v8/src/builtins.cc

768 lines
24 KiB
C++
Raw Normal View History

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "bootstrapper.h"
#include "builtins.h"
#include "ic-inl.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Support macros for defining builtins in C.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
// BUILTIN_END
//
// In the body of the builtin function, the variable 'receiver' is visible.
// The arguments can be accessed through:
//
// BUILTIN_ARG(0): Receiver (also available as 'receiver')
// BUILTIN_ARG(1): First argument
// ...
// BUILTIN_ARG(n): Last argument
//
// and they evaluate to undefined values if too few arguments were
// passed to the builtin function invocation.
//
// __argc__ is the number of arguments including the receiver.
// ----------------------------------------------------------------------------
// TODO(1238487): We should consider passing whether or not the
// builtin was invoked as a constructor as part of the
// arguments. Maybe we also want to pass the called function?
#define BUILTIN(name) \
static Object* Builtin_##name(int __argc__, Object** __argv__) { \
Handle<Object> receiver(&__argv__[0]);
// Use an inline function to avoid evaluating the index (n) more than
// once in the BUILTIN_ARG macro.
static inline Object* __builtin_arg__(int n, int argc, Object** argv) {
ASSERT(n >= 0);
return (argc > n) ? argv[-n] : Heap::undefined_value();
}
// NOTE: Argument 0 is the receiver. The first 'real' argument is
// argument 1 - BUILTIN_ARG(1).
#define BUILTIN_ARG(n) (__builtin_arg__(n, __argc__, __argv__))
#define BUILTIN_END \
return Heap::undefined_value(); \
}
// TODO(1238487): Get rid of this function that determines if the
// builtin is called as a constructor. This may be a somewhat slow
// operation due to the stack frame iteration.
static inline bool CalledAsConstructor() {
StackFrameIterator it;
ASSERT(it.frame()->is_exit());
it.Advance();
StackFrame* frame = it.frame();
return frame->is_construct();
}
// ----------------------------------------------------------------------------
Handle<Code> Builtins::GetCode(JavaScript id, bool* resolved) {
Code* code = Builtins::builtin(Builtins::Illegal);
*resolved = false;
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
if (Top::context() != NULL) {
Object* object = Top::builtins()->javascript_builtin(id);
if (object->IsJSFunction()) {
Handle<JSFunction> function(JSFunction::cast(object));
// Make sure the number of parameters match the formal parameter count.
ASSERT(function->shared()->formal_parameter_count() ==
Builtins::GetArgumentsCount(id));
if (function->is_compiled() || CompileLazy(function, CLEAR_EXCEPTION)) {
code = function->code();
*resolved = true;
}
}
}
return Handle<Code>(code);
}
BUILTIN(Illegal) {
UNREACHABLE();
}
BUILTIN_END
BUILTIN(EmptyFunction) {
}
BUILTIN_END
BUILTIN(ArrayCode) {
JSArray* array;
if (CalledAsConstructor()) {
array = JSArray::cast(*receiver);
} else {
// Allocate the JS Array
JSFunction* constructor =
Top::context()->global_context()->array_function();
Object* obj = Heap::AllocateJSObject(constructor);
if (obj->IsFailure()) return obj;
array = JSArray::cast(obj);
}
// 'array' now contains the JSArray we should initialize.
// Optimize the case where there is one argument and the argument is a
// small smi.
if (__argc__ == 2) {
Object* obj = BUILTIN_ARG(1);
if (obj->IsSmi()) {
int len = Smi::cast(obj)->value();
if (len >= 0 && len < JSObject::kInitialMaxFastElementArray) {
Object* obj = Heap::AllocateFixedArrayWithHoles(len);
if (obj->IsFailure()) return obj;
array->SetContent(FixedArray::cast(obj));
return array;
}
}
// Take the argument as the length.
obj = array->Initialize(0);
if (obj->IsFailure()) return obj;
if (__argc__ == 2) return array->SetElementsLength(BUILTIN_ARG(1));
}
// Optimize the case where there are no parameters passed.
if (__argc__ == 1) return array->Initialize(4);
// Take the arguments as elements.
int number_of_elements = __argc__ - 1;
Smi* len = Smi::FromInt(number_of_elements);
Object* obj = Heap::AllocateFixedArrayWithHoles(len->value());
if (obj->IsFailure()) return obj;
FixedArray* elms = FixedArray::cast(obj);
WriteBarrierMode mode = elms->GetWriteBarrierMode();
// Fill in the content
for (int index = 0; index < number_of_elements; index++) {
elms->set(index, BUILTIN_ARG(index+1), mode);
}
// Set length and elements on the array.
array->set_elements(FixedArray::cast(obj));
array->set_length(len, SKIP_WRITE_BARRIER);
return array;
}
BUILTIN_END
BUILTIN(ArrayPush) {
JSArray* array = JSArray::cast(*receiver);
ASSERT(array->HasFastElements());
// Make sure we have space for the elements.
int len = Smi::cast(array->length())->value();
// Set new length.
int new_length = len + __argc__ - 1;
FixedArray* elms = FixedArray::cast(array->elements());
if (new_length <= elms->length()) {
// Backing storage has extra space for the provided values.
for (int index = 0; index < __argc__ - 1; index++) {
elms->set(index + len, BUILTIN_ARG(index+1));
}
} else {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
Object* obj = Heap::AllocateFixedArrayWithHoles(capacity);
if (obj->IsFailure()) return obj;
FixedArray* new_elms = FixedArray::cast(obj);
WriteBarrierMode mode = new_elms->GetWriteBarrierMode();
// Fill out the new array with old elements.
for (int i = 0; i < len; i++) new_elms->set(i, elms->get(i), mode);
// Add the provided values.
for (int index = 0; index < __argc__ - 1; index++) {
new_elms->set(index + len, BUILTIN_ARG(index+1), mode);
}
// Set the new backing storage.
array->set_elements(new_elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length), SKIP_WRITE_BARRIER);
return array->length();
}
BUILTIN_END
BUILTIN(ArrayPop) {
JSArray* array = JSArray::cast(*receiver);
ASSERT(array->HasFastElements());
Object* undefined = Heap::undefined_value();
int len = Smi::cast(array->length())->value();
if (len == 0) return undefined;
// Get top element
FixedArray* elms = FixedArray::cast(array->elements());
Object* top = elms->get(len - 1);
// Set the length.
array->set_length(Smi::FromInt(len - 1), SKIP_WRITE_BARRIER);
if (!top->IsTheHole()) {
// Delete the top element.
elms->set_the_hole(len - 1);
return top;
}
// Remember to check the prototype chain.
JSFunction* array_function =
Top::context()->global_context()->array_function();
JSObject* prototype = JSObject::cast(array_function->prototype());
top = prototype->GetElement(len - 1);
return top;
}
BUILTIN_END
// -----------------------------------------------------------------------------
//
// Returns the holder JSObject if the function can legally be called
// with this receiver. Returns Heap::null_value() if the call is
// illegal. Any arguments that don't fit the expected type is
// overwritten with undefined. Arguments that do fit the expected
// type is overwritten with the object in the prototype chain that
// actually has that type.
static inline Object* TypeCheck(int argc,
Object** argv,
FunctionTemplateInfo* info) {
Object* recv = argv[0];
Object* sig_obj = info->signature();
if (sig_obj->IsUndefined()) return recv;
SignatureInfo* sig = SignatureInfo::cast(sig_obj);
// If necessary, check the receiver
Object* recv_type = sig->receiver();
Object* holder = recv;
if (!recv_type->IsUndefined()) {
for (; holder != Heap::null_value(); holder = holder->GetPrototype()) {
if (holder->IsInstanceOf(FunctionTemplateInfo::cast(recv_type))) {
break;
}
}
if (holder == Heap::null_value()) return holder;
}
Object* args_obj = sig->args();
// If there is no argument signature we're done
if (args_obj->IsUndefined()) return holder;
FixedArray* args = FixedArray::cast(args_obj);
int length = args->length();
if (argc <= length) length = argc - 1;
for (int i = 0; i < length; i++) {
Object* argtype = args->get(i);
if (argtype->IsUndefined()) continue;
Object** arg = &argv[-1 - i];
Object* current = *arg;
for (; current != Heap::null_value(); current = current->GetPrototype()) {
if (current->IsInstanceOf(FunctionTemplateInfo::cast(argtype))) {
*arg = current;
break;
}
}
if (current == Heap::null_value()) *arg = Heap::undefined_value();
}
return holder;
}
BUILTIN(HandleApiCall) {
HandleScope scope;
bool is_construct = CalledAsConstructor();
// TODO(1238487): This is not nice. We need to get rid of this
// kludgy behavior and start handling API calls in a more direct
// way - maybe compile specialized stubs lazily?.
Handle<JSFunction> function =
Handle<JSFunction>(JSFunction::cast(Builtins::builtin_passed_function));
if (is_construct) {
Handle<FunctionTemplateInfo> desc =
Handle<FunctionTemplateInfo>(
FunctionTemplateInfo::cast(function->shared()->function_data()));
bool pending_exception = false;
Factory::ConfigureInstance(desc, Handle<JSObject>::cast(receiver),
&pending_exception);
ASSERT(Top::has_pending_exception() == pending_exception);
if (pending_exception) return Failure::Exception();
}
FunctionTemplateInfo* fun_data =
FunctionTemplateInfo::cast(function->shared()->function_data());
Object* raw_holder = TypeCheck(__argc__, __argv__, fun_data);
if (raw_holder->IsNull()) {
// This function cannot be called with the given receiver. Abort!
Handle<Object> obj =
Factory::NewTypeError("illegal_invocation", HandleVector(&function, 1));
return Top::Throw(*obj);
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined()) {
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::InvocationCallback callback =
v8::ToCData<v8::InvocationCallback>(callback_obj);
Object* data_obj = call_data->data();
Object* result;
v8::Local<v8::Object> self =
v8::Utils::ToLocal(Handle<JSObject>::cast(receiver));
Handle<Object> data_handle(data_obj);
v8::Local<v8::Value> data = v8::Utils::ToLocal(data_handle);
ASSERT(raw_holder->IsJSObject());
v8::Local<v8::Function> callee = v8::Utils::ToLocal(function);
Handle<JSObject> holder_handle(JSObject::cast(raw_holder));
v8::Local<v8::Object> holder = v8::Utils::ToLocal(holder_handle);
LOG(ApiObjectAccess("call", JSObject::cast(*receiver)));
v8::Arguments args = v8::ImplementationUtilities::NewArguments(
data,
holder,
callee,
is_construct,
reinterpret_cast<void**>(__argv__ - 1),
__argc__ - 1);
v8::Handle<v8::Value> value;
{
// Leaving JavaScript.
VMState state(EXTERNAL);
value = callback(args);
}
if (value.IsEmpty()) {
result = Heap::undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
}
RETURN_IF_SCHEDULED_EXCEPTION();
if (!is_construct || result->IsJSObject()) return result;
}
return *receiver;
}
BUILTIN_END
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
static Object* HandleApiCallAsFunctionOrConstructor(bool is_construct_call,
int __argc__,
Object** __argv__) {
// Non-functions are never called as constructors. Even if this is an object
// called as a constructor the delegate call is not a construct call.
ASSERT(!CalledAsConstructor());
Handle<Object> receiver(&__argv__[0]);
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Get the invocation callback from the function descriptor that was
// used to create the called object.
ASSERT(obj->map()->has_instance_call_handler());
JSFunction* constructor = JSFunction::cast(obj->map()->constructor());
Object* template_info = constructor->shared()->function_data();
Object* handler =
FunctionTemplateInfo::cast(template_info)->instance_call_handler();
ASSERT(!handler->IsUndefined());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::InvocationCallback callback =
v8::ToCData<v8::InvocationCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* data_obj = call_data->data();
Object* result;
{ HandleScope scope;
v8::Local<v8::Object> self =
v8::Utils::ToLocal(Handle<JSObject>::cast(receiver));
Handle<Object> data_handle(data_obj);
v8::Local<v8::Value> data = v8::Utils::ToLocal(data_handle);
Handle<JSFunction> callee_handle(constructor);
v8::Local<v8::Function> callee = v8::Utils::ToLocal(callee_handle);
LOG(ApiObjectAccess("call non-function", JSObject::cast(*receiver)));
v8::Arguments args = v8::ImplementationUtilities::NewArguments(
data,
self,
callee,
is_construct_call,
reinterpret_cast<void**>(__argv__ - 1),
__argc__ - 1);
v8::Handle<v8::Value> value;
{
// Leaving JavaScript.
VMState state(EXTERNAL);
value = callback(args);
}
if (value.IsEmpty()) {
result = Heap::undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
}
}
// Check for exceptions and return result.
RETURN_IF_SCHEDULED_EXCEPTION();
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(false, __argc__, __argv__);
}
BUILTIN_END
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(true, __argc__, __argv__);
}
BUILTIN_END
// TODO(1238487): This is a nasty hack. We need to improve the way we
// call builtins considerable to get rid of this and the hairy macros
// in builtins.cc.
Object* Builtins::builtin_passed_function;
static void Generate_LoadIC_ArrayLength(MacroAssembler* masm) {
LoadIC::GenerateArrayLength(masm);
}
static void Generate_LoadIC_StringLength(MacroAssembler* masm) {
LoadIC::GenerateStringLength(masm);
}
static void Generate_LoadIC_FunctionPrototype(MacroAssembler* masm) {
LoadIC::GenerateFunctionPrototype(masm);
}
static void Generate_LoadIC_Initialize(MacroAssembler* masm) {
LoadIC::GenerateInitialize(masm);
}
static void Generate_LoadIC_PreMonomorphic(MacroAssembler* masm) {
LoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_LoadIC_Miss(MacroAssembler* masm) {
LoadIC::GenerateMiss(masm);
}
static void Generate_LoadIC_Megamorphic(MacroAssembler* masm) {
LoadIC::GenerateMegamorphic(masm);
}
static void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm);
}
static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) {
KeyedLoadIC::GenerateInitialize(masm);
}
static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm);
}
static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) {
KeyedLoadIC::GenerateGeneric(masm);
}
static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
KeyedLoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_StoreIC_Initialize(MacroAssembler* masm) {
StoreIC::GenerateInitialize(masm);
}
static void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
static void Generate_StoreIC_ExtendStorage(MacroAssembler* masm) {
StoreIC::GenerateExtendStorage(masm);
}
static void Generate_StoreIC_Megamorphic(MacroAssembler* masm) {
StoreIC::GenerateMegamorphic(masm);
}
static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm);
}
static void Generate_KeyedStoreIC_ExtendStorage(MacroAssembler* masm) {
KeyedStoreIC::GenerateExtendStorage(masm);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm);
}
static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateLoadICDebugBreak(masm);
}
static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateStoreICDebugBreak(masm);
}
static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedLoadICDebugBreak(masm);
}
static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedStoreICDebugBreak(masm);
}
static void Generate_ConstructCall_DebugBreak(MacroAssembler* masm) {
Debug::GenerateConstructCallDebugBreak(masm);
}
static void Generate_Return_DebugBreak(MacroAssembler* masm) {
Debug::GenerateReturnDebugBreak(masm);
}
static void Generate_Return_DebugBreakEntry(MacroAssembler* masm) {
Debug::GenerateReturnDebugBreakEntry(masm);
}
static void Generate_StubNoRegisters_DebugBreak(MacroAssembler* masm) {
Debug::GenerateStubNoRegistersDebugBreak(masm);
}
#endif
Object* Builtins::builtins_[builtin_count] = { NULL, };
const char* Builtins::names_[builtin_count] = { NULL, };
#define DEF_ENUM_C(name) FUNCTION_ADDR(Builtin_##name),
Address Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
#define DEF_JS_NAME(name, ignore) #name,
#define DEF_JS_ARGC(ignore, argc) argc,
const char* Builtins::javascript_names_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_NAME)
};
int Builtins::javascript_argc_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_ARGC)
};
#undef DEF_JS_NAME
#undef DEF_JS_ARGC
static bool is_initialized = false;
void Builtins::Setup(bool create_heap_objects) {
ASSERT(!is_initialized);
// Create a scope for the handles in the builtins.
HandleScope scope;
struct BuiltinDesc {
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
};
#define DEF_FUNCTION_PTR_C(name) \
{ FUNCTION_ADDR(Generate_Adaptor), \
FUNCTION_ADDR(Builtin_##name), \
#name, \
c_##name, \
Code::ComputeFlags(Code::BUILTIN) \
},
#define DEF_FUNCTION_PTR_A(name, kind, state) \
{ FUNCTION_ADDR(Generate_##name), \
NULL, \
#name, \
name, \
Code::ComputeFlags(Code::kind, state) \
},
// Define array of pointers to generators and C builtin functions.
static BuiltinDesc functions[] = {
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
// Terminator:
{ NULL, NULL, NULL, builtin_count, static_cast<Code::Flags>(0) }
};
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects.
byte buffer[4*KB];
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
MacroAssembler masm(buffer, sizeof buffer);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int);
Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
g(&masm, functions[i].name);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = functions[i].flags;
Object* code;
{
// During startup it's OK to always allocate and defer GC to later.
// This simplifies things because we don't need to retry.
AlwaysAllocateScope __scope__;
code = Heap::CreateCode(desc, NULL, flags, masm.CodeObject());
if (code->IsFailure()) {
v8::internal::V8::FatalProcessOutOfMemory("CreateCode");
}
}
// Add any unresolved jumps or calls to the fixup list in the
// bootstrapper.
Bootstrapper::AddFixup(Code::cast(code), &masm);
// Log the event and add the code to the builtins array.
LOG(CodeCreateEvent("Builtin", Code::cast(code), functions[i].s_name));
builtins_[i] = code;
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
PrintF("Builtin: %s\n", functions[i].s_name);
Code::cast(code)->Disassemble(functions[i].s_name);
PrintF("\n");
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
is_initialized = true;
}
void Builtins::TearDown() {
is_initialized = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
if (is_initialized) { // may be called during initialization (disassembler!)
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
} } // namespace v8::internal