v8/src/x64/fast-codegen-x64.cc

1300 lines
40 KiB
C++
Raw Normal View History

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "debug.h"
#include "fast-codegen.h"
#include "parser.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right, with the
// return address on top of them. The actual argument count matches the
// formal parameter count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called (ie, ourselves)
// o rsi: our context
// o rbp: our caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-x64.h for its layout.
void FastCodeGenerator::Generate(FunctionLiteral* fun) {
function_ = fun;
SetFunctionPosition(fun);
__ push(rbp); // Caller's frame pointer.
__ movq(rbp, rsp);
__ push(rsi); // Callee's context.
__ push(rdi); // Callee's JS Function.
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = fun->scope()->num_stack_slots();
for (int i = 0; i < locals_count; i++) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
}
{ Comment cmnt(masm_, "[ Stack check");
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
StackCheckStub stub;
__ CallStub(&stub);
__ bind(&ok);
}
{ Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(fun->scope()->declarations());
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
{ Comment cmnt(masm_, "[ Body");
VisitStatements(fun->body());
}
{ Comment cmnt(masm_, "[ return <undefined>;");
// Emit a 'return undefined' in case control fell off the end of the
// body.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
}
{ Comment cmnt(masm_, "Return sequence");
SetReturnPosition(fun);
if (return_label_.is_bound()) {
__ jmp(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
__ push(rax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
__ RecordJSReturn();
// Do not use the leave instruction here because it is too short to
// patch with the code required by the debugger.
__ movq(rsp, rbp);
__ pop(rbp);
__ ret((fun->scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint. We
// have just generated "movq rsp, rbp; pop rbp; ret k" with length 7
// (3 + 1 + 3).
const int kPadding = Debug::kX64JSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
#endif
}
}
}
void FastCodeGenerator::Move(Expression::Context context, Register source) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
break;
case Expression::kValue:
__ push(source);
break;
case Expression::kTest:
TestAndBranch(source, true_label_, false_label_);
break;
case Expression::kValueTest: {
Label discard;
__ push(source);
TestAndBranch(source, true_label_, &discard);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(false_label_);
break;
}
case Expression::kTestValue: {
Label discard;
__ push(source);
TestAndBranch(source, &discard, false_label_);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(true_label_);
break;
}
}
}
void FastCodeGenerator::Move(Expression::Context context, Slot* source) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
break;
case Expression::kValue:
__ push(Operand(rbp, SlotOffset(source)));
break;
case Expression::kTest: // Fall through.
case Expression::kValueTest: // Fall through.
case Expression::kTestValue:
__ movq(rax, Operand(rbp, SlotOffset(source)));
Move(context, rax);
break;
}
}
void FastCodeGenerator::Move(Expression::Context context, Literal* expr) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
break;
case Expression::kValue:
__ Push(expr->handle());
break;
case Expression::kTest: // Fall through.
case Expression::kValueTest: // Fall through.
case Expression::kTestValue:
__ Move(rax, expr->handle());
Move(context, rax);
break;
}
}
void FastCodeGenerator::DropAndMove(Expression::Context context,
Register source) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
__ addq(rsp, Immediate(kPointerSize));
break;
case Expression::kValue:
__ movq(Operand(rsp, 0), source);
break;
case Expression::kTest:
ASSERT(!source.is(rsp));
__ addq(rsp, Immediate(kPointerSize));
TestAndBranch(source, true_label_, false_label_);
break;
case Expression::kValueTest: {
Label discard;
__ movq(Operand(rsp, 0), source);
TestAndBranch(source, true_label_, &discard);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(false_label_);
break;
}
case Expression::kTestValue: {
Label discard;
__ movq(Operand(rsp, 0), source);
TestAndBranch(source, &discard, false_label_);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(true_label_);
break;
}
}
}
void FastCodeGenerator::TestAndBranch(Register source,
Label* true_label,
Label* false_label) {
ASSERT_NE(NULL, true_label);
ASSERT_NE(NULL, false_label);
// Use the shared ToBoolean stub to compile the value in the register into
// control flow to the code generator's true and false labels. Perform
// the fast checks assumed by the stub.
// The undefined value is false.
__ CompareRoot(source, Heap::kUndefinedValueRootIndex);
__ j(equal, false_label);
__ CompareRoot(source, Heap::kTrueValueRootIndex); // True is true.
__ j(equal, true_label);
__ CompareRoot(source, Heap::kFalseValueRootIndex); // False is false.
__ j(equal, false_label);
ASSERT_EQ(0, kSmiTag);
__ SmiCompare(source, Smi::FromInt(0)); // The smi zero is false.
__ j(equal, false_label);
Condition is_smi = masm_->CheckSmi(source); // All other smis are true.
__ j(is_smi, true_label);
// Call the stub for all other cases.
__ push(source);
ToBooleanStub stub;
__ CallStub(&stub);
__ testq(rax, rax); // The stub returns nonzero for true.
__ j(not_zero, true_label);
__ jmp(false_label);
}
void FastCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ push(rsi); // The context is the first argument.
__ Push(pairs);
__ Push(Smi::FromInt(is_eval_ ? 1 : 0));
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void FastCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
Comment cmnt(masm_, "[ ReturnStatement");
SetStatementPosition(stmt);
Expression* expr = stmt->expression();
if (expr->AsLiteral() != NULL) {
__ Move(rax, expr->AsLiteral()->handle());
} else {
Visit(expr);
ASSERT_EQ(Expression::kValue, expr->context());
__ pop(rax);
}
if (return_label_.is_bound()) {
__ jmp(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
__ push(rax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
__ RecordJSReturn();
// Do not use the leave instruction here because it is too short to
// patch with the code required by the debugger.
__ movq(rsp, rbp);
__ pop(rbp);
__ ret((function_->scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint. We
// have just generated "movq rsp, rbp; pop rbp; ret k" with length 7
// (3 + 1 + 3).
const int kPadding = Debug::kX64JSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
#endif
}
}
void FastCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<JSFunction> boilerplate = BuildBoilerplate(expr);
if (HasStackOverflow()) return;
ASSERT(boilerplate->IsBoilerplate());
// Create a new closure.
__ push(rsi);
__ Push(boilerplate);
__ CallRuntime(Runtime::kNewClosure, 2);
Move(expr->context(), rax);
}
void FastCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
Expression* rewrite = expr->var()->rewrite();
if (rewrite == NULL) {
Comment cmnt(masm_, "Global variable");
// Use inline caching. Variable name is passed in rcx and the global
// object on the stack.
__ push(CodeGenerator::GlobalObject());
__ Move(rcx, expr->name());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
// A test rax instruction following the call is used by the IC to
// indicate that the inobject property case was inlined. Ensure there
// is no test rax instruction here.
DropAndMove(expr->context(), rax);
} else {
Comment cmnt(masm_, "Stack slot");
Move(expr->context(), rewrite->AsSlot());
}
}
void FastCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExp Literal");
Label done;
// Registers will be used as follows:
// rdi = JS function.
// rbx = literals array.
// rax = regexp literal.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ movq(rax, FieldOperand(rbx, literal_offset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &done);
// Create regexp literal using runtime function
// Result will be in rax.
__ push(rbx);
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->pattern());
__ Push(expr->flags());
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
// Label done:
__ bind(&done);
Move(expr->context(), rax);
}
void FastCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
Label boilerplate_exists;
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ movq(rax, FieldOperand(rbx, literal_offset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &boilerplate_exists);
// Create boilerplate if it does not exist.
// Literal array (0).
__ push(rbx);
// Literal index (1).
__ Push(Smi::FromInt(expr->literal_index()));
// Constant properties (2).
__ Push(expr->constant_properties());
__ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
__ bind(&boilerplate_exists);
// rax contains boilerplate.
// Clone boilerplate.
__ push(rax);
if (expr->depth() == 1) {
__ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1);
} else {
__ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1);
}
// If result_saved == true: the result is saved on top of the stack.
// If result_saved == false: the result is not on the stack, just in rax.
bool result_saved = false;
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(rax); // Save result on the stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::MATERIALIZED_LITERAL: // fall through
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
Visit(value);
ASSERT_EQ(Expression::kValue, value->context());
__ pop(rax);
__ Move(rcx, key->handle());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// StoreIC leaves the receiver on the stack.
break;
}
// fall through
case ObjectLiteral::Property::PROTOTYPE:
__ push(rax);
Visit(key);
ASSERT_EQ(Expression::kValue, key->context());
Visit(value);
ASSERT_EQ(Expression::kValue, value->context());
__ CallRuntime(Runtime::kSetProperty, 3);
__ movq(rax, Operand(rsp, 0)); // Restore result into rax.
break;
case ObjectLiteral::Property::SETTER: // fall through
case ObjectLiteral::Property::GETTER:
__ push(rax);
Visit(key);
ASSERT_EQ(Expression::kValue, key->context());
__ Push(property->kind() == ObjectLiteral::Property::SETTER ?
Smi::FromInt(1) :
Smi::FromInt(0));
Visit(value);
ASSERT_EQ(Expression::kValue, value->context());
__ CallRuntime(Runtime::kDefineAccessor, 4);
__ movq(rax, Operand(rsp, 0)); // Restore result into rax.
break;
default: UNREACHABLE();
}
}
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
if (result_saved) __ addq(rsp, Immediate(kPointerSize));
break;
case Expression::kValue:
if (!result_saved) __ push(rax);
break;
case Expression::kTest:
if (result_saved) __ pop(rax);
TestAndBranch(rax, true_label_, false_label_);
break;
case Expression::kValueTest: {
Label discard;
if (!result_saved) __ push(rax);
TestAndBranch(rax, true_label_, &discard);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(false_label_);
break;
}
case Expression::kTestValue: {
Label discard;
if (!result_saved) __ push(rax);
TestAndBranch(rax, &discard, false_label_);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(true_label_);
break;
}
}
}
void FastCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
Label make_clone;
// Fetch the function's literals array.
__ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rbx, FieldOperand(rbx, JSFunction::kLiteralsOffset));
// Check if the literal's boilerplate has been instantiated.
int offset =
FixedArray::kHeaderSize + (expr->literal_index() * kPointerSize);
__ movq(rax, FieldOperand(rbx, offset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &make_clone);
// Instantiate the boilerplate.
__ push(rbx);
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->literals());
__ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
__ bind(&make_clone);
// Clone the boilerplate.
__ push(rax);
if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1);
} else {
__ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
ZoneList<Expression*>* subexprs = expr->values();
for (int i = 0, len = subexprs->length(); i < len; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (subexpr->AsLiteral() != NULL ||
CompileTimeValue::IsCompileTimeValue(subexpr)) {
continue;
}
if (!result_saved) {
__ push(rax);
result_saved = true;
}
Visit(subexpr);
ASSERT_EQ(Expression::kValue, subexpr->context());
// Store the subexpression value in the array's elements.
__ pop(rax); // Subexpression value.
__ movq(rbx, Operand(rsp, 0)); // Copy of array literal.
__ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ movq(FieldOperand(rbx, offset), rax);
// Update the write barrier for the array store.
__ RecordWrite(rbx, offset, rax, rcx);
}
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
if (result_saved) __ addq(rsp, Immediate(kPointerSize));
break;
case Expression::kValue:
if (!result_saved) __ push(rax);
break;
case Expression::kTest:
if (result_saved) __ pop(rax);
TestAndBranch(rax, true_label_, false_label_);
break;
case Expression::kValueTest: {
Label discard;
if (!result_saved) __ push(rax);
TestAndBranch(rax, true_label_, &discard);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(false_label_);
break;
}
case Expression::kTestValue: {
Label discard;
if (!result_saved) __ push(rax);
TestAndBranch(rax, &discard, false_label_);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(true_label_);
break;
}
}
}
void FastCodeGenerator::EmitVariableAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
ASSERT(var != NULL);
if (var->is_global()) {
// Assignment to a global variable. Use inline caching for the
// assignment. Right-hand-side value is passed in rax, variable name in
// rcx, and the global object on the stack.
__ pop(rax);
__ Move(rcx, var->name());
__ push(CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// Overwrite the global object on the stack with the result if needed.
DropAndMove(expr->context(), rax);
} else {
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Perform assignment and discard value.
__ pop(Operand(rbp, SlotOffset(var->slot())));
break;
case Expression::kValue:
// Perform assignment and preserve value.
__ movq(rax, Operand(rsp, 0));
__ movq(Operand(rbp, SlotOffset(var->slot())), rax);
break;
case Expression::kTest:
// Perform assignment and test (and discard) value.
__ pop(rax);
__ movq(Operand(rbp, SlotOffset(var->slot())), rax);
TestAndBranch(rax, true_label_, false_label_);
break;
case Expression::kValueTest: {
Label discard;
__ movq(rax, Operand(rsp, 0));
__ movq(Operand(rbp, SlotOffset(var->slot())), rax);
TestAndBranch(rax, true_label_, &discard);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(false_label_);
break;
}
case Expression::kTestValue: {
Label discard;
__ movq(rax, Operand(rsp, 0));
__ movq(Operand(rbp, SlotOffset(var->slot())), rax);
TestAndBranch(rax, &discard, false_label_);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(true_label_);
break;
}
}
}
}
void FastCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->AsLiteral() != NULL);
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(Operand(rsp, kPointerSize)); // Receiver is under value.
__ CallRuntime(Runtime::kToSlowProperties, 1);
}
__ pop(rax);
__ Move(rcx, prop->key()->AsLiteral()->handle());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(rax); // Result of assignment, saved even if not needed.
__ push(Operand(rsp, kPointerSize)); // Receiver is under value.
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(rax);
}
DropAndMove(expr->context(), rax);
}
void FastCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
// Reciever is under the key and value.
__ push(Operand(rsp, 2 * kPointerSize));
__ CallRuntime(Runtime::kToSlowProperties, 1);
}
__ pop(rax);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// This nop signals to the IC that there is no inlined code at the call
// site for it to patch.
__ nop();
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(rax); // Result of assignment, saved even if not needed.
// Reciever is under the key and value.
__ push(Operand(rsp, 2 * kPointerSize));
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(rax);
}
// Receiver and key are still on stack.
__ addq(rsp, Immediate(2 * kPointerSize));
Move(expr->context(), rax);
}
void FastCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
uint32_t dummy;
// Record the source position for the property load.
SetSourcePosition(expr->position());
// Evaluate receiver.
Visit(expr->obj());
if (key->AsLiteral() != NULL && key->AsLiteral()->handle()->IsSymbol() &&
!String::cast(*(key->AsLiteral()->handle()))->AsArrayIndex(&dummy)) {
// Do a NAMED property load.
// The IC expects the property name in rcx and the receiver on the stack.
__ Move(rcx, key->AsLiteral()->handle());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// By emitting a nop we make sure that we do not have a "test rax,..."
// instruction after the call it is treated specially by the LoadIC code.
__ nop();
} else {
// Do a KEYED property load.
Visit(expr->key());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// By emitting a nop we make sure that we do not have a "test rax,..."
// instruction after the call it is treated specially by the LoadIC code.
__ nop();
// Drop key left on the stack by IC.
__ addq(rsp, Immediate(kPointerSize));
}
DropAndMove(expr->context(), rax);
}
void FastCodeGenerator::EmitCallWithIC(Call* expr, RelocInfo::Mode reloc_info) {
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Visit(args->at(i));
ASSERT_EQ(Expression::kValue, args->at(i)->context());
}
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count,
NOT_IN_LOOP);
__ call(ic, reloc_info);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Discard the function left on TOS.
DropAndMove(expr->context(), rax);
}
void FastCodeGenerator::EmitCallWithStub(Call* expr) {
// Code common for calls using the call stub.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Visit(args->at(i));
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(arg_count, NOT_IN_LOOP);
__ CallStub(&stub);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Discard the function left on TOS.
DropAndMove(expr->context(), rax);
}
void FastCodeGenerator::VisitCall(Call* expr) {
Expression* fun = expr->expression();
Variable* var = fun->AsVariableProxy()->AsVariable();
if (var != NULL &&
var->is_possibly_eval()) {
// Call to eval.
UNREACHABLE();
} else if (fun->AsProperty() != NULL) {
// Call on a property.
Property* prop = fun->AsProperty();
Literal* key = prop->key()->AsLiteral();
if (key != NULL && key->handle()->IsSymbol()) {
// Call on a named property: foo.x(1,2,3)
__ Push(key->handle());
Visit(prop->obj());
// Use call IC
EmitCallWithIC(expr, RelocInfo::CODE_TARGET);
} else {
// Call on a keyed property: foo[key](1,2,3)
// Use a keyed load IC followed by a call IC.
Visit(prop->obj());
Visit(prop->key());
// Record source position of property.
SetSourcePosition(prop->position());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// By emitting a nop we make sure that we do not have a "test eax,..."
// instruction after the call it is treated specially by the LoadIC code.
__ nop();
// Drop key left on the stack by IC.
__ addq(rsp, Immediate(kPointerSize));
// Pop receiver.
__ pop(rbx);
// Push result (function).
__ push(rax);
// Push receiver object on stack.
if (prop->is_synthetic()) {
__ push(CodeGenerator::GlobalObject());
} else {
__ push(rbx);
}
EmitCallWithStub(expr);
}
} else if (var != NULL) {
// Call on a global variable
ASSERT(var != NULL && !var->is_this() && var->is_global());
ASSERT(!var->is_possibly_eval());
__ Push(var->name());
// Push global object (receiver).
__ push(CodeGenerator::GlobalObject());
EmitCallWithIC(expr, RelocInfo::CODE_TARGET_CONTEXT);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// Call inside a with-statement
UNREACHABLE();
} else {
// Call with an arbitrary function expression.
Visit(expr->expression());
// Load global receiver object.
__ movq(rbx, CodeGenerator::GlobalObject());
__ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// Emit function call.
EmitCallWithStub(expr);
}
}
void FastCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push function on the stack.
Visit(expr->expression());
ASSERT_EQ(Expression::kValue, expr->expression()->context());
// If location is value, already on the stack,
// Push global object (receiver).
__ push(CodeGenerator::GlobalObject());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Visit(args->at(i));
ASSERT_EQ(Expression::kValue, args->at(i)->context());
// If location is value, it is already on the stack,
// so nothing to do here.
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function, arg_count into rdi and rax.
__ Set(rax, arg_count);
// Function is in rsp[arg_count + 1].
__ movq(rdi, Operand(rsp, rax, times_pointer_size, kPointerSize));
Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall));
__ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
// Replace function on TOS with result in rax, or pop it.
DropAndMove(expr->context(), rax);
}
void FastCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
Runtime::Function* function = expr->function();
ASSERT(function != NULL);
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Visit(args->at(i));
ASSERT_EQ(Expression::kValue, args->at(i)->context());
}
__ CallRuntime(function, arg_count);
Move(expr->context(), rax);
}
void FastCodeGenerator::VisitCountOperation(CountOperation* expr) {
VariableProxy* v = expr->expression()->AsVariableProxy();
ASSERT(v->AsVariable() != NULL);
ASSERT(v->AsVariable()->is_global());
Visit(v);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kValue: // Fall through
case Expression::kTest: // Fall through
case Expression::kTestValue: // Fall through
case Expression::kValueTest:
// Duplicate the result on the stack.
__ push(rax);
break;
case Expression::kEffect:
// Do not save result.
break;
}
// Call runtime for +1/-1.
__ push(rax);
__ Push(Smi::FromInt(1));
if (expr->op() == Token::INC) {
__ CallRuntime(Runtime::kNumberAdd, 2);
} else {
__ CallRuntime(Runtime::kNumberSub, 2);
}
// Call Store IC.
__ Move(rcx, v->AsVariable()->name());
__ push(CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// Restore up stack after store IC
__ addq(rsp, Immediate(kPointerSize));
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect: // Fall through
case Expression::kValue:
// Do nothing. Result in either on the stack for value context
// or discarded for effect context.
break;
case Expression::kTest:
__ pop(rax);
TestAndBranch(rax, true_label_, false_label_);
break;
case Expression::kValueTest: {
Label discard;
__ movq(rax, Operand(rsp, 0));
TestAndBranch(rax, true_label_, &discard);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(false_label_);
break;
}
case Expression::kTestValue: {
Label discard;
__ movq(rax, Operand(rsp, 0));
TestAndBranch(rax, &discard, false_label_);
__ bind(&discard);
__ addq(rsp, Immediate(kPointerSize));
__ jmp(true_label_);
break;
}
}
}
void FastCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
Comment cmnt(masm_, "[ UnaryOperation");
switch (expr->op()) {
case Token::VOID:
Visit(expr->expression());
ASSERT_EQ(Expression::kEffect, expr->expression()->context());
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
break;
case Expression::kValue:
__ PushRoot(Heap::kUndefinedValueRootIndex);
break;
case Expression::kTestValue:
// Value is false so it's needed.
__ PushRoot(Heap::kUndefinedValueRootIndex);
// Fall through.
case Expression::kTest: // Fall through.
case Expression::kValueTest:
__ jmp(false_label_);
break;
}
break;
case Token::NOT: {
ASSERT_EQ(Expression::kTest, expr->expression()->context());
Label push_true;
Label push_false;
Label done;
Label* saved_true = true_label_;
Label* saved_false = false_label_;
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kValue:
true_label_ = &push_false;
false_label_ = &push_true;
Visit(expr->expression());
__ bind(&push_true);
__ PushRoot(Heap::kTrueValueRootIndex);
__ jmp(&done);
__ bind(&push_false);
__ PushRoot(Heap::kFalseValueRootIndex);
__ bind(&done);
break;
case Expression::kEffect:
true_label_ = &done;
false_label_ = &done;
Visit(expr->expression());
__ bind(&done);
break;
case Expression::kTest:
true_label_ = saved_false;
false_label_ = saved_true;
Visit(expr->expression());
break;
case Expression::kValueTest:
true_label_ = saved_false;
false_label_ = &push_true;
Visit(expr->expression());
__ bind(&push_true);
__ PushRoot(Heap::kTrueValueRootIndex);
__ jmp(saved_true);
break;
case Expression::kTestValue:
true_label_ = &push_false;
false_label_ = saved_true;
Visit(expr->expression());
__ bind(&push_false);
__ PushRoot(Heap::kFalseValueRootIndex);
__ jmp(saved_false);
break;
}
true_label_ = saved_true;
false_label_ = saved_false;
break;
}
default:
UNREACHABLE();
}
}
void FastCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA:
ASSERT_EQ(Expression::kEffect, expr->left()->context());
ASSERT_EQ(expr->context(), expr->right()->context());
Visit(expr->left());
Visit(expr->right());
break;
case Token::OR:
case Token::AND:
EmitLogicalOperation(expr);
break;
case Token::ADD:
case Token::SUB:
case Token::DIV:
case Token::MOD:
case Token::MUL:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SHL:
case Token::SHR:
case Token::SAR: {
ASSERT_EQ(Expression::kValue, expr->left()->context());
ASSERT_EQ(Expression::kValue, expr->right()->context());
Visit(expr->left());
Visit(expr->right());
GenericBinaryOpStub stub(expr->op(),
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS);
__ CallStub(&stub);
Move(expr->context(), rax);
break;
}
default:
UNREACHABLE();
}
}
void FastCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
ASSERT_EQ(Expression::kValue, expr->left()->context());
ASSERT_EQ(Expression::kValue, expr->right()->context());
Visit(expr->left());
Visit(expr->right());
// Convert current context to test context: Pre-test code.
Label push_true;
Label push_false;
Label done;
Label* saved_true = true_label_;
Label* saved_false = false_label_;
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kValue:
true_label_ = &push_true;
false_label_ = &push_false;
break;
case Expression::kEffect:
true_label_ = &done;
false_label_ = &done;
break;
case Expression::kTest:
break;
case Expression::kValueTest:
true_label_ = &push_true;
break;
case Expression::kTestValue:
false_label_ = &push_false;
break;
}
// Convert current context to test context: End pre-test code.
switch (expr->op()) {
case Token::IN: {
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
__ j(equal, true_label_);
__ jmp(false_label_);
break;
}
case Token::INSTANCEOF: {
InstanceofStub stub;
__ CallStub(&stub);
__ testq(rax, rax);
__ j(zero, true_label_); // The stub returns 0 for true.
__ jmp(false_label_);
break;
}
default: {
Condition cc = no_condition;
bool strict = false;
switch (expr->op()) {
case Token::EQ_STRICT:
strict = true;
// Fall through
case Token::EQ:
cc = equal;
__ pop(rax);
__ pop(rdx);
break;
case Token::LT:
cc = less;
__ pop(rax);
__ pop(rdx);
break;
case Token::GT:
// Reverse left and right sizes to obtain ECMA-262 conversion order.
cc = less;
__ pop(rdx);
__ pop(rax);
break;
case Token::LTE:
// Reverse left and right sizes to obtain ECMA-262 conversion order.
cc = greater_equal;
__ pop(rdx);
__ pop(rax);
break;
case Token::GTE:
cc = greater_equal;
__ pop(rax);
__ pop(rdx);
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
// The comparison stub expects the smi vs. smi case to be handled
// before it is called.
Label slow_case;
__ JumpIfNotBothSmi(rax, rdx, &slow_case);
__ SmiCompare(rdx, rax);
__ j(cc, true_label_);
__ jmp(false_label_);
__ bind(&slow_case);
CompareStub stub(cc, strict);
__ CallStub(&stub);
__ testq(rax, rax);
__ j(cc, true_label_);
__ jmp(false_label_);
}
}
// Convert current context to test context: Post-test code.
switch (expr->context()) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kValue:
__ bind(&push_true);
__ PushRoot(Heap::kTrueValueRootIndex);
__ jmp(&done);
__ bind(&push_false);
__ PushRoot(Heap::kFalseValueRootIndex);
__ bind(&done);
break;
case Expression::kEffect:
__ bind(&done);
break;
case Expression::kTest:
break;
case Expression::kValueTest:
__ bind(&push_true);
__ PushRoot(Heap::kTrueValueRootIndex);
__ jmp(saved_true);
break;
case Expression::kTestValue:
__ bind(&push_false);
__ PushRoot(Heap::kFalseValueRootIndex);
__ jmp(saved_false);
break;
}
true_label_ = saved_true;
false_label_ = saved_false;
// Convert current context to test context: End post-test code.
}
#undef __
} } // namespace v8::internal