, scratch);
// Collect the two characters in a register.
Register chars = c1;
__ shl(c2, Immediate(kBitsPerByte));
__ orl(chars, c2);
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string.
// Load the symbol table.
Register symbol_table = c2;
__ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
// Calculate capacity mask from the symbol table capacity.
Register mask = scratch2;
__ SmiToInteger32(mask,
FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
__ decl(mask);
Register map = scratch4;
// Registers
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string (32-bit int)
// symbol_table: symbol table
// mask: capacity mask (32-bit int)
// map: -
// scratch: -
// Perform a number of probes in the symbol table.
static const int kProbes = 4;
Label found_in_symbol_table;
Label next_probe[kProbes];
Register candidate = scratch; // Scratch register contains candidate.
for (int i = 0; i < kProbes; i++) {
// Calculate entry in symbol table.
__ movl(scratch, hash);
if (i > 0) {
__ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
}
__ andl(scratch, mask);
// Load the entry from the symbol table.
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
__ movq(candidate,
FieldOperand(symbol_table,
scratch,
times_pointer_size,
SymbolTable::kElementsStartOffset));
// If entry is undefined no string with this hash can be found.
Label is_string;
__ CmpObjectType(candidate, ODDBALL_TYPE, map);
__ j(not_equal, &is_string, Label::kNear);
__ CompareRoot(candidate, Heap::kUndefinedValueRootIndex);
__ j(equal, not_found);
// Must be the hole (deleted entry).
if (FLAG_debug_code) {
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
__ cmpq(kScratchRegister, candidate);
__ Assert(equal, "oddball in symbol table is not undefined or the hole");
}
__ jmp(&next_probe[i]);
__ bind(&is_string);
// If length is not 2 the string is not a candidate.
__ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
Smi::FromInt(2));
__ j(not_equal, &next_probe[i]);
// We use kScratchRegister as a temporary register in assumption that
// JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
Register temp = kScratchRegister;
// Check that the candidate is a non-external ASCII string.
__ movzxbl(temp, FieldOperand(map, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(
temp, temp, &next_probe[i]);
// Check if the two characters match.
__ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
__ andl(temp, Immediate(0x0000ffff));
__ cmpl(chars, temp);
__ j(equal, &found_in_symbol_table);
__ bind(&next_probe[i]);
}
// No matching 2 character string found by probing.
__ jmp(not_found);
// Scratch register contains result when we fall through to here.
Register result = candidate;
__ bind(&found_in_symbol_table);
if (!result.is(rax)) {
__ movq(rax, result);
}
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash = (seed + character) + ((seed + character) << 10);
__ LoadRoot(scratch, Heap::kHashSeedRootIndex);
__ SmiToInteger32(scratch, scratch);
__ addl(scratch, character);
__ movl(hash, scratch);
__ shll(scratch, Immediate(10));
__ addl(hash, scratch);
// hash ^= hash >> 6;
__ movl(scratch, hash);
__ shrl(scratch, Immediate(6));
__ xorl(hash, scratch);
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash += character;
__ addl(hash, character);
// hash += hash << 10;
__ movl(scratch, hash);
__ shll(scratch, Immediate(10));
__ addl(hash, scratch);
// hash ^= hash >> 6;
__ movl(scratch, hash);
__ shrl(scratch, Immediate(6));
__ xorl(hash, scratch);
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch) {
// hash += hash << 3;
__ leal(hash, Operand(hash, hash, times_8, 0));
// hash ^= hash >> 11;
__ movl(scratch, hash);
__ shrl(scratch, Immediate(11));
__ xorl(hash, scratch);
// hash += hash << 15;
__ movl(scratch, hash);
__ shll(scratch, Immediate(15));
__ addl(hash, scratch);
__ andl(hash, Immediate(String::kHashBitMask));
// if (hash == 0) hash = 27;
Label hash_not_zero;
__ j(not_zero, &hash_not_zero);
__ Set(hash, StringHasher::kZeroHash);
__ bind(&hash_not_zero);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: to
// rsp[16]: from
// rsp[24]: string
const int kToOffset = 1 * kPointerSize;
const int kFromOffset = kToOffset + kPointerSize;
const int kStringOffset = kFromOffset + kPointerSize;
const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
// Make sure first argument is a string.
__ movq(rax, Operand(rsp, kStringOffset));
STATIC_ASSERT(kSmiTag == 0);
__ testl(rax, Immediate(kSmiTagMask));
__ j(zero, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// rax: string
// rbx: instance type
// Calculate length of sub string using the smi values.
__ movq(rcx, Operand(rsp, kToOffset));
__ movq(rdx, Operand(rsp, kFromOffset));
__ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
__ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen.
__ cmpq(rcx, FieldOperand(rax, String::kLengthOffset));
Label not_original_string;
// Shorter than original string's length: an actual substring.
__ j(below, &not_original_string, Label::kNear);
// Longer than original string's length or negative: unsafe arguments.
__ j(above, &runtime);
// Return original string.
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(kArgumentsSize);
__ bind(&not_original_string);
__ SmiToInteger32(rcx, rcx);
// rax: string
// rbx: instance type
// rcx: sub string length
// rdx: from index (smi)
// Deal with different string types: update the index if necessary
// and put the underlying string into edi.
Label underlying_unpacked, sliced_string, seq_or_external_string;
// If the string is not indirect, it can only be sequential or external.
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
STATIC_ASSERT(kIsIndirectStringMask != 0);
__ testb(rbx, Immediate(kIsIndirectStringMask));
__ j(zero, &seq_or_external_string, Label::kNear);
__ testb(rbx, Immediate(kSlicedNotConsMask));
__ j(not_zero, &sliced_string, Label::kNear);
// Cons string. Check whether it is flat, then fetch first part.
// Flat cons strings have an empty second part.
__ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
Heap::kEmptyStringRootIndex);
__ j(not_equal, &runtime);
__ movq(rdi, FieldOperand(rax, ConsString::kFirstOffset));
// Update instance type.
__ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked, Label::kNear);
__ bind(&sliced_string);
// Sliced string. Fetch parent and correct start index by offset.
__ addq(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
__ movq(rdi, FieldOperand(rax, SlicedString::kParentOffset));
// Update instance type.
__ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
__ jmp(&underlying_unpacked, Label::kNear);
__ bind(&seq_or_external_string);
// Sequential or external string. Just move string to the correct register.
__ movq(rdi, rax);
__ bind(&underlying_unpacked);
if (FLAG_string_slices) {
Label copy_routine;
// rdi: underlying subject string
// rbx: instance type of underlying subject string
// rdx: adjusted start index (smi)
// rcx: length
// If coming from the make_two_character_string path, the string
// is too short to be sliced anyways.
__ cmpq(rcx, Immediate(SlicedString::kMinLength));
// Short slice. Copy instead of slicing.
__ j(less, &copy_routine);
// Allocate new sliced string. At this point we do not reload the instance
// type including the string encoding because we simply rely on the info
// provided by the original string. It does not matter if the original
// string's encoding is wrong because we always have to recheck encoding of
// the newly created string's parent anyways due to externalized strings.
Label two_byte_slice, set_slice_header;
STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ testb(rbx, Immediate(kStringEncodingMask));
__ j(zero, &two_byte_slice, Label::kNear);
__ AllocateAsciiSlicedString(rax, rbx, r14, &runtime);
__ jmp(&set_slice_header, Label::kNear);
__ bind(&two_byte_slice);
__ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
__ bind(&set_slice_header);
__ Integer32ToSmi(rcx, rcx);
__ movq(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
__ movq(FieldOperand(rax, SlicedString::kHashFieldOffset),
Immediate(String::kEmptyHashField));
__ movq(FieldOperand(rax, SlicedString::kParentOffset), rdi);
__ movq(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(kArgumentsSize);
__ bind(&copy_routine);
}
// rdi: underlying subject string
// rbx: instance type of underlying subject string
// rdx: adjusted start index (smi)
// rcx: length
// The subject string can only be external or sequential string of either
// encoding at this point.
Label two_byte_sequential, sequential_string;
STATIC_ASSERT(kExternalStringTag != 0);
STATIC_ASSERT(kSeqStringTag == 0);
__ testb(rbx, Immediate(kExternalStringTag));
__ j(zero, &sequential_string);
// Handle external string.
// Rule out short external strings.
STATIC_CHECK(kShortExternalStringTag != 0);
__ testb(rbx, Immediate(kShortExternalStringMask));
__ j(not_zero, &runtime);
__ movq(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
__ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ bind(&sequential_string);
STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
__ testb(rbx, Immediate(kStringEncodingMask));
__ j(zero, &two_byte_sequential);
// Allocate the result.
__ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime);
// rax: result string
// rcx: result string length
__ movq(r14, rsi); // esi used by following code.
{ // Locate character of sub string start.
SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
__ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
// rax: result string
// rcx: result length
// rdi: first character of result
// rsi: character of sub string start
// r14: original value of rsi
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
__ movq(rsi, r14); // Restore rsi.
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(kArgumentsSize);
__ bind(&two_byte_sequential);
// Allocate the result.
__ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
// rax: result string
// rcx: result string length
__ movq(r14, rsi); // esi used by following code.
{ // Locate character of sub string start.
SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
__ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
// rax: result string
// rcx: result length
// rdi: first character of result
// rsi: character of sub string start
// r14: original value of rsi
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
__ movq(rsi, r14); // Restore esi.
__ IncrementCounter(counters->sub_string_native(), 1);
__ ret(kArgumentsSize);
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kSubString, 3, 1);
}
void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2) {
Register length = scratch1;
// Compare lengths.
Label check_zero_length;
__ movq(length, FieldOperand(left, String::kLengthOffset));
__ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
__ j(equal, &check_zero_length, Label::kNear);
__ Move(rax, Smi::FromInt(NOT_EQUAL));
__ ret(0);
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ SmiTest(length);
__ j(not_zero, &compare_chars, Label::kNear);
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
// Compare characters.
__ bind(&compare_chars);
Label strings_not_equal;
GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
&strings_not_equal, Label::kNear);
// Characters are equal.
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
// Characters are not equal.
__ bind(&strings_not_equal);
__ Move(rax, Smi::FromInt(NOT_EQUAL));
__ ret(0);
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
// Ensure that you can always subtract a string length from a non-negative
// number (e.g. another length).
STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
// Find minimum length and length difference.
__ movq(scratch1, FieldOperand(left, String::kLengthOffset));
__ movq(scratch4, scratch1);
__ SmiSub(scratch4,
scratch4,
FieldOperand(right, String::kLengthOffset));
// Register scratch4 now holds left.length - right.length.
const Register length_difference = scratch4;
Label left_shorter;
__ j(less, &left_shorter, Label::kNear);
// The right string isn't longer that the left one.
// Get the right string's length by subtracting the (non-negative) difference
// from the left string's length.
__ SmiSub(scratch1, scratch1, length_difference);
__ bind(&left_shorter);
// Register scratch1 now holds Min(left.length, right.length).
const Register min_length = scratch1;
Label compare_lengths;
// If min-length is zero, go directly to comparing lengths.
__ SmiTest(min_length);
__ j(zero, &compare_lengths, Label::kNear);
// Compare loop.
Label result_not_equal;
GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
&result_not_equal, Label::kNear);
// Completed loop without finding different characters.
// Compare lengths (precomputed).
__ bind(&compare_lengths);
__ SmiTest(length_difference);
__ j(not_zero, &result_not_equal, Label::kNear);
// Result is EQUAL.
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
Label result_greater;
__ bind(&result_not_equal);
// Unequal comparison of left to right, either character or length.
__ j(greater, &result_greater, Label::kNear);
// Result is LESS.
__ Move(rax, Smi::FromInt(LESS));
__ ret(0);
// Result is GREATER.
__ bind(&result_greater);
__ Move(rax, Smi::FromInt(GREATER));
__ ret(0);
}
void StringCompareStub::GenerateAsciiCharsCompareLoop(
MacroAssembler* masm,
Register left,
Register right,
Register length,
Register scratch,
Label* chars_not_equal,
Label::Distance near_jump) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiToInteger32(length, length);
__ lea(left,
FieldOperand(left, length, times_1, SeqAsciiString::kHeaderSize));
__ lea(right,
FieldOperand(right, length, times_1, SeqAsciiString::kHeaderSize));
__ neg(length);
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ movb(scratch, Operand(left, index, times_1, 0));
__ cmpb(scratch, Operand(right, index, times_1, 0));
__ j(not_equal, chars_not_equal, near_jump);
__ incq(index);
__ j(not_zero, &loop);
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: right string
// rsp[16]: left string
__ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left
__ movq(rax, Operand(rsp, 1 * kPointerSize)); // right
// Check for identity.
Label not_same;
__ cmpq(rdx, rax);
__ j(not_equal, &not_same, Label::kNear);
__ Move(rax, Smi::FromInt(EQUAL));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_compare_native(), 1);
__ ret(2 * kPointerSize);
__ bind(&not_same);
// Check that both are sequential ASCII strings.
__ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
// Inline comparison of ASCII strings.
__ IncrementCounter(counters->string_compare_native(), 1);
// Drop arguments from the stack
__ pop(rcx);
__ addq(rsp, Immediate(2 * kPointerSize));
__ push(rcx);
GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::SMIS);
Label miss;
__ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
if (GetCondition() == equal) {
// For equality we do not care about the sign of the result.
__ subq(rax, rdx);
} else {
Label done;
__ subq(rdx, rax);
__ j(no_overflow, &done, Label::kNear);
// Correct sign of result in case of overflow.
__ SmiNot(rdx, rdx);
__ bind(&done);
__ movq(rax, rdx);
}
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::HEAP_NUMBERS);
Label generic_stub;
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss;
Condition either_smi = masm->CheckEitherSmi(rax, rdx);
__ j(either_smi, &generic_stub, Label::kNear);
__ CmpObjectType(rax, HEAP_NUMBER_TYPE, rcx);
__ j(not_equal, &maybe_undefined1, Label::kNear);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
__ j(not_equal, &maybe_undefined2, Label::kNear);
// Load left and right operand
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
// Compare operands
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
// Return a result of -1, 0, or 1, based on EFLAGS.
// Performing mov, because xor would destroy the flag register.
__ movl(rax, Immediate(0));
__ movl(rcx, Immediate(0));
__ setcc(above, rax); // Add one to zero if carry clear and not equal.
__ sbbq(rax, rcx); // Subtract one if below (aka. carry set).
__ ret(0);
__ bind(&unordered);
CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
__ bind(&generic_stub);
__ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op_)) {
__ Cmp(rax, masm->isolate()->factory()->undefined_value());
__ j(not_equal, &miss);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
__ j(not_equal, &maybe_undefined2, Label::kNear);
__ jmp(&unordered);
}
__ bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op_)) {
__ Cmp(rdx, masm->isolate()->factory()->undefined_value());
__ j(equal, &unordered);
}
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::SYMBOLS);
ASSERT(GetCondition() == equal);
// Registers containing left and right operands respectively.
Register left = rdx;
Register right = rax;
Register tmp1 = rcx;
Register tmp2 = rbx;
// Check that both operands are heap objects.
Label miss;
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
__ j(cond, &miss, Label::kNear);
// Check that both operands are symbols.
__ movq(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ movq(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSymbolTag != 0);
__ and_(tmp1, tmp2);
__ testb(tmp1, Immediate(kIsSymbolMask));
__ j(zero, &miss, Label::kNear);
// Symbols are compared by identity.
Label done;
__ cmpq(left, right);
// Make sure rax is non-zero. At this point input operands are
// guaranteed to be non-zero.
ASSERT(right.is(rax));
__ j(not_equal, &done, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(rax, Smi::FromInt(EQUAL));
__ bind(&done);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::STRINGS);
Label miss;
bool equality = Token::IsEqualityOp(op_);
// Registers containing left and right operands respectively.
Register left = rdx;
Register right = rax;
Register tmp1 = rcx;
Register tmp2 = rbx;
Register tmp3 = rdi;
// Check that both operands are heap objects.
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
__ j(cond, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
__ movq(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ movq(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
__ movq(tmp3, tmp1);
STATIC_ASSERT(kNotStringTag != 0);
__ or_(tmp3, tmp2);
__ testb(tmp3, Immediate(kIsNotStringMask));
__ j(not_zero, &miss);
// Fast check for identical strings.
Label not_same;
__ cmpq(left, right);
__ j(not_equal, &not_same, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
// Handle not identical strings.
__ bind(&not_same);
// Check that both strings are symbols. If they are, we're done
// because we already know they are not identical.
if (equality) {
Label do_compare;
STATIC_ASSERT(kSymbolTag != 0);
__ and_(tmp1, tmp2);
__ testb(tmp1, Immediate(kIsSymbolMask));
__ j(zero, &do_compare, Label::kNear);
// Make sure rax is non-zero. At this point input operands are
// guaranteed to be non-zero.
ASSERT(right.is(rax));
__ ret(0);
__ bind(&do_compare);
}
// Check that both strings are sequential ASCII.
Label runtime;
__ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
// Compare flat ASCII strings. Returns when done.
if (equality) {
StringCompareStub::GenerateFlatAsciiStringEquals(
masm, left, right, tmp1, tmp2);
} else {
StringCompareStub::GenerateCompareFlatAsciiStrings(
masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
}
// Handle more complex cases in runtime.
__ bind(&runtime);
__ pop(tmp1); // Return address.
__ push(left);
__ push(right);
__ push(tmp1);
if (equality) {
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
} else {
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::OBJECTS);
Label miss;
Condition either_smi = masm->CheckEitherSmi(rdx, rax);
__ j(either_smi, &miss, Label::kNear);
__ CmpObjectType(rax, JS_OBJECT_TYPE, rcx);
__ j(not_equal, &miss, Label::kNear);
__ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
__ j(not_equal, &miss, Label::kNear);
ASSERT(GetCondition() == equal);
__ subq(rax, rdx);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
Label miss;
Condition either_smi = masm->CheckEitherSmi(rdx, rax);
__ j(either_smi, &miss, Label::kNear);
__ movq(rcx, FieldOperand(rax, HeapObject::kMapOffset));
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
__ Cmp(rcx, known_map_);
__ j(not_equal, &miss, Label::kNear);
__ Cmp(rbx, known_map_);
__ j(not_equal, &miss, Label::kNear);
__ subq(rax, rdx);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
{
// Call the runtime system in a fresh internal frame.
ExternalReference miss =
ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(rdx);
__ push(rax);
__ push(rdx);
__ push(rax);
__ Push(Smi::FromInt(op_));
__ CallExternalReference(miss, 3);
// Compute the entry point of the rewritten stub.
__ lea(rdi, FieldOperand(rax, Code::kHeaderSize));
__ pop(rax);
__ pop(rdx);
}
// Do a tail call to the rewritten stub.
__ jmp(rdi);
}
void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register properties,
Handle<String> name,
Register r0) {
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// r0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = r0;
// Capacity is smi 2^n.
__ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
__ decl(index);
__ and_(index,
Immediate(name->Hash() + StringDictionary::GetProbeOffset(i)));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
Register entity_name = r0;
// Having undefined at this place means the name is not contained.
ASSERT_EQ(kSmiTagSize, 1);
__ movq(entity_name, Operand(properties,
index,
times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
__ j(equal, done);
// Stop if found the property.
__ Cmp(entity_name, Handle<String>(name));
__ j(equal, miss);
Label the_hole;
// Check for the hole and skip.
__ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
__ j(equal, &the_hole, Label::kNear);
// Check if the entry name is not a symbol.
__ movq(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
__ testb(FieldOperand(entity_name, Map::kInstanceTypeOffset),
Immediate(kIsSymbolMask));
__ j(zero, miss);
__ bind(&the_hole);
}
StringDictionaryLookupStub stub(properties,
r0,
r0,
StringDictionaryLookupStub::NEGATIVE_LOOKUP);
__ Push(Handle<Object>(name));
__ push(Immediate(name->Hash()));
__ CallStub(&stub);
__ testq(r0, r0);
__ j(not_zero, miss);
__ jmp(done);
}
// Probe the string dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found leaving the
// index into the dictionary in |r1|. Jump to the |miss| label
// otherwise.
void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register r0,
Register r1) {
ASSERT(!elements.is(r0));
ASSERT(!elements.is(r1));
ASSERT(!name.is(r0));
ASSERT(!name.is(r1));
// Assert that name contains a string.
if (FLAG_debug_code) __ AbortIfNotString(name);
__ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
__ decl(r0);
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ movl(r1, FieldOperand(name, String::kHashFieldOffset));
__ shrl(r1, Immediate(String::kHashShift));
if (i > 0) {
__ addl(r1, Immediate(StringDictionary::GetProbeOffset(i)));
}
__ and_(r1, r0);
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3
// Check if the key is identical to the name.
__ cmpq(name, Operand(elements, r1, times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ j(equal, done);
}
StringDictionaryLookupStub stub(elements,
r0,
r1,
POSITIVE_LOOKUP);
__ push(name);
__ movl(r0, FieldOperand(name, String::kHashFieldOffset));
__ shrl(r0, Immediate(String::kHashShift));
__ push(r0);
__ CallStub(&stub);
__ testq(r0, r0);
__ j(zero, miss);
__ jmp(done);
}
void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
// Stack frame on entry:
// esp[0 * kPointerSize]: return address.
// esp[1 * kPointerSize]: key's hash.
// esp[2 * kPointerSize]: key.
// Registers:
// dictionary_: StringDictionary to probe.
// result_: used as scratch.
// index_: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
Register scratch = result_;
__ SmiToInteger32(scratch, FieldOperand(dictionary_, kCapacityOffset));
__ decl(scratch);
__ push(scratch);
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the null value).
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ movq(scratch, Operand(rsp, 2 * kPointerSize));
if (i > 0) {
__ addl(scratch, Immediate(StringDictionary::GetProbeOffset(i)));
}
__ and_(scratch, Operand(rsp, 0));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3.
// Having undefined at this place means the name is not contained.
__ movq(scratch, Operand(dictionary_,
index_,
times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ Cmp(scratch, masm->isolate()->factory()->undefined_value());
__ j(equal, &not_in_dictionary);
// Stop if found the property.
__ cmpq(scratch, Operand(rsp, 3 * kPointerSize));
__ j(equal, &in_dictionary);
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
// If we hit a non symbol key during negative lookup
// we have to bailout as this key might be equal to the
// key we are looking for.
// Check if the entry name is not a symbol.
__ movq(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
__ testb(FieldOperand(scratch, Map::kInstanceTypeOffset),
Immediate(kIsSymbolMask));
__ j(zero, &maybe_in_dictionary);
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode_ == POSITIVE_LOOKUP) {
__ movq(scratch, Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
__ bind(&in_dictionary);
__ movq(scratch, Immediate(1));
__ Drop(1);
__ ret(2 * kPointerSize);
__ bind(&not_in_dictionary);
__ movq(scratch, Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
struct AheadOfTimeWriteBarrierStubList {
Register object, value, address;
RememberedSetAction action;
};
#define REG(Name) { kRegister_ ## Name ## _Code }
struct AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
// Used in RegExpExecStub.
{ REG(rbx), REG(rax), REG(rdi), EMIT_REMEMBERED_SET },
// Used in CompileArrayPushCall.
{ REG(rbx), REG(rcx), REG(rdx), EMIT_REMEMBERED_SET },
// Used in CompileStoreGlobal.
{ REG(rbx), REG(rcx), REG(rdx), OMIT_REMEMBERED_SET },
// Used in StoreStubCompiler::CompileStoreField and
// KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
{ REG(rdx), REG(rcx), REG(rbx), EMIT_REMEMBERED_SET },
// GenerateStoreField calls the stub with two different permutations of
// registers. This is the second.
{ REG(rbx), REG(rcx), REG(rdx), EMIT_REMEMBERED_SET },
// StoreIC::GenerateNormal via GenerateDictionaryStore.
{ REG(rbx), REG(r8), REG(r9), EMIT_REMEMBERED_SET },
// KeyedStoreIC::GenerateGeneric.
{ REG(rbx), REG(rdx), REG(rcx), EMIT_REMEMBERED_SET},
// KeyedStoreStubCompiler::GenerateStoreFastElement.
{ REG(rdi), REG(rbx), REG(rcx), EMIT_REMEMBERED_SET},
{ REG(rdx), REG(rdi), REG(rbx), EMIT_REMEMBERED_SET},
// ElementsTransitionGenerator::GenerateMapChangeElementTransition
// and ElementsTransitionGenerator::GenerateSmiToDouble
// and ElementsTransitionGenerator::GenerateDoubleToObject
{ REG(rdx), REG(rbx), REG(rdi), EMIT_REMEMBERED_SET},
{ REG(rdx), REG(rbx), REG(rdi), OMIT_REMEMBERED_SET},
// ElementsTransitionGenerator::GenerateSmiToDouble
// and ElementsTransitionGenerator::GenerateDoubleToObject
{ REG(rdx), REG(r11), REG(r15), EMIT_REMEMBERED_SET},
// ElementsTransitionGenerator::GenerateDoubleToObject
{ REG(r11), REG(rax), REG(r15), EMIT_REMEMBERED_SET},
// StoreArrayLiteralElementStub::Generate
{ REG(rbx), REG(rax), REG(rcx), EMIT_REMEMBERED_SET},
// FastNewClosureStub::Generate
{ REG(rcx), REG(rdx), REG(rbx), EMIT_REMEMBERED_SET},
// Null termination.
{ REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
};
#undef REG
bool RecordWriteStub::IsPregenerated() {
for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
!entry->object.is(no_reg);
entry++) {
if (object_.is(entry->object) &&
value_.is(entry->value) &&
address_.is(entry->address) &&
remembered_set_action_ == entry->action &&
save_fp_regs_mode_ == kDontSaveFPRegs) {
return true;
}
}
return false;
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
StoreBufferOverflowStub stub1(kDontSaveFPRegs);
stub1.GetCode()->set_is_pregenerated(true);
StoreBufferOverflowStub stub2(kSaveFPRegs);
stub2.GetCode()->set_is_pregenerated(true);
}
void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
!entry->object.is(no_reg);
entry++) {
RecordWriteStub stub(entry->object,
entry->value,
entry->address,
entry->action,
kDontSaveFPRegs);
stub.GetCode()->set_is_pregenerated(true);
}
}
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed. The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// The first two instructions are generated with labels so as to get the
// offset fixed up correctly by the bind(Label*) call. We patch it back and
// forth between a compare instructions (a nop in this position) and the
// real branch when we start and stop incremental heap marking.
// See RecordWriteStub::Patch for details.
__ jmp(&skip_to_incremental_noncompacting, Label::kNear);
__ jmp(&skip_to_incremental_compacting, Label::kFar);
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
masm->set_byte_at(0, kTwoByteNopInstruction);
masm->set_byte_at(2, kFiveByteNopInstruction);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
regs_.Save(masm);
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
__ movq(regs_.scratch0(), Operand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(),
regs_.scratch0(),
&dont_need_remembered_set);
__ CheckPageFlag(regs_.object(),
regs_.scratch0(),
1 << MemoryChunk::SCAN_ON_SCAVENGE,
not_zero,
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm, mode);
regs_.Restore(masm);
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm, mode);
regs_.Restore(masm);
__ ret(0);
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
#ifdef _WIN64
Register arg3 = r8;
Register arg2 = rdx;
Register arg1 = rcx;
#else
Register arg3 = rdx;
Register arg2 = rsi;
Register arg1 = rdi;
#endif
Register address =
arg1.is(regs_.address()) ? kScratchRegister : regs_.address();
ASSERT(!address.is(regs_.object()));
ASSERT(!address.is(arg1));
__ Move(address, regs_.address());
__ Move(arg1, regs_.object());
if (mode == INCREMENTAL_COMPACTION) {
// TODO(gc) Can we just set address arg2 in the beginning?
__ Move(arg2, address);
} else {
ASSERT(mode == INCREMENTAL);
__ movq(arg2, Operand(address, 0));
}
__ LoadAddress(arg3, ExternalReference::isolate_address());
int argument_count = 3;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count);
if (mode == INCREMENTAL_COMPACTION) {
__ CallCFunction(
ExternalReference::incremental_evacuation_record_write_function(
masm->isolate()),
argument_count);
} else {
ASSERT(mode == INCREMENTAL);
__ CallCFunction(
ExternalReference::incremental_marking_record_write_function(
masm->isolate()),
argument_count);
}
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label on_black;
Label need_incremental;
Label need_incremental_pop_object;
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
__ JumpIfBlack(regs_.object(),
regs_.scratch0(),
regs_.scratch1(),
&on_black,
Label::kNear);
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&on_black);
// Get the value from the slot.
__ movq(regs_.scratch0(), Operand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
MemoryChunk::kEvacuationCandidateMask,
zero,
&ensure_not_white,
Label::kNear);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
zero,
&need_incremental);
__ bind(&ensure_not_white);
}
// We need an extra register for this, so we push the object register
// temporarily.
__ push(regs_.object());
__ EnsureNotWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
&need_incremental_pop_object,
Label::kNear);
__ pop(regs_.object());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object_,
address_,
value_,
save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&need_incremental_pop_object);
__ pop(regs_.object());
__ bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : element value to store
// -- rbx : array literal
// -- rdi : map of array literal
// -- rcx : element index as smi
// -- rdx : array literal index in function
// -- rsp[0] : return address
// -----------------------------------
Label element_done;
Label double_elements;
Label smi_element;
Label slow_elements;
Label fast_elements;
__ CheckFastElements(rdi, &double_elements);
// FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
__ JumpIfSmi(rax, &smi_element);
__ CheckFastSmiElements(rdi, &fast_elements);
// Store into the array literal requires a elements transition. Call into
// the runtime.
__ bind(&slow_elements);
__ pop(rdi); // Pop return address and remember to put back later for tail
// call.
__ push(rbx);
__ push(rcx);
__ push(rax);
__ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
__ push(rdx);
__ push(rdi); // Return return address so that tail call returns to right
// place.
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
// Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
__ bind(&fast_elements);
__ SmiToInteger32(kScratchRegister, rcx);
__ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
__ lea(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size,
FixedArrayBase::kHeaderSize));
__ movq(Operand(rcx, 0), rax);
// Update the write barrier for the array store.
__ RecordWrite(rbx, rcx, rax,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ ret(0);
// Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or
// FAST_*_ELEMENTS, and value is Smi.
__ bind(&smi_element);
__ SmiToInteger32(kScratchRegister, rcx);
__ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
__ movq(FieldOperand(rbx, kScratchRegister, times_pointer_size,
FixedArrayBase::kHeaderSize), rax);
__ ret(0);
// Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
__ bind(&double_elements);
__ movq(r9, FieldOperand(rbx, JSObject::kElementsOffset));
__ SmiToInteger32(r11, rcx);
__ StoreNumberToDoubleElements(rax,
r9,
r11,
xmm0,
&slow_elements);
__ ret(0);
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (entry_hook_ != NULL) {
ProfileEntryHookStub stub;
masm->CallStub(&stub);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// Save volatile registers.
// Live registers at this point are the same as at the start of any
// JS function:
// o rdi: the JS function object being called (i.e. ourselves)
// o rsi: our context
// o rbp: our caller's frame pointer
// o rsp: stack pointer (pointing to return address)
// o rcx: rcx is zero for method calls and non-zero for function calls.
#ifdef _WIN64
const int kNumSavedRegisters = 1;
__ push(rcx);
#else
const int kNumSavedRegisters = 3;
__ push(rcx);
__ push(rdi);
__ push(rsi);
#endif
// Calculate the original stack pointer and store it in the second arg.
#ifdef _WIN64
__ lea(rdx, Operand(rsp, kNumSavedRegisters * kPointerSize));
#else
__ lea(rsi, Operand(rsp, kNumSavedRegisters * kPointerSize));
#endif
// Calculate the function address to the first arg.
#ifdef _WIN64
__ movq(rcx, Operand(rdx, 0));
__ subq(rcx, Immediate(Assembler::kShortCallInstructionLength));
#else
__ movq(rdi, Operand(rsi, 0));
__ subq(rdi, Immediate(Assembler::kShortCallInstructionLength));
#endif
// Call the entry hook function.
__ movq(rax, &entry_hook_, RelocInfo::NONE);
__ movq(rax, Operand(rax, 0));
AllowExternalCallThatCantCauseGC scope(masm);
const int kArgumentCount = 2;
__ PrepareCallCFunction(kArgumentCount);
__ CallCFunction(rax, kArgumentCount);
// Restore volatile regs.
#ifdef _WIN64
__ pop(rcx);
#else
__ pop(rsi);
__ pop(rdi);
__ pop(rcx);
#endif
__ Ret();
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64