v8/src/parser.h

792 lines
27 KiB
C
Raw Normal View History

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_PARSER_H_
#define V8_PARSER_H_
#include "allocation.h"
#include "ast.h"
#include "scanner.h"
#include "scopes.h"
#include "preparse-data.h"
namespace v8 {
namespace internal {
class CompilationInfo;
class FuncNameInferrer;
class ParserLog;
class PositionStack;
class Target;
class TemporaryScope;
template <typename T> class ZoneListWrapper;
class ParserMessage : public Malloced {
public:
ParserMessage(Scanner::Location loc, const char* message,
Vector<const char*> args)
: loc_(loc),
message_(message),
args_(args) { }
~ParserMessage();
Scanner::Location location() { return loc_; }
const char* message() { return message_; }
Vector<const char*> args() { return args_; }
private:
Scanner::Location loc_;
const char* message_;
Vector<const char*> args_;
};
class FunctionEntry BASE_EMBEDDED {
public:
explicit FunctionEntry(Vector<unsigned> backing) : backing_(backing) { }
FunctionEntry() : backing_(Vector<unsigned>::empty()) { }
int start_pos() { return backing_[kStartPosOffset]; }
void set_start_pos(int value) { backing_[kStartPosOffset] = value; }
int end_pos() { return backing_[kEndPosOffset]; }
void set_end_pos(int value) { backing_[kEndPosOffset] = value; }
int literal_count() { return backing_[kLiteralCountOffset]; }
void set_literal_count(int value) { backing_[kLiteralCountOffset] = value; }
int property_count() { return backing_[kPropertyCountOffset]; }
void set_property_count(int value) {
backing_[kPropertyCountOffset] = value;
}
bool is_valid() { return backing_.length() > 0; }
static const int kSize = 4;
private:
Vector<unsigned> backing_;
static const int kStartPosOffset = 0;
static const int kEndPosOffset = 1;
static const int kLiteralCountOffset = 2;
static const int kPropertyCountOffset = 3;
};
class ScriptDataImpl : public ScriptData {
public:
explicit ScriptDataImpl(Vector<unsigned> store)
: store_(store),
owns_store_(true) { }
// Create an empty ScriptDataImpl that is guaranteed to not satisfy
// a SanityCheck.
ScriptDataImpl() : store_(Vector<unsigned>()), owns_store_(false) { }
virtual ~ScriptDataImpl();
virtual int Length();
virtual const char* Data();
virtual bool HasError();
void Initialize();
void ReadNextSymbolPosition();
FunctionEntry GetFunctionEntry(int start);
int GetSymbolIdentifier();
bool SanityCheck();
Scanner::Location MessageLocation();
const char* BuildMessage();
Vector<const char*> BuildArgs();
int symbol_count() {
return (store_.length() > PreparseDataConstants::kHeaderSize)
? store_[PreparseDataConstants::kSymbolCountOffset]
: 0;
}
// The following functions should only be called if SanityCheck has
// returned true.
bool has_error() { return store_[PreparseDataConstants::kHasErrorOffset]; }
unsigned magic() { return store_[PreparseDataConstants::kMagicOffset]; }
unsigned version() { return store_[PreparseDataConstants::kVersionOffset]; }
private:
Vector<unsigned> store_;
unsigned char* symbol_data_;
unsigned char* symbol_data_end_;
int function_index_;
bool owns_store_;
unsigned Read(int position);
unsigned* ReadAddress(int position);
// Reads a number from the current symbols
int ReadNumber(byte** source);
ScriptDataImpl(const char* backing_store, int length)
: store_(reinterpret_cast<unsigned*>(const_cast<char*>(backing_store)),
length / static_cast<int>(sizeof(unsigned))),
owns_store_(false) {
ASSERT_EQ(0, static_cast<int>(
reinterpret_cast<intptr_t>(backing_store) % sizeof(unsigned)));
}
// Read strings written by ParserRecorder::WriteString.
static const char* ReadString(unsigned* start, int* chars);
friend class ScriptData;
};
class ParserApi {
public:
// Parses the source code represented by the compilation info and sets its
// function literal. Returns false (and deallocates any allocated AST
// nodes) if parsing failed.
static bool Parse(CompilationInfo* info);
// Generic preparser generating full preparse data.
static ScriptDataImpl* PreParse(UC16CharacterStream* source,
v8::Extension* extension);
// Preparser that only does preprocessing that makes sense if only used
// immediately after.
static ScriptDataImpl* PartialPreParse(UC16CharacterStream* source,
v8::Extension* extension);
};
// ----------------------------------------------------------------------------
// REGEXP PARSING
// A BuffferedZoneList is an automatically growing list, just like (and backed
// by) a ZoneList, that is optimized for the case of adding and removing
// a single element. The last element added is stored outside the backing list,
// and if no more than one element is ever added, the ZoneList isn't even
// allocated.
// Elements must not be NULL pointers.
template <typename T, int initial_size>
class BufferedZoneList {
public:
BufferedZoneList() : list_(NULL), last_(NULL) {}
// Adds element at end of list. This element is buffered and can
// be read using last() or removed using RemoveLast until a new Add or until
// RemoveLast or GetList has been called.
void Add(T* value) {
if (last_ != NULL) {
if (list_ == NULL) {
list_ = new ZoneList<T*>(initial_size);
}
list_->Add(last_);
}
last_ = value;
}
T* last() {
ASSERT(last_ != NULL);
return last_;
}
T* RemoveLast() {
ASSERT(last_ != NULL);
T* result = last_;
if ((list_ != NULL) && (list_->length() > 0))
last_ = list_->RemoveLast();
else
last_ = NULL;
return result;
}
T* Get(int i) {
ASSERT((0 <= i) && (i < length()));
if (list_ == NULL) {
ASSERT_EQ(0, i);
return last_;
} else {
if (i == list_->length()) {
ASSERT(last_ != NULL);
return last_;
} else {
return list_->at(i);
}
}
}
void Clear() {
list_ = NULL;
last_ = NULL;
}
int length() {
int length = (list_ == NULL) ? 0 : list_->length();
return length + ((last_ == NULL) ? 0 : 1);
}
ZoneList<T*>* GetList() {
if (list_ == NULL) {
list_ = new ZoneList<T*>(initial_size);
}
if (last_ != NULL) {
list_->Add(last_);
last_ = NULL;
}
return list_;
}
private:
ZoneList<T*>* list_;
T* last_;
};
// Accumulates RegExp atoms and assertions into lists of terms and alternatives.
class RegExpBuilder: public ZoneObject {
public:
RegExpBuilder();
void AddCharacter(uc16 character);
// "Adds" an empty expression. Does nothing except consume a
// following quantifier
void AddEmpty();
void AddAtom(RegExpTree* tree);
void AddAssertion(RegExpTree* tree);
void NewAlternative(); // '|'
void AddQuantifierToAtom(int min, int max, RegExpQuantifier::Type type);
RegExpTree* ToRegExp();
private:
void FlushCharacters();
void FlushText();
void FlushTerms();
bool pending_empty_;
ZoneList<uc16>* characters_;
BufferedZoneList<RegExpTree, 2> terms_;
BufferedZoneList<RegExpTree, 2> text_;
BufferedZoneList<RegExpTree, 2> alternatives_;
#ifdef DEBUG
enum {ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM} last_added_;
#define LAST(x) last_added_ = x;
#else
#define LAST(x)
#endif
};
class RegExpParser {
public:
RegExpParser(FlatStringReader* in,
Handle<String>* error,
bool multiline_mode);
static bool ParseRegExp(FlatStringReader* input,
bool multiline,
RegExpCompileData* result);
RegExpTree* ParsePattern();
RegExpTree* ParseDisjunction();
RegExpTree* ParseGroup();
RegExpTree* ParseCharacterClass();
// Parses a {...,...} quantifier and stores the range in the given
// out parameters.
bool ParseIntervalQuantifier(int* min_out, int* max_out);
// Parses and returns a single escaped character. The character
// must not be 'b' or 'B' since they are usually handle specially.
uc32 ParseClassCharacterEscape();
// Checks whether the following is a length-digit hexadecimal number,
// and sets the value if it is.
bool ParseHexEscape(int length, uc32* value);
uc32 ParseOctalLiteral();
// Tries to parse the input as a back reference. If successful it
// stores the result in the output parameter and returns true. If
// it fails it will push back the characters read so the same characters
// can be reparsed.
bool ParseBackReferenceIndex(int* index_out);
CharacterRange ParseClassAtom(uc16* char_class);
RegExpTree* ReportError(Vector<const char> message);
void Advance();
void Advance(int dist);
void Reset(int pos);
// Reports whether the pattern might be used as a literal search string.
// Only use if the result of the parse is a single atom node.
bool simple();
bool contains_anchor() { return contains_anchor_; }
void set_contains_anchor() { contains_anchor_ = true; }
int captures_started() { return captures_ == NULL ? 0 : captures_->length(); }
int position() { return next_pos_ - 1; }
bool failed() { return failed_; }
static const int kMaxCaptures = 1 << 16;
static const uc32 kEndMarker = (1 << 21);
private:
enum SubexpressionType {
INITIAL,
CAPTURE, // All positive values represent captures.
POSITIVE_LOOKAHEAD,
NEGATIVE_LOOKAHEAD,
GROUPING
};
class RegExpParserState : public ZoneObject {
public:
RegExpParserState(RegExpParserState* previous_state,
SubexpressionType group_type,
int disjunction_capture_index)
: previous_state_(previous_state),
builder_(new RegExpBuilder()),
group_type_(group_type),
disjunction_capture_index_(disjunction_capture_index) {}
// Parser state of containing expression, if any.
RegExpParserState* previous_state() { return previous_state_; }
bool IsSubexpression() { return previous_state_ != NULL; }
// RegExpBuilder building this regexp's AST.
RegExpBuilder* builder() { return builder_; }
// Type of regexp being parsed (parenthesized group or entire regexp).
SubexpressionType group_type() { return group_type_; }
// Index in captures array of first capture in this sub-expression, if any.
// Also the capture index of this sub-expression itself, if group_type
// is CAPTURE.
int capture_index() { return disjunction_capture_index_; }
private:
// Linked list implementation of stack of states.
RegExpParserState* previous_state_;
// Builder for the stored disjunction.
RegExpBuilder* builder_;
// Stored disjunction type (capture, look-ahead or grouping), if any.
SubexpressionType group_type_;
// Stored disjunction's capture index (if any).
int disjunction_capture_index_;
};
uc32 current() { return current_; }
bool has_more() { return has_more_; }
bool has_next() { return next_pos_ < in()->length(); }
uc32 Next();
FlatStringReader* in() { return in_; }
void ScanForCaptures();
Handle<String>* error_;
ZoneList<RegExpCapture*>* captures_;
FlatStringReader* in_;
uc32 current_;
int next_pos_;
// The capture count is only valid after we have scanned for captures.
int capture_count_;
bool has_more_;
bool multiline_;
bool simple_;
bool contains_anchor_;
bool is_scanned_for_captures_;
bool failed_;
};
// ----------------------------------------------------------------------------
// JAVASCRIPT PARSING
class Parser {
public:
Parser(Handle<Script> script,
bool allow_natives_syntax,
v8::Extension* extension,
ScriptDataImpl* pre_data);
virtual ~Parser() { }
// Returns NULL if parsing failed.
FunctionLiteral* ParseProgram(Handle<String> source,
bool in_global_context);
FunctionLiteral* ParseLazy(Handle<SharedFunctionInfo> info);
void ReportMessageAt(Scanner::Location loc,
const char* message,
Vector<const char*> args);
void ReportMessageAt(Scanner::Location loc,
const char* message,
Vector<Handle<String> > args);
protected:
FunctionLiteral* ParseLazy(Handle<SharedFunctionInfo> info,
UC16CharacterStream* source,
ZoneScope* zone_scope);
enum Mode {
PARSE_LAZILY,
PARSE_EAGERLY
};
// Called by ParseProgram after setting up the scanner.
FunctionLiteral* DoParseProgram(Handle<String> source,
bool in_global_context,
ZoneScope* zone_scope);
// Report syntax error
void ReportUnexpectedToken(Token::Value token);
void ReportInvalidPreparseData(Handle<String> name, bool* ok);
void ReportMessage(const char* message, Vector<const char*> args);
bool inside_with() const { return with_nesting_level_ > 0; }
V8JavaScriptScanner& scanner() { return scanner_; }
Mode mode() const { return mode_; }
ScriptDataImpl* pre_data() const { return pre_data_; }
// All ParseXXX functions take as the last argument an *ok parameter
// which is set to false if parsing failed; it is unchanged otherwise.
// By making the 'exception handling' explicit, we are forced to check
// for failure at the call sites.
void* ParseSourceElements(ZoneList<Statement*>* processor,
int end_token, bool* ok);
Statement* ParseStatement(ZoneStringList* labels, bool* ok);
Statement* ParseFunctionDeclaration(bool* ok);
Statement* ParseNativeDeclaration(bool* ok);
Block* ParseBlock(ZoneStringList* labels, bool* ok);
Block* ParseVariableStatement(bool* ok);
Block* ParseVariableDeclarations(bool accept_IN, Expression** var, bool* ok);
Statement* ParseExpressionOrLabelledStatement(ZoneStringList* labels,
bool* ok);
IfStatement* ParseIfStatement(ZoneStringList* labels, bool* ok);
Statement* ParseContinueStatement(bool* ok);
Statement* ParseBreakStatement(ZoneStringList* labels, bool* ok);
Statement* ParseReturnStatement(bool* ok);
Block* WithHelper(Expression* obj,
ZoneStringList* labels,
bool is_catch_block,
bool* ok);
Statement* ParseWithStatement(ZoneStringList* labels, bool* ok);
CaseClause* ParseCaseClause(bool* default_seen_ptr, bool* ok);
SwitchStatement* ParseSwitchStatement(ZoneStringList* labels, bool* ok);
DoWhileStatement* ParseDoWhileStatement(ZoneStringList* labels, bool* ok);
WhileStatement* ParseWhileStatement(ZoneStringList* labels, bool* ok);
Statement* ParseForStatement(ZoneStringList* labels, bool* ok);
Statement* ParseThrowStatement(bool* ok);
Expression* MakeCatchContext(Handle<String> id, VariableProxy* value);
TryStatement* ParseTryStatement(bool* ok);
DebuggerStatement* ParseDebuggerStatement(bool* ok);
Expression* ParseExpression(bool accept_IN, bool* ok);
Expression* ParseAssignmentExpression(bool accept_IN, bool* ok);
Expression* ParseConditionalExpression(bool accept_IN, bool* ok);
Expression* ParseBinaryExpression(int prec, bool accept_IN, bool* ok);
Expression* ParseUnaryExpression(bool* ok);
Expression* ParsePostfixExpression(bool* ok);
Expression* ParseLeftHandSideExpression(bool* ok);
Expression* ParseNewExpression(bool* ok);
Expression* ParseMemberExpression(bool* ok);
Expression* ParseNewPrefix(PositionStack* stack, bool* ok);
Expression* ParseMemberWithNewPrefixesExpression(PositionStack* stack,
bool* ok);
Expression* ParsePrimaryExpression(bool* ok);
Expression* ParseArrayLiteral(bool* ok);
Expression* ParseObjectLiteral(bool* ok);
ObjectLiteral::Property* ParseObjectLiteralGetSet(bool is_getter, bool* ok);
Expression* ParseRegExpLiteral(bool seen_equal, bool* ok);
Expression* NewCompareNode(Token::Value op,
Expression* x,
Expression* y,
int position);
// Populate the constant properties fixed array for a materialized object
// literal.
void BuildObjectLiteralConstantProperties(
ZoneList<ObjectLiteral::Property*>* properties,
Handle<FixedArray> constants,
bool* is_simple,
bool* fast_elements,
int* depth);
// Populate the literals fixed array for a materialized array literal.
void BuildArrayLiteralBoilerplateLiterals(ZoneList<Expression*>* properties,
Handle<FixedArray> constants,
bool* is_simple,
int* depth);
// Decide if a property should be in the object boilerplate.
bool IsBoilerplateProperty(ObjectLiteral::Property* property);
// If the expression is a literal, return the literal value;
// if the expression is a materialized literal and is simple return a
// compile time value as encoded by CompileTimeValue::GetValue().
// Otherwise, return undefined literal as the placeholder
// in the object literal boilerplate.
Handle<Object> GetBoilerplateValue(Expression* expression);
enum FunctionLiteralType {
EXPRESSION,
DECLARATION,
NESTED
};
ZoneList<Expression*>* ParseArguments(bool* ok);
FunctionLiteral* ParseFunctionLiteral(Handle<String> var_name,
int function_token_position,
FunctionLiteralType type,
bool* ok);
// Magical syntax support.
Expression* ParseV8Intrinsic(bool* ok);
INLINE(Token::Value peek()) {
if (stack_overflow_) return Token::ILLEGAL;
return scanner().peek();
}
INLINE(Token::Value Next()) {
// BUG 1215673: Find a thread safe way to set a stack limit in
// pre-parse mode. Otherwise, we cannot safely pre-parse from other
// threads.
if (stack_overflow_) {
return Token::ILLEGAL;
}
if (StackLimitCheck().HasOverflowed()) {
// Any further calls to Next or peek will return the illegal token.
// The current call must return the next token, which might already
// have been peek'ed.
stack_overflow_ = true;
}
return scanner().Next();
}
INLINE(void Consume(Token::Value token));
void Expect(Token::Value token, bool* ok);
bool Check(Token::Value token);
void ExpectSemicolon(bool* ok);
Handle<String> LiteralString(PretenureFlag tenured) {
if (scanner().is_literal_ascii()) {
return Factory::NewStringFromAscii(scanner().literal_ascii_string(),
tenured);
} else {
return Factory::NewStringFromTwoByte(scanner().literal_uc16_string(),
tenured);
}
}
Handle<String> NextLiteralString(PretenureFlag tenured) {
if (scanner().is_next_literal_ascii()) {
return Factory::NewStringFromAscii(scanner().next_literal_ascii_string(),
tenured);
} else {
return Factory::NewStringFromTwoByte(scanner().next_literal_uc16_string(),
tenured);
}
}
Handle<String> GetSymbol(bool* ok);
// Get odd-ball literals.
Literal* GetLiteralUndefined();
Literal* GetLiteralTheHole();
Literal* GetLiteralNumber(double value);
Handle<String> ParseIdentifier(bool* ok);
Handle<String> ParseIdentifierName(bool* ok);
Handle<String> ParseIdentifierOrGetOrSet(bool* is_get,
bool* is_set,
bool* ok);
// Strict mode validation of LValue expressions
void CheckStrictModeLValue(Expression* expression,
const char* error,
bool* ok);
// Strict mode octal literal validation.
void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok);
// Parser support
VariableProxy* Declare(Handle<String> name, Variable::Mode mode,
FunctionLiteral* fun,
bool resolve,
bool* ok);
bool TargetStackContainsLabel(Handle<String> label);
BreakableStatement* LookupBreakTarget(Handle<String> label, bool* ok);
IterationStatement* LookupContinueTarget(Handle<String> label, bool* ok);
void RegisterTargetUse(BreakTarget* target, Target* stop);
// Factory methods.
Statement* EmptyStatement() {
static v8::internal::EmptyStatement empty;
return &empty;
}
Scope* NewScope(Scope* parent, Scope::Type type, bool inside_with);
Handle<String> LookupSymbol(int symbol_id);
Handle<String> LookupCachedSymbol(int symbol_id);
Expression* NewCall(Expression* expression,
ZoneList<Expression*>* arguments,
int pos) {
return new Call(expression, arguments, pos);
}
// Create a number literal.
Literal* NewNumberLiteral(double value);
// Generate AST node that throw a ReferenceError with the given type.
Expression* NewThrowReferenceError(Handle<String> type);
// Generate AST node that throw a SyntaxError with the given
// type. The first argument may be null (in the handle sense) in
// which case no arguments are passed to the constructor.
Expression* NewThrowSyntaxError(Handle<String> type, Handle<Object> first);
// Generate AST node that throw a TypeError with the given
// type. Both arguments must be non-null (in the handle sense).
Expression* NewThrowTypeError(Handle<String> type,
Handle<Object> first,
Handle<Object> second);
// Generic AST generator for throwing errors from compiled code.
Expression* NewThrowError(Handle<String> constructor,
Handle<String> type,
Vector< Handle<Object> > arguments);
ZoneList<Handle<String> > symbol_cache_;
Handle<Script> script_;
V8JavaScriptScanner scanner_;
Scope* top_scope_;
int with_nesting_level_;
TemporaryScope* temp_scope_;
Mode mode_;
Target* target_stack_; // for break, continue statements
bool allow_natives_syntax_;
v8::Extension* extension_;
bool is_pre_parsing_;
ScriptDataImpl* pre_data_;
FuncNameInferrer* fni_;
bool stack_overflow_;
// If true, the next (and immediately following) function literal is
// preceded by a parenthesis.
// Heuristically that means that the function will be called immediately,
// so never lazily compile it.
bool parenthesized_function_;
};
// Support for handling complex values (array and object literals) that
// can be fully handled at compile time.
class CompileTimeValue: public AllStatic {
public:
enum Type {
OBJECT_LITERAL_FAST_ELEMENTS,
OBJECT_LITERAL_SLOW_ELEMENTS,
ARRAY_LITERAL
};
static bool IsCompileTimeValue(Expression* expression);
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
static bool ArrayLiteralElementNeedsInitialization(Expression* value);
// Get the value as a compile time value.
static Handle<FixedArray> GetValue(Expression* expression);
// Get the type of a compile time value returned by GetValue().
static Type GetType(Handle<FixedArray> value);
// Get the elements array of a compile time value returned by GetValue().
static Handle<FixedArray> GetElements(Handle<FixedArray> value);
private:
static const int kTypeSlot = 0;
static const int kElementsSlot = 1;
DISALLOW_IMPLICIT_CONSTRUCTORS(CompileTimeValue);
};
// ----------------------------------------------------------------------------
// JSON PARSING
// JSON is a subset of JavaScript, as specified in, e.g., the ECMAScript 5
// specification section 15.12.1 (and appendix A.8).
// The grammar is given section 15.12.1.2 (and appendix A.8.2).
class JsonParser BASE_EMBEDDED {
public:
// Parse JSON input as a single JSON value.
// Returns null handle and sets exception if parsing failed.
static Handle<Object> Parse(Handle<String> source) {
if (source->IsExternalTwoByteString()) {
ExternalTwoByteStringUC16CharacterStream stream(
Handle<ExternalTwoByteString>::cast(source), 0, source->length());
return JsonParser().ParseJson(source, &stream);
} else {
GenericStringUC16CharacterStream stream(source, 0, source->length());
return JsonParser().ParseJson(source, &stream);
}
}
private:
JsonParser() { }
~JsonParser() { }
// Parse a string containing a single JSON value.
Handle<Object> ParseJson(Handle<String> script, UC16CharacterStream* source);
// Parse a single JSON value from input (grammar production JSONValue).
// A JSON value is either a (double-quoted) string literal, a number literal,
// one of "true", "false", or "null", or an object or array literal.
Handle<Object> ParseJsonValue();
// Parse a JSON object literal (grammar production JSONObject).
// An object literal is a squiggly-braced and comma separated sequence
// (possibly empty) of key/value pairs, where the key is a JSON string
// literal, the value is a JSON value, and the two are separated by a colon.
// A JSON array dosn't allow numbers and identifiers as keys, like a
// JavaScript array.
Handle<Object> ParseJsonObject();
// Parses a JSON array literal (grammar production JSONArray). An array
// literal is a square-bracketed and comma separated sequence (possibly empty)
// of JSON values.
// A JSON array doesn't allow leaving out values from the sequence, nor does
// it allow a terminal comma, like a JavaScript array does.
Handle<Object> ParseJsonArray();
// Mark that a parsing error has happened at the current token, and
// return a null handle. Primarily for readability.
Handle<Object> ReportUnexpectedToken() { return Handle<Object>::null(); }
// Converts the currently parsed literal to a JavaScript String.
Handle<String> GetString();
JsonScanner scanner_;
bool stack_overflow_;
};
} } // namespace v8::internal
#endif // V8_PARSER_H_