2011-04-12 08:27:38 +00:00
|
|
|
// Copyright 2011 the V8 project authors. All rights reserved.
|
2014-04-29 06:42:26 +00:00
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file.
|
2008-07-03 15:10:15 +00:00
|
|
|
|
2015-08-20 07:44:00 +00:00
|
|
|
#include "src/conversions.h"
|
|
|
|
|
2010-03-25 14:39:39 +00:00
|
|
|
#include <limits.h>
|
2014-06-20 08:40:11 +00:00
|
|
|
#include <stdarg.h>
|
2013-04-19 13:26:47 +00:00
|
|
|
#include <cmath>
|
2008-07-03 15:10:15 +00:00
|
|
|
|
2016-11-24 10:30:19 +00:00
|
|
|
#include "src/allocation.h"
|
2014-06-03 08:12:43 +00:00
|
|
|
#include "src/assert-scope.h"
|
2015-03-10 19:11:11 +00:00
|
|
|
#include "src/char-predicates-inl.h"
|
2014-06-03 08:12:43 +00:00
|
|
|
#include "src/dtoa.h"
|
|
|
|
#include "src/factory.h"
|
2017-01-27 13:53:13 +00:00
|
|
|
#include "src/handles.h"
|
2017-09-26 21:55:08 +00:00
|
|
|
#include "src/objects-inl.h"
|
2017-09-27 00:39:43 +00:00
|
|
|
#include "src/objects/bigint.h"
|
2014-06-03 08:12:43 +00:00
|
|
|
#include "src/strtod.h"
|
2017-09-26 21:55:08 +00:00
|
|
|
#include "src/unicode-cache-inl.h"
|
2014-06-03 08:12:43 +00:00
|
|
|
#include "src/utils.h"
|
2008-07-03 15:10:15 +00:00
|
|
|
|
2017-07-05 20:08:51 +00:00
|
|
|
#if defined(_STLP_VENDOR_CSTD)
|
2013-04-19 13:26:47 +00:00
|
|
|
// STLPort doesn't import fpclassify into the std namespace.
|
2017-07-05 20:08:51 +00:00
|
|
|
#define FPCLASSIFY_NAMESPACE
|
|
|
|
#else
|
|
|
|
#define FPCLASSIFY_NAMESPACE std
|
2013-04-19 13:26:47 +00:00
|
|
|
#endif
|
|
|
|
|
2009-05-25 10:05:56 +00:00
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
2014-04-28 09:14:24 +00:00
|
|
|
namespace {
|
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
inline double JunkStringValue() {
|
|
|
|
return bit_cast<double, uint64_t>(kQuietNaNMask);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline double SignedZero(bool negative) {
|
|
|
|
return negative ? uint64_to_double(Double::kSignMask) : 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool isDigit(int x, int radix) {
|
|
|
|
return (x >= '0' && x <= '9' && x < '0' + radix) ||
|
|
|
|
(radix > 10 && x >= 'a' && x < 'a' + radix - 10) ||
|
|
|
|
(radix > 10 && x >= 'A' && x < 'A' + radix - 10);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool isBinaryDigit(int x) { return x == '0' || x == '1'; }
|
|
|
|
|
|
|
|
template <class Iterator, class EndMark>
|
|
|
|
bool SubStringEquals(Iterator* current, EndMark end, const char* substring) {
|
|
|
|
DCHECK(**current == *substring);
|
|
|
|
for (substring++; *substring != '\0'; substring++) {
|
|
|
|
++*current;
|
|
|
|
if (*current == end || **current != *substring) return false;
|
|
|
|
}
|
|
|
|
++*current;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns true if a nonspace character has been found and false if the
|
|
|
|
// end was been reached before finding a nonspace character.
|
|
|
|
template <class Iterator, class EndMark>
|
|
|
|
inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, Iterator* current,
|
|
|
|
EndMark end) {
|
|
|
|
while (*current != end) {
|
|
|
|
if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
|
|
|
|
++*current;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
|
|
|
|
template <int radix_log_2, class Iterator, class EndMark>
|
|
|
|
double InternalStringToIntDouble(UnicodeCache* unicode_cache, Iterator current,
|
|
|
|
EndMark end, bool negative,
|
|
|
|
bool allow_trailing_junk) {
|
|
|
|
DCHECK(current != end);
|
|
|
|
|
|
|
|
// Skip leading 0s.
|
|
|
|
while (*current == '0') {
|
|
|
|
++current;
|
|
|
|
if (current == end) return SignedZero(negative);
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t number = 0;
|
|
|
|
int exponent = 0;
|
|
|
|
const int radix = (1 << radix_log_2);
|
|
|
|
|
|
|
|
int lim_0 = '0' + (radix < 10 ? radix : 10);
|
|
|
|
int lim_a = 'a' + (radix - 10);
|
|
|
|
int lim_A = 'A' + (radix - 10);
|
|
|
|
|
|
|
|
do {
|
|
|
|
int digit;
|
|
|
|
if (*current >= '0' && *current < lim_0) {
|
|
|
|
digit = static_cast<char>(*current) - '0';
|
|
|
|
} else if (*current >= 'a' && *current < lim_a) {
|
|
|
|
digit = static_cast<char>(*current) - 'a' + 10;
|
|
|
|
} else if (*current >= 'A' && *current < lim_A) {
|
|
|
|
digit = static_cast<char>(*current) - 'A' + 10;
|
|
|
|
} else {
|
|
|
|
if (allow_trailing_junk ||
|
|
|
|
!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
number = number * radix + digit;
|
|
|
|
int overflow = static_cast<int>(number >> 53);
|
|
|
|
if (overflow != 0) {
|
|
|
|
// Overflow occurred. Need to determine which direction to round the
|
|
|
|
// result.
|
|
|
|
int overflow_bits_count = 1;
|
|
|
|
while (overflow > 1) {
|
|
|
|
overflow_bits_count++;
|
|
|
|
overflow >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
|
|
|
|
int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
|
|
|
|
number >>= overflow_bits_count;
|
|
|
|
exponent = overflow_bits_count;
|
|
|
|
|
|
|
|
bool zero_tail = true;
|
|
|
|
while (true) {
|
|
|
|
++current;
|
|
|
|
if (current == end || !isDigit(*current, radix)) break;
|
|
|
|
zero_tail = zero_tail && *current == '0';
|
|
|
|
exponent += radix_log_2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!allow_trailing_junk &&
|
|
|
|
AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
|
|
|
|
int middle_value = (1 << (overflow_bits_count - 1));
|
|
|
|
if (dropped_bits > middle_value) {
|
|
|
|
number++; // Rounding up.
|
|
|
|
} else if (dropped_bits == middle_value) {
|
|
|
|
// Rounding to even to consistency with decimals: half-way case rounds
|
|
|
|
// up if significant part is odd and down otherwise.
|
|
|
|
if ((number & 1) != 0 || !zero_tail) {
|
|
|
|
number++; // Rounding up.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Rounding up may cause overflow.
|
|
|
|
if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
|
|
|
|
exponent++;
|
|
|
|
number >>= 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
++current;
|
|
|
|
} while (current != end);
|
|
|
|
|
|
|
|
DCHECK(number < ((int64_t)1 << 53));
|
|
|
|
DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);
|
|
|
|
|
|
|
|
if (exponent == 0) {
|
|
|
|
if (negative) {
|
|
|
|
if (number == 0) return -0.0;
|
|
|
|
number = -number;
|
|
|
|
}
|
|
|
|
return static_cast<double>(number);
|
|
|
|
}
|
|
|
|
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_NE(number, 0);
|
2017-09-26 21:55:08 +00:00
|
|
|
return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ES6 18.2.5 parseInt(string, radix) (with NumberParseIntHelper subclass);
|
|
|
|
// https://tc39.github.io/proposal-bigint/#sec-bigint-parseint-string-radix
|
|
|
|
// (with BigIntParseIntHelper subclass).
|
|
|
|
class StringToIntHelper {
|
2014-04-28 09:14:24 +00:00
|
|
|
public:
|
2017-09-26 21:55:08 +00:00
|
|
|
StringToIntHelper(Isolate* isolate, Handle<String> subject, int radix)
|
|
|
|
: isolate_(isolate), subject_(subject), radix_(radix) {
|
|
|
|
DCHECK(subject->IsFlat());
|
|
|
|
}
|
2017-10-13 18:23:53 +00:00
|
|
|
|
|
|
|
// Used for parsing BigInt literals, where the input is a Zone-allocated
|
|
|
|
// buffer of one-byte digits, along with an optional radix prefix.
|
|
|
|
StringToIntHelper(Isolate* isolate, const uint8_t* subject, int length)
|
|
|
|
: isolate_(isolate), raw_one_byte_subject_(subject), length_(length) {}
|
2017-09-26 21:55:08 +00:00
|
|
|
virtual ~StringToIntHelper() {}
|
2014-04-28 09:14:24 +00:00
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
protected:
|
|
|
|
// Subclasses must implement these:
|
|
|
|
virtual void AllocateResult() = 0;
|
|
|
|
virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) = 0;
|
2014-04-28 09:14:24 +00:00
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
// Subclasses must call this to do all the work.
|
|
|
|
void ParseInt();
|
|
|
|
|
|
|
|
// Subclasses may override this.
|
|
|
|
virtual void HandleSpecialCases() {}
|
|
|
|
|
2017-10-13 18:23:53 +00:00
|
|
|
bool IsOneByte() const {
|
|
|
|
return raw_one_byte_subject_ != nullptr ||
|
|
|
|
subject_->IsOneByteRepresentationUnderneath();
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector<const uint8_t> GetOneByteVector() {
|
|
|
|
if (raw_one_byte_subject_ != nullptr) {
|
|
|
|
return Vector<const uint8_t>(raw_one_byte_subject_, length_);
|
|
|
|
}
|
|
|
|
return subject_->GetFlatContent().ToOneByteVector();
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector<const uc16> GetTwoByteVector() {
|
|
|
|
return subject_->GetFlatContent().ToUC16Vector();
|
|
|
|
}
|
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
// Subclasses get access to internal state:
|
2017-10-19 17:39:28 +00:00
|
|
|
enum State { kRunning, kError, kJunk, kEmpty, kZero, kDone };
|
2017-09-26 21:55:08 +00:00
|
|
|
|
|
|
|
Isolate* isolate() { return isolate_; }
|
|
|
|
int radix() { return radix_; }
|
|
|
|
int cursor() { return cursor_; }
|
|
|
|
int length() { return length_; }
|
|
|
|
bool negative() { return negative_; }
|
|
|
|
State state() { return state_; }
|
|
|
|
void set_state(State state) { state_ = state; }
|
2014-04-28 09:14:24 +00:00
|
|
|
|
2017-10-13 18:23:53 +00:00
|
|
|
bool AllowOctalRadixPrefix() const {
|
|
|
|
return raw_one_byte_subject_ != nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool AllowBinaryRadixPrefix() const {
|
|
|
|
return raw_one_byte_subject_ != nullptr;
|
|
|
|
}
|
|
|
|
|
2014-04-28 09:14:24 +00:00
|
|
|
private:
|
2017-09-26 21:55:08 +00:00
|
|
|
template <class Char>
|
|
|
|
void DetectRadixInternal(Char current, int length);
|
|
|
|
template <class Char>
|
|
|
|
void ParseInternal(Char start);
|
|
|
|
|
|
|
|
Isolate* isolate_;
|
|
|
|
Handle<String> subject_;
|
2017-10-13 18:23:53 +00:00
|
|
|
const uint8_t* raw_one_byte_subject_ = nullptr;
|
|
|
|
int radix_ = 0;
|
2017-09-26 21:55:08 +00:00
|
|
|
int cursor_ = 0;
|
|
|
|
int length_ = 0;
|
|
|
|
bool negative_ = false;
|
|
|
|
bool leading_zero_ = false;
|
|
|
|
State state_ = kRunning;
|
2014-04-28 09:14:24 +00:00
|
|
|
};
|
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
void StringToIntHelper::ParseInt() {
|
|
|
|
{
|
|
|
|
DisallowHeapAllocation no_gc;
|
2017-10-13 18:23:53 +00:00
|
|
|
if (IsOneByte()) {
|
|
|
|
Vector<const uint8_t> vector = GetOneByteVector();
|
2017-09-26 21:55:08 +00:00
|
|
|
DetectRadixInternal(vector.start(), vector.length());
|
|
|
|
} else {
|
2017-10-13 18:23:53 +00:00
|
|
|
Vector<const uc16> vector = GetTwoByteVector();
|
2017-09-26 21:55:08 +00:00
|
|
|
DetectRadixInternal(vector.start(), vector.length());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (state_ != kRunning) return;
|
|
|
|
AllocateResult();
|
|
|
|
HandleSpecialCases();
|
|
|
|
if (state_ != kRunning) return;
|
|
|
|
{
|
|
|
|
DisallowHeapAllocation no_gc;
|
2017-10-13 18:23:53 +00:00
|
|
|
if (IsOneByte()) {
|
|
|
|
Vector<const uint8_t> vector = GetOneByteVector();
|
2017-09-26 21:55:08 +00:00
|
|
|
DCHECK_EQ(length_, vector.length());
|
|
|
|
ParseInternal(vector.start());
|
|
|
|
} else {
|
2017-10-13 18:23:53 +00:00
|
|
|
Vector<const uc16> vector = GetTwoByteVector();
|
2017-09-26 21:55:08 +00:00
|
|
|
DCHECK_EQ(length_, vector.length());
|
|
|
|
ParseInternal(vector.start());
|
|
|
|
}
|
|
|
|
}
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_NE(state_, kRunning);
|
2017-09-26 21:55:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class Char>
|
|
|
|
void StringToIntHelper::DetectRadixInternal(Char current, int length) {
|
|
|
|
Char start = current;
|
|
|
|
length_ = length;
|
|
|
|
Char end = start + length;
|
|
|
|
UnicodeCache* unicode_cache = isolate_->unicode_cache();
|
2014-04-28 09:14:24 +00:00
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
if (!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
2017-10-19 17:39:28 +00:00
|
|
|
return set_state(kEmpty);
|
2017-09-26 21:55:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (*current == '+') {
|
|
|
|
// Ignore leading sign; skip following spaces.
|
|
|
|
++current;
|
|
|
|
if (current == end) {
|
|
|
|
return set_state(kJunk);
|
|
|
|
}
|
|
|
|
} else if (*current == '-') {
|
|
|
|
++current;
|
|
|
|
if (current == end) {
|
|
|
|
return set_state(kJunk);
|
|
|
|
}
|
|
|
|
negative_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (radix_ == 0) {
|
|
|
|
// Radix detection.
|
|
|
|
radix_ = 10;
|
|
|
|
if (*current == '0') {
|
|
|
|
++current;
|
|
|
|
if (current == end) return set_state(kZero);
|
|
|
|
if (*current == 'x' || *current == 'X') {
|
|
|
|
radix_ = 16;
|
|
|
|
++current;
|
|
|
|
if (current == end) return set_state(kJunk);
|
2017-10-13 18:23:53 +00:00
|
|
|
} else if (AllowOctalRadixPrefix() &&
|
|
|
|
(*current == 'o' || *current == 'O')) {
|
|
|
|
radix_ = 8;
|
|
|
|
++current;
|
|
|
|
DCHECK(current != end);
|
|
|
|
} else if (AllowBinaryRadixPrefix() &&
|
|
|
|
(*current == 'b' || *current == 'B')) {
|
|
|
|
radix_ = 2;
|
|
|
|
++current;
|
|
|
|
DCHECK(current != end);
|
2017-09-26 21:55:08 +00:00
|
|
|
} else {
|
|
|
|
leading_zero_ = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (radix_ == 16) {
|
|
|
|
if (*current == '0') {
|
|
|
|
// Allow "0x" prefix.
|
|
|
|
++current;
|
|
|
|
if (current == end) return set_state(kZero);
|
|
|
|
if (*current == 'x' || *current == 'X') {
|
|
|
|
++current;
|
|
|
|
if (current == end) return set_state(kJunk);
|
|
|
|
} else {
|
|
|
|
leading_zero_ = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Skip leading zeros.
|
|
|
|
while (*current == '0') {
|
|
|
|
leading_zero_ = true;
|
|
|
|
++current;
|
|
|
|
if (current == end) return set_state(kZero);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!leading_zero_ && !isDigit(*current, radix_)) {
|
|
|
|
return set_state(kJunk);
|
|
|
|
}
|
|
|
|
|
|
|
|
DCHECK(radix_ >= 2 && radix_ <= 36);
|
|
|
|
STATIC_ASSERT(String::kMaxLength <= INT_MAX);
|
|
|
|
cursor_ = static_cast<int>(current - start);
|
2014-04-28 09:14:24 +00:00
|
|
|
}
|
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
template <class Char>
|
|
|
|
void StringToIntHelper::ParseInternal(Char start) {
|
|
|
|
Char current = start + cursor_;
|
|
|
|
Char end = start + length_;
|
|
|
|
|
|
|
|
// The following code causes accumulating rounding error for numbers greater
|
|
|
|
// than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
|
|
|
|
// 16, or 32, then mathInt may be an implementation-dependent approximation to
|
|
|
|
// the mathematical integer value" (15.1.2.2).
|
|
|
|
|
|
|
|
int lim_0 = '0' + (radix_ < 10 ? radix_ : 10);
|
|
|
|
int lim_a = 'a' + (radix_ - 10);
|
|
|
|
int lim_A = 'A' + (radix_ - 10);
|
|
|
|
|
|
|
|
// NOTE: The code for computing the value may seem a bit complex at
|
|
|
|
// first glance. It is structured to use 32-bit multiply-and-add
|
|
|
|
// loops as long as possible to avoid losing precision.
|
|
|
|
|
|
|
|
bool done = false;
|
|
|
|
do {
|
|
|
|
// Parse the longest part of the string starting at {current}
|
|
|
|
// possible while keeping the multiplier, and thus the part
|
|
|
|
// itself, within 32 bits.
|
|
|
|
uint32_t part = 0, multiplier = 1;
|
|
|
|
while (true) {
|
|
|
|
uint32_t d;
|
|
|
|
if (*current >= '0' && *current < lim_0) {
|
|
|
|
d = *current - '0';
|
|
|
|
} else if (*current >= 'a' && *current < lim_a) {
|
|
|
|
d = *current - 'a' + 10;
|
|
|
|
} else if (*current >= 'A' && *current < lim_A) {
|
|
|
|
d = *current - 'A' + 10;
|
|
|
|
} else {
|
|
|
|
done = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update the value of the part as long as the multiplier fits
|
|
|
|
// in 32 bits. When we can't guarantee that the next iteration
|
|
|
|
// will not overflow the multiplier, we stop parsing the part
|
|
|
|
// by leaving the loop.
|
|
|
|
const uint32_t kMaximumMultiplier = 0xffffffffU / 36;
|
|
|
|
uint32_t m = multiplier * static_cast<uint32_t>(radix_);
|
|
|
|
if (m > kMaximumMultiplier) break;
|
|
|
|
part = part * radix_ + d;
|
|
|
|
multiplier = m;
|
|
|
|
DCHECK(multiplier > part);
|
|
|
|
|
|
|
|
++current;
|
|
|
|
if (current == end) {
|
|
|
|
done = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update the value and skip the part in the string.
|
|
|
|
ResultMultiplyAdd(multiplier, part);
|
|
|
|
} while (!done);
|
|
|
|
|
|
|
|
return set_state(kDone);
|
2014-04-28 09:14:24 +00:00
|
|
|
}
|
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
class NumberParseIntHelper : public StringToIntHelper {
|
|
|
|
public:
|
|
|
|
NumberParseIntHelper(Isolate* isolate, Handle<String> string, int radix)
|
|
|
|
: StringToIntHelper(isolate, string, radix) {}
|
|
|
|
|
|
|
|
double GetResult() {
|
|
|
|
ParseInt();
|
|
|
|
switch (state()) {
|
|
|
|
case kJunk:
|
2017-10-19 17:39:28 +00:00
|
|
|
case kEmpty:
|
2017-09-26 21:55:08 +00:00
|
|
|
return JunkStringValue();
|
|
|
|
case kZero:
|
|
|
|
return SignedZero(negative());
|
|
|
|
case kDone:
|
|
|
|
return negative() ? -result_ : result_;
|
|
|
|
case kError:
|
|
|
|
case kRunning:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
2014-04-28 09:14:24 +00:00
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
protected:
|
|
|
|
virtual void AllocateResult() {}
|
|
|
|
virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
|
|
|
|
result_ = result_ * multiplier + part;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
virtual void HandleSpecialCases() {
|
|
|
|
bool is_power_of_two = base::bits::IsPowerOfTwo(radix());
|
|
|
|
if (!is_power_of_two && radix() != 10) return;
|
|
|
|
DisallowHeapAllocation no_gc;
|
2017-10-13 18:23:53 +00:00
|
|
|
if (IsOneByte()) {
|
|
|
|
Vector<const uint8_t> vector = GetOneByteVector();
|
2017-09-26 21:55:08 +00:00
|
|
|
DCHECK_EQ(length(), vector.length());
|
|
|
|
result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
|
|
|
|
: HandleBaseTenCase(vector.start());
|
|
|
|
} else {
|
2017-10-13 18:23:53 +00:00
|
|
|
Vector<const uc16> vector = GetTwoByteVector();
|
2017-09-26 21:55:08 +00:00
|
|
|
DCHECK_EQ(length(), vector.length());
|
|
|
|
result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
|
|
|
|
: HandleBaseTenCase(vector.start());
|
|
|
|
}
|
|
|
|
set_state(kDone);
|
2014-04-28 09:14:24 +00:00
|
|
|
}
|
2017-09-26 21:55:08 +00:00
|
|
|
|
|
|
|
template <class Char>
|
|
|
|
double HandlePowerOfTwoCase(Char start) {
|
|
|
|
Char current = start + cursor();
|
|
|
|
Char end = start + length();
|
|
|
|
UnicodeCache* unicode_cache = isolate()->unicode_cache();
|
|
|
|
const bool allow_trailing_junk = true;
|
|
|
|
// GetResult() will take care of the sign bit, so ignore it for now.
|
|
|
|
const bool negative = false;
|
|
|
|
switch (radix()) {
|
|
|
|
case 2:
|
|
|
|
return InternalStringToIntDouble<1>(unicode_cache, current, end,
|
|
|
|
negative, allow_trailing_junk);
|
|
|
|
case 4:
|
|
|
|
return InternalStringToIntDouble<2>(unicode_cache, current, end,
|
|
|
|
negative, allow_trailing_junk);
|
|
|
|
case 8:
|
|
|
|
return InternalStringToIntDouble<3>(unicode_cache, current, end,
|
|
|
|
negative, allow_trailing_junk);
|
|
|
|
|
|
|
|
case 16:
|
|
|
|
return InternalStringToIntDouble<4>(unicode_cache, current, end,
|
|
|
|
negative, allow_trailing_junk);
|
|
|
|
|
|
|
|
case 32:
|
|
|
|
return InternalStringToIntDouble<5>(unicode_cache, current, end,
|
|
|
|
negative, allow_trailing_junk);
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class Char>
|
|
|
|
double HandleBaseTenCase(Char start) {
|
|
|
|
// Parsing with strtod.
|
|
|
|
Char current = start + cursor();
|
|
|
|
Char end = start + length();
|
|
|
|
const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308.
|
|
|
|
// The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
|
|
|
|
// end.
|
|
|
|
const int kBufferSize = kMaxSignificantDigits + 2;
|
|
|
|
char buffer[kBufferSize];
|
|
|
|
int buffer_pos = 0;
|
|
|
|
while (*current >= '0' && *current <= '9') {
|
|
|
|
if (buffer_pos <= kMaxSignificantDigits) {
|
|
|
|
// If the number has more than kMaxSignificantDigits it will be parsed
|
|
|
|
// as infinity.
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_LT(buffer_pos, kBufferSize);
|
2017-09-26 21:55:08 +00:00
|
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
|
|
}
|
|
|
|
++current;
|
|
|
|
if (current == end) break;
|
|
|
|
}
|
|
|
|
|
|
|
|
SLOW_DCHECK(buffer_pos < kBufferSize);
|
|
|
|
buffer[buffer_pos] = '\0';
|
|
|
|
Vector<const char> buffer_vector(buffer, buffer_pos);
|
|
|
|
return Strtod(buffer_vector, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
double result_ = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Converts a string to a double value. Assumes the Iterator supports
|
|
|
|
// the following operations:
|
|
|
|
// 1. current == end (other ops are not allowed), current != end.
|
|
|
|
// 2. *current - gets the current character in the sequence.
|
|
|
|
// 3. ++current (advances the position).
|
|
|
|
template <class Iterator, class EndMark>
|
|
|
|
double InternalStringToDouble(UnicodeCache* unicode_cache, Iterator current,
|
|
|
|
EndMark end, int flags, double empty_string_val) {
|
|
|
|
// To make sure that iterator dereferencing is valid the following
|
|
|
|
// convention is used:
|
|
|
|
// 1. Each '++current' statement is followed by check for equality to 'end'.
|
|
|
|
// 2. If AdvanceToNonspace returned false then current == end.
|
|
|
|
// 3. If 'current' becomes be equal to 'end' the function returns or goes to
|
|
|
|
// 'parsing_done'.
|
|
|
|
// 4. 'current' is not dereferenced after the 'parsing_done' label.
|
|
|
|
// 5. Code before 'parsing_done' may rely on 'current != end'.
|
|
|
|
if (!AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
|
|
return empty_string_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
|
|
|
|
|
|
|
|
// Maximum number of significant digits in decimal representation.
|
|
|
|
// The longest possible double in decimal representation is
|
|
|
|
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
|
|
|
|
// (768 digits). If we parse a number whose first digits are equal to a
|
|
|
|
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
|
|
|
|
// must be rounded to the bigger one unless the tail consists of zeros, so
|
|
|
|
// we don't need to preserve all the digits.
|
|
|
|
const int kMaxSignificantDigits = 772;
|
|
|
|
|
|
|
|
// The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
|
|
|
|
const int kBufferSize = kMaxSignificantDigits + 10;
|
|
|
|
char buffer[kBufferSize]; // NOLINT: size is known at compile time.
|
|
|
|
int buffer_pos = 0;
|
|
|
|
|
|
|
|
// Exponent will be adjusted if insignificant digits of the integer part
|
|
|
|
// or insignificant leading zeros of the fractional part are dropped.
|
|
|
|
int exponent = 0;
|
|
|
|
int significant_digits = 0;
|
|
|
|
int insignificant_digits = 0;
|
|
|
|
bool nonzero_digit_dropped = false;
|
|
|
|
|
|
|
|
enum Sign { NONE, NEGATIVE, POSITIVE };
|
|
|
|
|
|
|
|
Sign sign = NONE;
|
|
|
|
|
|
|
|
if (*current == '+') {
|
|
|
|
// Ignore leading sign.
|
|
|
|
++current;
|
|
|
|
if (current == end) return JunkStringValue();
|
|
|
|
sign = POSITIVE;
|
|
|
|
} else if (*current == '-') {
|
|
|
|
++current;
|
|
|
|
if (current == end) return JunkStringValue();
|
|
|
|
sign = NEGATIVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char kInfinityString[] = "Infinity";
|
|
|
|
if (*current == kInfinityString[0]) {
|
|
|
|
if (!SubStringEquals(¤t, end, kInfinityString)) {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!allow_trailing_junk &&
|
|
|
|
AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_EQ(buffer_pos, 0);
|
2017-09-26 21:55:08 +00:00
|
|
|
return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool leading_zero = false;
|
|
|
|
if (*current == '0') {
|
|
|
|
++current;
|
|
|
|
if (current == end) return SignedZero(sign == NEGATIVE);
|
|
|
|
|
|
|
|
leading_zero = true;
|
|
|
|
|
|
|
|
// It could be hexadecimal value.
|
|
|
|
if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
|
|
|
|
++current;
|
|
|
|
if (current == end || !isDigit(*current, 16) || sign != NONE) {
|
|
|
|
return JunkStringValue(); // "0x".
|
|
|
|
}
|
|
|
|
|
|
|
|
return InternalStringToIntDouble<4>(unicode_cache, current, end, false,
|
|
|
|
allow_trailing_junk);
|
|
|
|
|
|
|
|
// It could be an explicit octal value.
|
|
|
|
} else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
|
|
|
|
++current;
|
|
|
|
if (current == end || !isDigit(*current, 8) || sign != NONE) {
|
|
|
|
return JunkStringValue(); // "0o".
|
|
|
|
}
|
|
|
|
|
|
|
|
return InternalStringToIntDouble<3>(unicode_cache, current, end, false,
|
|
|
|
allow_trailing_junk);
|
|
|
|
|
|
|
|
// It could be a binary value.
|
|
|
|
} else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
|
|
|
|
++current;
|
|
|
|
if (current == end || !isBinaryDigit(*current) || sign != NONE) {
|
|
|
|
return JunkStringValue(); // "0b".
|
|
|
|
}
|
|
|
|
|
|
|
|
return InternalStringToIntDouble<1>(unicode_cache, current, end, false,
|
|
|
|
allow_trailing_junk);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ignore leading zeros in the integer part.
|
|
|
|
while (*current == '0') {
|
|
|
|
++current;
|
|
|
|
if (current == end) return SignedZero(sign == NEGATIVE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
|
|
|
|
|
|
|
|
// Copy significant digits of the integer part (if any) to the buffer.
|
|
|
|
while (*current >= '0' && *current <= '9') {
|
|
|
|
if (significant_digits < kMaxSignificantDigits) {
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_LT(buffer_pos, kBufferSize);
|
2017-09-26 21:55:08 +00:00
|
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
|
|
significant_digits++;
|
|
|
|
// Will later check if it's an octal in the buffer.
|
|
|
|
} else {
|
|
|
|
insignificant_digits++; // Move the digit into the exponential part.
|
|
|
|
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
|
|
|
}
|
|
|
|
octal = octal && *current < '8';
|
|
|
|
++current;
|
|
|
|
if (current == end) goto parsing_done;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (significant_digits == 0) {
|
|
|
|
octal = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*current == '.') {
|
|
|
|
if (octal && !allow_trailing_junk) return JunkStringValue();
|
|
|
|
if (octal) goto parsing_done;
|
|
|
|
|
|
|
|
++current;
|
|
|
|
if (current == end) {
|
|
|
|
if (significant_digits == 0 && !leading_zero) {
|
|
|
|
return JunkStringValue();
|
|
|
|
} else {
|
|
|
|
goto parsing_done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (significant_digits == 0) {
|
|
|
|
// octal = false;
|
|
|
|
// Integer part consists of 0 or is absent. Significant digits start after
|
|
|
|
// leading zeros (if any).
|
|
|
|
while (*current == '0') {
|
|
|
|
++current;
|
|
|
|
if (current == end) return SignedZero(sign == NEGATIVE);
|
|
|
|
exponent--; // Move this 0 into the exponent.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// There is a fractional part. We don't emit a '.', but adjust the exponent
|
|
|
|
// instead.
|
|
|
|
while (*current >= '0' && *current <= '9') {
|
|
|
|
if (significant_digits < kMaxSignificantDigits) {
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_LT(buffer_pos, kBufferSize);
|
2017-09-26 21:55:08 +00:00
|
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
|
|
significant_digits++;
|
|
|
|
exponent--;
|
|
|
|
} else {
|
|
|
|
// Ignore insignificant digits in the fractional part.
|
|
|
|
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
|
|
|
}
|
|
|
|
++current;
|
|
|
|
if (current == end) goto parsing_done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!leading_zero && exponent == 0 && significant_digits == 0) {
|
|
|
|
// If leading_zeros is true then the string contains zeros.
|
|
|
|
// If exponent < 0 then string was [+-]\.0*...
|
|
|
|
// If significant_digits != 0 the string is not equal to 0.
|
|
|
|
// Otherwise there are no digits in the string.
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Parse exponential part.
|
|
|
|
if (*current == 'e' || *current == 'E') {
|
|
|
|
if (octal) return JunkStringValue();
|
|
|
|
++current;
|
|
|
|
if (current == end) {
|
|
|
|
if (allow_trailing_junk) {
|
|
|
|
goto parsing_done;
|
|
|
|
} else {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
char sign = '+';
|
|
|
|
if (*current == '+' || *current == '-') {
|
|
|
|
sign = static_cast<char>(*current);
|
|
|
|
++current;
|
|
|
|
if (current == end) {
|
|
|
|
if (allow_trailing_junk) {
|
|
|
|
goto parsing_done;
|
|
|
|
} else {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (current == end || *current < '0' || *current > '9') {
|
|
|
|
if (allow_trailing_junk) {
|
|
|
|
goto parsing_done;
|
|
|
|
} else {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const int max_exponent = INT_MAX / 2;
|
|
|
|
DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
|
|
|
|
int num = 0;
|
|
|
|
do {
|
|
|
|
// Check overflow.
|
|
|
|
int digit = *current - '0';
|
|
|
|
if (num >= max_exponent / 10 &&
|
|
|
|
!(num == max_exponent / 10 && digit <= max_exponent % 10)) {
|
|
|
|
num = max_exponent;
|
|
|
|
} else {
|
|
|
|
num = num * 10 + digit;
|
|
|
|
}
|
|
|
|
++current;
|
|
|
|
} while (current != end && *current >= '0' && *current <= '9');
|
|
|
|
|
|
|
|
exponent += (sign == '-' ? -num : num);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!allow_trailing_junk && AdvanceToNonspace(unicode_cache, ¤t, end)) {
|
|
|
|
return JunkStringValue();
|
|
|
|
}
|
|
|
|
|
|
|
|
parsing_done:
|
|
|
|
exponent += insignificant_digits;
|
|
|
|
|
|
|
|
if (octal) {
|
|
|
|
return InternalStringToIntDouble<3>(unicode_cache, buffer,
|
|
|
|
buffer + buffer_pos, sign == NEGATIVE,
|
|
|
|
allow_trailing_junk);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nonzero_digit_dropped) {
|
|
|
|
buffer[buffer_pos++] = '1';
|
|
|
|
exponent--;
|
|
|
|
}
|
|
|
|
|
|
|
|
SLOW_DCHECK(buffer_pos < kBufferSize);
|
|
|
|
buffer[buffer_pos] = '\0';
|
|
|
|
|
|
|
|
double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
|
|
|
|
return (sign == NEGATIVE) ? -converted : converted;
|
2014-04-28 09:14:24 +00:00
|
|
|
}
|
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
} // namespace
|
2014-04-28 09:14:24 +00:00
|
|
|
|
2011-04-12 08:27:38 +00:00
|
|
|
double StringToDouble(UnicodeCache* unicode_cache,
|
|
|
|
const char* str, int flags, double empty_string_val) {
|
2013-10-28 09:39:00 +00:00
|
|
|
// We cast to const uint8_t* here to avoid instantiating the
|
|
|
|
// InternalStringToDouble() template for const char* as well.
|
|
|
|
const uint8_t* start = reinterpret_cast<const uint8_t*>(str);
|
|
|
|
const uint8_t* end = start + StrLength(str);
|
|
|
|
return InternalStringToDouble(unicode_cache, start, end, flags,
|
2011-03-18 20:35:07 +00:00
|
|
|
empty_string_val);
|
2008-07-03 15:10:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-04-12 08:27:38 +00:00
|
|
|
double StringToDouble(UnicodeCache* unicode_cache,
|
2014-04-11 07:27:25 +00:00
|
|
|
Vector<const uint8_t> str,
|
2010-08-24 10:53:44 +00:00
|
|
|
int flags,
|
|
|
|
double empty_string_val) {
|
2013-10-28 09:39:00 +00:00
|
|
|
// We cast to const uint8_t* here to avoid instantiating the
|
|
|
|
// InternalStringToDouble() template for const char* as well.
|
|
|
|
const uint8_t* start = reinterpret_cast<const uint8_t*>(str.start());
|
|
|
|
const uint8_t* end = start + str.length();
|
|
|
|
return InternalStringToDouble(unicode_cache, start, end, flags,
|
2011-03-18 20:35:07 +00:00
|
|
|
empty_string_val);
|
2010-08-24 10:53:44 +00:00
|
|
|
}
|
|
|
|
|
2013-10-28 09:39:00 +00:00
|
|
|
|
2011-05-24 12:16:23 +00:00
|
|
|
double StringToDouble(UnicodeCache* unicode_cache,
|
|
|
|
Vector<const uc16> str,
|
|
|
|
int flags,
|
|
|
|
double empty_string_val) {
|
|
|
|
const uc16* end = str.start() + str.length();
|
|
|
|
return InternalStringToDouble(unicode_cache, str.start(), end, flags,
|
|
|
|
empty_string_val);
|
|
|
|
}
|
|
|
|
|
2017-09-26 21:55:08 +00:00
|
|
|
double StringToInt(Isolate* isolate, Handle<String> string, int radix) {
|
|
|
|
NumberParseIntHelper helper(isolate, string, radix);
|
|
|
|
return helper.GetResult();
|
2014-04-11 07:27:25 +00:00
|
|
|
}
|
|
|
|
|
2017-09-27 00:39:43 +00:00
|
|
|
class BigIntParseIntHelper : public StringToIntHelper {
|
|
|
|
public:
|
2017-10-19 17:39:28 +00:00
|
|
|
// Configures what to return for empty or whitespace-only input strings.
|
|
|
|
enum class EmptyStringResult { kSyntaxError, kZero, kUnreachable };
|
|
|
|
|
2017-10-13 18:23:53 +00:00
|
|
|
// Used for BigInt.parseInt API, where the input is a Heap-allocated String.
|
2017-10-19 17:39:28 +00:00
|
|
|
BigIntParseIntHelper(Isolate* isolate, Handle<String> string, int radix,
|
2017-10-25 18:07:04 +00:00
|
|
|
EmptyStringResult empty_string_result,
|
|
|
|
ShouldThrow should_throw)
|
2017-10-19 17:39:28 +00:00
|
|
|
: StringToIntHelper(isolate, string, radix),
|
2017-10-25 18:07:04 +00:00
|
|
|
empty_string_result_(empty_string_result),
|
|
|
|
should_throw_(should_throw) {}
|
2017-09-27 00:39:43 +00:00
|
|
|
|
2017-10-13 18:23:53 +00:00
|
|
|
// Used for parsing BigInt literals, where the input is a buffer of
|
|
|
|
// one-byte ASCII digits, along with an optional radix prefix.
|
|
|
|
BigIntParseIntHelper(Isolate* isolate, const uint8_t* string, int length)
|
2017-10-19 17:39:28 +00:00
|
|
|
: StringToIntHelper(isolate, string, length),
|
2017-10-25 18:07:04 +00:00
|
|
|
empty_string_result_(EmptyStringResult::kUnreachable),
|
|
|
|
should_throw_(kDontThrow) {}
|
2017-10-13 18:23:53 +00:00
|
|
|
|
2017-09-27 00:39:43 +00:00
|
|
|
MaybeHandle<BigInt> GetResult() {
|
|
|
|
ParseInt();
|
2017-10-19 17:39:28 +00:00
|
|
|
if (state() == kEmpty) {
|
|
|
|
if (empty_string_result_ == EmptyStringResult::kSyntaxError) {
|
|
|
|
set_state(kJunk);
|
|
|
|
} else if (empty_string_result_ == EmptyStringResult::kZero) {
|
|
|
|
set_state(kZero);
|
|
|
|
} else {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
2017-09-27 00:39:43 +00:00
|
|
|
switch (state()) {
|
|
|
|
case kJunk:
|
2017-10-25 18:07:04 +00:00
|
|
|
if (should_throw_ == kThrowOnError) {
|
|
|
|
THROW_NEW_ERROR(isolate(),
|
|
|
|
NewSyntaxError(MessageTemplate::kBigIntInvalidString),
|
|
|
|
BigInt);
|
|
|
|
} else {
|
|
|
|
DCHECK_EQ(should_throw_, kDontThrow);
|
|
|
|
return MaybeHandle<BigInt>();
|
|
|
|
}
|
2017-09-27 00:39:43 +00:00
|
|
|
case kZero:
|
2017-10-10 09:00:16 +00:00
|
|
|
return isolate()->factory()->NewBigIntFromInt(0);
|
2017-09-27 00:39:43 +00:00
|
|
|
case kError:
|
2017-10-25 18:07:04 +00:00
|
|
|
DCHECK_EQ(should_throw_ == kThrowOnError,
|
|
|
|
isolate()->has_pending_exception());
|
2017-09-27 00:39:43 +00:00
|
|
|
return MaybeHandle<BigInt>();
|
|
|
|
case kDone:
|
|
|
|
result_->set_sign(negative());
|
|
|
|
result_->RightTrim();
|
|
|
|
return result_;
|
2017-10-19 17:39:28 +00:00
|
|
|
case kEmpty:
|
2017-09-27 00:39:43 +00:00
|
|
|
case kRunning:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
2014-04-11 07:27:25 +00:00
|
|
|
|
2017-09-27 00:39:43 +00:00
|
|
|
protected:
|
|
|
|
virtual void AllocateResult() {
|
|
|
|
// We have to allocate a BigInt that's big enough to fit the result.
|
|
|
|
// Conseratively assume that all remaining digits are significant.
|
|
|
|
// Optimization opportunity: Would it makes sense to scan for trailing
|
|
|
|
// junk before allocating the result?
|
|
|
|
int charcount = length() - cursor();
|
|
|
|
MaybeHandle<BigInt> maybe =
|
2017-10-25 18:07:04 +00:00
|
|
|
BigInt::AllocateFor(isolate(), radix(), charcount, should_throw_);
|
2017-09-27 00:39:43 +00:00
|
|
|
if (!maybe.ToHandle(&result_)) {
|
|
|
|
set_state(kError);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
|
|
|
|
result_->InplaceMultiplyAdd(static_cast<uintptr_t>(multiplier),
|
|
|
|
static_cast<uintptr_t>(part));
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
Handle<BigInt> result_;
|
2017-10-19 17:39:28 +00:00
|
|
|
EmptyStringResult empty_string_result_;
|
2017-10-25 18:07:04 +00:00
|
|
|
ShouldThrow should_throw_;
|
2017-09-27 00:39:43 +00:00
|
|
|
};
|
|
|
|
|
2017-10-19 17:39:28 +00:00
|
|
|
MaybeHandle<BigInt> BigIntParseInt(Isolate* isolate, Handle<String> string,
|
2017-09-27 00:39:43 +00:00
|
|
|
int radix) {
|
2017-10-19 17:39:28 +00:00
|
|
|
BigIntParseIntHelper helper(
|
|
|
|
isolate, string, radix,
|
2017-10-25 18:07:04 +00:00
|
|
|
BigIntParseIntHelper::EmptyStringResult::kSyntaxError, kThrowOnError);
|
2017-10-19 17:39:28 +00:00
|
|
|
return helper.GetResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, Handle<String> string) {
|
|
|
|
BigIntParseIntHelper helper(isolate, string, 10,
|
2017-10-25 18:07:04 +00:00
|
|
|
BigIntParseIntHelper::EmptyStringResult::kZero,
|
|
|
|
kDontThrow);
|
2017-09-27 00:39:43 +00:00
|
|
|
return helper.GetResult();
|
|
|
|
}
|
2014-04-11 07:27:25 +00:00
|
|
|
|
2017-10-19 17:39:28 +00:00
|
|
|
MaybeHandle<BigInt> BigIntLiteral(Isolate* isolate, const char* string) {
|
2017-10-13 18:23:53 +00:00
|
|
|
BigIntParseIntHelper helper(isolate, reinterpret_cast<const uint8_t*>(string),
|
|
|
|
static_cast<int>(strlen(string)));
|
|
|
|
return helper.GetResult();
|
|
|
|
}
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
const char* DoubleToCString(double v, Vector<char> buffer) {
|
2017-07-05 20:08:51 +00:00
|
|
|
switch (FPCLASSIFY_NAMESPACE::fpclassify(v)) {
|
2011-02-07 08:57:06 +00:00
|
|
|
case FP_NAN: return "NaN";
|
|
|
|
case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity");
|
|
|
|
case FP_ZERO: return "0";
|
2008-07-03 15:10:15 +00:00
|
|
|
default: {
|
2011-07-05 11:54:11 +00:00
|
|
|
SimpleStringBuilder builder(buffer.start(), buffer.length());
|
2008-07-03 15:10:15 +00:00
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
2010-05-05 13:51:27 +00:00
|
|
|
const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
|
2010-11-17 13:20:44 +00:00
|
|
|
char decimal_rep[kV8DtoaBufferCapacity];
|
2010-03-11 14:49:35 +00:00
|
|
|
int length;
|
2010-05-05 13:51:27 +00:00
|
|
|
|
2010-11-17 13:20:44 +00:00
|
|
|
DoubleToAscii(v, DTOA_SHORTEST, 0,
|
|
|
|
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
|
|
|
|
&sign, &length, &decimal_point);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
if (sign) builder.AddCharacter('-');
|
|
|
|
|
|
|
|
if (length <= decimal_point && decimal_point <= 21) {
|
|
|
|
// ECMA-262 section 9.8.1 step 6.
|
|
|
|
builder.AddString(decimal_rep);
|
|
|
|
builder.AddPadding('0', decimal_point - length);
|
|
|
|
|
|
|
|
} else if (0 < decimal_point && decimal_point <= 21) {
|
|
|
|
// ECMA-262 section 9.8.1 step 7.
|
|
|
|
builder.AddSubstring(decimal_rep, decimal_point);
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddString(decimal_rep + decimal_point);
|
|
|
|
|
|
|
|
} else if (decimal_point <= 0 && decimal_point > -6) {
|
|
|
|
// ECMA-262 section 9.8.1 step 8.
|
|
|
|
builder.AddString("0.");
|
|
|
|
builder.AddPadding('0', -decimal_point);
|
|
|
|
builder.AddString(decimal_rep);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// ECMA-262 section 9.8.1 step 9 and 10 combined.
|
|
|
|
builder.AddCharacter(decimal_rep[0]);
|
|
|
|
if (length != 1) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddString(decimal_rep + 1);
|
|
|
|
}
|
|
|
|
builder.AddCharacter('e');
|
|
|
|
builder.AddCharacter((decimal_point >= 0) ? '+' : '-');
|
|
|
|
int exponent = decimal_point - 1;
|
|
|
|
if (exponent < 0) exponent = -exponent;
|
2011-07-05 11:54:11 +00:00
|
|
|
builder.AddDecimalInteger(exponent);
|
2008-07-03 15:10:15 +00:00
|
|
|
}
|
2016-11-24 10:30:19 +00:00
|
|
|
return builder.Finalize();
|
2008-07-03 15:10:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* IntToCString(int n, Vector<char> buffer) {
|
|
|
|
bool negative = false;
|
|
|
|
if (n < 0) {
|
|
|
|
// We must not negate the most negative int.
|
|
|
|
if (n == kMinInt) return DoubleToCString(n, buffer);
|
|
|
|
negative = true;
|
|
|
|
n = -n;
|
|
|
|
}
|
|
|
|
// Build the string backwards from the least significant digit.
|
|
|
|
int i = buffer.length();
|
|
|
|
buffer[--i] = '\0';
|
|
|
|
do {
|
|
|
|
buffer[--i] = '0' + (n % 10);
|
|
|
|
n /= 10;
|
|
|
|
} while (n);
|
|
|
|
if (negative) buffer[--i] = '-';
|
|
|
|
return buffer.start() + i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* DoubleToFixedCString(double value, int f) {
|
2010-11-03 12:05:01 +00:00
|
|
|
const int kMaxDigitsBeforePoint = 21;
|
2010-05-05 13:51:27 +00:00
|
|
|
const double kFirstNonFixed = 1e21;
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_GE(f, 0);
|
|
|
|
DCHECK_LE(f, kMaxFractionDigits);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
bool negative = false;
|
|
|
|
double abs_value = value;
|
|
|
|
if (value < 0) {
|
|
|
|
abs_value = -value;
|
|
|
|
negative = true;
|
|
|
|
}
|
|
|
|
|
2010-05-05 13:51:27 +00:00
|
|
|
// If abs_value has more than kMaxDigitsBeforePoint digits before the point
|
|
|
|
// use the non-fixed conversion routine.
|
|
|
|
if (abs_value >= kFirstNonFixed) {
|
2017-07-20 12:24:38 +00:00
|
|
|
char arr[kMaxFractionDigits];
|
2014-08-26 09:19:24 +00:00
|
|
|
Vector<char> buffer(arr, arraysize(arr));
|
2008-07-03 15:10:15 +00:00
|
|
|
return StrDup(DoubleToCString(value, buffer));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
2010-11-03 12:05:01 +00:00
|
|
|
// Add space for the '\0' byte.
|
2010-05-05 13:51:27 +00:00
|
|
|
const int kDecimalRepCapacity =
|
2017-07-20 12:24:38 +00:00
|
|
|
kMaxDigitsBeforePoint + kMaxFractionDigits + 1;
|
2010-05-05 13:51:27 +00:00
|
|
|
char decimal_rep[kDecimalRepCapacity];
|
|
|
|
int decimal_rep_length;
|
2010-11-17 13:20:44 +00:00
|
|
|
DoubleToAscii(value, DTOA_FIXED, f,
|
|
|
|
Vector<char>(decimal_rep, kDecimalRepCapacity),
|
|
|
|
&sign, &decimal_rep_length, &decimal_point);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
// Create a representation that is padded with zeros if needed.
|
|
|
|
int zero_prefix_length = 0;
|
|
|
|
int zero_postfix_length = 0;
|
|
|
|
|
|
|
|
if (decimal_point <= 0) {
|
|
|
|
zero_prefix_length = -decimal_point + 1;
|
|
|
|
decimal_point = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (zero_prefix_length + decimal_rep_length < decimal_point + f) {
|
|
|
|
zero_postfix_length = decimal_point + f - decimal_rep_length -
|
|
|
|
zero_prefix_length;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned rep_length =
|
|
|
|
zero_prefix_length + decimal_rep_length + zero_postfix_length;
|
2011-07-05 11:54:11 +00:00
|
|
|
SimpleStringBuilder rep_builder(rep_length + 1);
|
2008-07-03 15:10:15 +00:00
|
|
|
rep_builder.AddPadding('0', zero_prefix_length);
|
|
|
|
rep_builder.AddString(decimal_rep);
|
|
|
|
rep_builder.AddPadding('0', zero_postfix_length);
|
|
|
|
char* rep = rep_builder.Finalize();
|
|
|
|
|
|
|
|
// Create the result string by appending a minus and putting in a
|
|
|
|
// decimal point if needed.
|
|
|
|
unsigned result_size = decimal_point + f + 2;
|
2011-07-05 11:54:11 +00:00
|
|
|
SimpleStringBuilder builder(result_size + 1);
|
2008-07-03 15:10:15 +00:00
|
|
|
if (negative) builder.AddCharacter('-');
|
|
|
|
builder.AddSubstring(rep, decimal_point);
|
|
|
|
if (f > 0) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddSubstring(rep + decimal_point, f);
|
|
|
|
}
|
|
|
|
DeleteArray(rep);
|
|
|
|
return builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static char* CreateExponentialRepresentation(char* decimal_rep,
|
|
|
|
int exponent,
|
|
|
|
bool negative,
|
|
|
|
int significant_digits) {
|
|
|
|
bool negative_exponent = false;
|
|
|
|
if (exponent < 0) {
|
|
|
|
negative_exponent = true;
|
|
|
|
exponent = -exponent;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Leave room in the result for appending a minus, for a period, the
|
|
|
|
// letter 'e', a minus or a plus depending on the exponent, and a
|
|
|
|
// three digit exponent.
|
|
|
|
unsigned result_size = significant_digits + 7;
|
2011-07-05 11:54:11 +00:00
|
|
|
SimpleStringBuilder builder(result_size + 1);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
if (negative) builder.AddCharacter('-');
|
|
|
|
builder.AddCharacter(decimal_rep[0]);
|
|
|
|
if (significant_digits != 1) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddString(decimal_rep + 1);
|
2009-11-11 09:50:06 +00:00
|
|
|
int rep_length = StrLength(decimal_rep);
|
|
|
|
builder.AddPadding('0', significant_digits - rep_length);
|
2008-07-03 15:10:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
builder.AddCharacter('e');
|
|
|
|
builder.AddCharacter(negative_exponent ? '-' : '+');
|
2011-07-05 11:54:11 +00:00
|
|
|
builder.AddDecimalInteger(exponent);
|
2008-07-03 15:10:15 +00:00
|
|
|
return builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* DoubleToExponentialCString(double value, int f) {
|
|
|
|
// f might be -1 to signal that f was undefined in JavaScript.
|
2017-07-20 12:24:38 +00:00
|
|
|
DCHECK(f >= -1 && f <= kMaxFractionDigits);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
bool negative = false;
|
|
|
|
if (value < 0) {
|
|
|
|
value = -value;
|
|
|
|
negative = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
2010-09-20 09:18:00 +00:00
|
|
|
// f corresponds to the digits after the point. There is always one digit
|
|
|
|
// before the point. The number of requested_digits equals hence f + 1.
|
|
|
|
// And we have to add one character for the null-terminator.
|
2017-07-20 12:24:38 +00:00
|
|
|
const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1 + 1;
|
2010-09-20 09:18:00 +00:00
|
|
|
// Make sure that the buffer is big enough, even if we fall back to the
|
|
|
|
// shortest representation (which happens when f equals -1).
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_LE(kBase10MaximalLength, kMaxFractionDigits + 1);
|
2010-11-17 13:20:44 +00:00
|
|
|
char decimal_rep[kV8DtoaBufferCapacity];
|
2010-09-20 09:18:00 +00:00
|
|
|
int decimal_rep_length;
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
if (f == -1) {
|
2010-11-17 13:20:44 +00:00
|
|
|
DoubleToAscii(value, DTOA_SHORTEST, 0,
|
|
|
|
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
|
|
|
|
&sign, &decimal_rep_length, &decimal_point);
|
|
|
|
f = decimal_rep_length - 1;
|
2008-07-03 15:10:15 +00:00
|
|
|
} else {
|
2010-11-17 13:20:44 +00:00
|
|
|
DoubleToAscii(value, DTOA_PRECISION, f + 1,
|
|
|
|
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
|
|
|
|
&sign, &decimal_rep_length, &decimal_point);
|
2008-07-03 15:10:15 +00:00
|
|
|
}
|
2017-10-18 09:06:55 +00:00
|
|
|
DCHECK_GT(decimal_rep_length, 0);
|
2014-08-04 11:34:54 +00:00
|
|
|
DCHECK(decimal_rep_length <= f + 1);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
int exponent = decimal_point - 1;
|
|
|
|
char* result =
|
|
|
|
CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* DoubleToPrecisionCString(double value, int p) {
|
2010-09-20 09:18:00 +00:00
|
|
|
const int kMinimalDigits = 1;
|
2017-07-20 12:24:38 +00:00
|
|
|
DCHECK(p >= kMinimalDigits && p <= kMaxFractionDigits);
|
2010-09-20 09:18:00 +00:00
|
|
|
USE(kMinimalDigits);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
bool negative = false;
|
|
|
|
if (value < 0) {
|
|
|
|
value = -value;
|
|
|
|
negative = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
2010-09-20 09:18:00 +00:00
|
|
|
// Add one for the terminating null character.
|
2017-07-20 12:24:38 +00:00
|
|
|
const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1;
|
2010-11-17 13:20:44 +00:00
|
|
|
char decimal_rep[kV8DtoaBufferCapacity];
|
2010-09-20 09:18:00 +00:00
|
|
|
int decimal_rep_length;
|
|
|
|
|
2010-11-17 13:20:44 +00:00
|
|
|
DoubleToAscii(value, DTOA_PRECISION, p,
|
|
|
|
Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
|
|
|
|
&sign, &decimal_rep_length, &decimal_point);
|
2014-08-04 11:34:54 +00:00
|
|
|
DCHECK(decimal_rep_length <= p);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
int exponent = decimal_point - 1;
|
|
|
|
|
2017-10-13 16:33:03 +00:00
|
|
|
char* result = nullptr;
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
if (exponent < -6 || exponent >= p) {
|
|
|
|
result =
|
|
|
|
CreateExponentialRepresentation(decimal_rep, exponent, negative, p);
|
|
|
|
} else {
|
|
|
|
// Use fixed notation.
|
|
|
|
//
|
|
|
|
// Leave room in the result for appending a minus, a period and in
|
|
|
|
// the case where decimal_point is not positive for a zero in
|
|
|
|
// front of the period.
|
|
|
|
unsigned result_size = (decimal_point <= 0)
|
|
|
|
? -decimal_point + p + 3
|
|
|
|
: p + 2;
|
2011-07-05 11:54:11 +00:00
|
|
|
SimpleStringBuilder builder(result_size + 1);
|
2008-07-03 15:10:15 +00:00
|
|
|
if (negative) builder.AddCharacter('-');
|
|
|
|
if (decimal_point <= 0) {
|
|
|
|
builder.AddString("0.");
|
|
|
|
builder.AddPadding('0', -decimal_point);
|
|
|
|
builder.AddString(decimal_rep);
|
|
|
|
builder.AddPadding('0', p - decimal_rep_length);
|
|
|
|
} else {
|
|
|
|
const int m = Min(decimal_rep_length, decimal_point);
|
|
|
|
builder.AddSubstring(decimal_rep, m);
|
|
|
|
builder.AddPadding('0', decimal_point - decimal_rep_length);
|
|
|
|
if (decimal_point < p) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
const int extra = negative ? 2 : 1;
|
|
|
|
if (decimal_rep_length > decimal_point) {
|
2009-11-11 09:50:06 +00:00
|
|
|
const int len = StrLength(decimal_rep + decimal_point);
|
2008-07-03 15:10:15 +00:00
|
|
|
const int n = Min(len, p - (builder.position() - extra));
|
|
|
|
builder.AddSubstring(decimal_rep + decimal_point, n);
|
|
|
|
}
|
|
|
|
builder.AddPadding('0', extra + (p - builder.position()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result = builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
char* DoubleToRadixCString(double value, int radix) {
|
2014-08-04 11:34:54 +00:00
|
|
|
DCHECK(radix >= 2 && radix <= 36);
|
2016-11-24 10:30:19 +00:00
|
|
|
DCHECK(std::isfinite(value));
|
|
|
|
DCHECK_NE(0.0, value);
|
2008-07-03 15:10:15 +00:00
|
|
|
// Character array used for conversion.
|
|
|
|
static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
|
|
|
2016-11-24 10:30:19 +00:00
|
|
|
// Temporary buffer for the result. We start with the decimal point in the
|
|
|
|
// middle and write to the left for the integer part and to the right for the
|
2017-01-16 11:44:29 +00:00
|
|
|
// fractional part. 1024 characters for the exponent and 52 for the mantissa
|
|
|
|
// either way, with additional space for sign, decimal point and string
|
|
|
|
// termination should be sufficient.
|
|
|
|
static const int kBufferSize = 2200;
|
2016-11-24 10:30:19 +00:00
|
|
|
char buffer[kBufferSize];
|
|
|
|
int integer_cursor = kBufferSize / 2;
|
|
|
|
int fraction_cursor = integer_cursor;
|
|
|
|
|
|
|
|
bool negative = value < 0;
|
|
|
|
if (negative) value = -value;
|
|
|
|
|
|
|
|
// Split the value into an integer part and a fractional part.
|
|
|
|
double integer = std::floor(value);
|
|
|
|
double fraction = value - integer;
|
|
|
|
// We only compute fractional digits up to the input double's precision.
|
|
|
|
double delta = 0.5 * (Double(value).NextDouble() - value);
|
2016-12-22 06:57:01 +00:00
|
|
|
delta = std::max(Double(0.0).NextDouble(), delta);
|
|
|
|
DCHECK_GT(delta, 0.0);
|
2016-11-24 10:30:19 +00:00
|
|
|
if (fraction > delta) {
|
|
|
|
// Insert decimal point.
|
|
|
|
buffer[fraction_cursor++] = '.';
|
|
|
|
do {
|
|
|
|
// Shift up by one digit.
|
|
|
|
fraction *= radix;
|
|
|
|
delta *= radix;
|
|
|
|
// Write digit.
|
|
|
|
int digit = static_cast<int>(fraction);
|
|
|
|
buffer[fraction_cursor++] = chars[digit];
|
|
|
|
// Calculate remainder.
|
|
|
|
fraction -= digit;
|
|
|
|
// Round to even.
|
|
|
|
if (fraction > 0.5 || (fraction == 0.5 && (digit & 1))) {
|
|
|
|
if (fraction + delta > 1) {
|
|
|
|
// We need to back trace already written digits in case of carry-over.
|
|
|
|
while (true) {
|
|
|
|
fraction_cursor--;
|
|
|
|
if (fraction_cursor == kBufferSize / 2) {
|
|
|
|
CHECK_EQ('.', buffer[fraction_cursor]);
|
|
|
|
// Carry over to the integer part.
|
|
|
|
integer += 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
char c = buffer[fraction_cursor];
|
|
|
|
// Reconstruct digit.
|
|
|
|
int digit = c > '9' ? (c - 'a' + 10) : (c - '0');
|
|
|
|
if (digit + 1 < radix) {
|
|
|
|
buffer[fraction_cursor++] = chars[digit + 1];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (fraction > delta);
|
|
|
|
}
|
2008-07-03 15:10:15 +00:00
|
|
|
|
2016-11-25 07:46:10 +00:00
|
|
|
// Compute integer digits. Fill unrepresented digits with zero.
|
|
|
|
while (Double(integer / radix).Exponent() > 0) {
|
|
|
|
integer /= radix;
|
|
|
|
buffer[--integer_cursor] = '0';
|
|
|
|
}
|
2008-07-03 15:10:15 +00:00
|
|
|
do {
|
2017-10-19 12:21:50 +00:00
|
|
|
double remainder = Modulo(integer, radix);
|
2016-11-25 07:46:10 +00:00
|
|
|
buffer[--integer_cursor] = chars[static_cast<int>(remainder)];
|
|
|
|
integer = (integer - remainder) / radix;
|
2016-11-24 10:30:19 +00:00
|
|
|
} while (integer > 0);
|
|
|
|
|
|
|
|
// Add sign and terminate string.
|
|
|
|
if (negative) buffer[--integer_cursor] = '-';
|
|
|
|
buffer[fraction_cursor++] = '\0';
|
2016-12-22 06:57:01 +00:00
|
|
|
DCHECK_LT(fraction_cursor, kBufferSize);
|
|
|
|
DCHECK_LE(0, integer_cursor);
|
2016-11-24 10:30:19 +00:00
|
|
|
// Allocate new string as return value.
|
|
|
|
char* result = NewArray<char>(fraction_cursor - integer_cursor);
|
|
|
|
memcpy(result, buffer + integer_cursor, fraction_cursor - integer_cursor);
|
|
|
|
return result;
|
2008-07-03 15:10:15 +00:00
|
|
|
}
|
|
|
|
|
2014-04-28 09:14:24 +00:00
|
|
|
|
2015-12-10 10:42:46 +00:00
|
|
|
// ES6 18.2.4 parseFloat(string)
|
2014-10-22 08:19:05 +00:00
|
|
|
double StringToDouble(UnicodeCache* unicode_cache, Handle<String> string,
|
|
|
|
int flags, double empty_string_val) {
|
|
|
|
Handle<String> flattened = String::Flatten(string);
|
|
|
|
{
|
|
|
|
DisallowHeapAllocation no_gc;
|
|
|
|
String::FlatContent flat = flattened->GetFlatContent();
|
|
|
|
DCHECK(flat.IsFlat());
|
|
|
|
if (flat.IsOneByte()) {
|
|
|
|
return StringToDouble(unicode_cache, flat.ToOneByteVector(), flags,
|
|
|
|
empty_string_val);
|
|
|
|
} else {
|
|
|
|
return StringToDouble(unicode_cache, flat.ToUC16Vector(), flags,
|
|
|
|
empty_string_val);
|
|
|
|
}
|
2014-04-28 09:14:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-03-30 11:40:57 +00:00
|
|
|
bool IsSpecialIndex(UnicodeCache* unicode_cache, String* string) {
|
|
|
|
// Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX
|
|
|
|
const int kBufferSize = 24;
|
|
|
|
const int length = string->length();
|
|
|
|
if (length == 0 || length > kBufferSize) return false;
|
2015-03-10 19:11:11 +00:00
|
|
|
uint16_t buffer[kBufferSize];
|
2015-03-30 11:40:57 +00:00
|
|
|
String::WriteToFlat(string, buffer, 0, length);
|
|
|
|
// If the first char is not a digit or a '-' or we can't match 'NaN' or
|
|
|
|
// '(-)Infinity', bailout immediately.
|
2015-03-10 19:11:11 +00:00
|
|
|
int offset = 0;
|
2015-03-30 11:40:57 +00:00
|
|
|
if (!IsDecimalDigit(buffer[0])) {
|
|
|
|
if (buffer[0] == '-') {
|
|
|
|
if (length == 1) return false; // Just '-' is bad.
|
|
|
|
if (!IsDecimalDigit(buffer[1])) {
|
|
|
|
if (buffer[1] == 'I' && length == 9) {
|
|
|
|
// Allow matching of '-Infinity' below.
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
2015-03-10 19:11:11 +00:00
|
|
|
}
|
2015-03-30 11:40:57 +00:00
|
|
|
offset++;
|
|
|
|
} else if (buffer[0] == 'I' && length == 8) {
|
|
|
|
// Allow matching of 'Infinity' below.
|
|
|
|
} else if (buffer[0] == 'N' && length == 3) {
|
|
|
|
// Match NaN.
|
|
|
|
return buffer[1] == 'a' && buffer[2] == 'N';
|
|
|
|
} else {
|
|
|
|
return false;
|
2015-03-10 19:11:11 +00:00
|
|
|
}
|
|
|
|
}
|
2015-03-30 11:40:57 +00:00
|
|
|
// Expected fast path: key is an integer.
|
|
|
|
static const int kRepresentableIntegerLength = 15; // (-)XXXXXXXXXXXXXXX
|
|
|
|
if (length - offset <= kRepresentableIntegerLength) {
|
|
|
|
const int initial_offset = offset;
|
|
|
|
bool matches = true;
|
|
|
|
for (; offset < length; offset++) {
|
|
|
|
matches &= IsDecimalDigit(buffer[offset]);
|
2015-03-10 19:11:11 +00:00
|
|
|
}
|
2015-03-30 11:40:57 +00:00
|
|
|
if (matches) {
|
|
|
|
// Match 0 and -0.
|
|
|
|
if (buffer[initial_offset] == '0') return initial_offset == length - 1;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Slow path: test DoubleToString(StringToDouble(string)) == string.
|
|
|
|
Vector<const uint16_t> vector(buffer, length);
|
|
|
|
double d = StringToDouble(unicode_cache, vector, NO_FLAGS);
|
|
|
|
if (std::isnan(d)) return false;
|
|
|
|
// Compute reverse string.
|
|
|
|
char reverse_buffer[kBufferSize + 1]; // Result will be /0 terminated.
|
|
|
|
Vector<char> reverse_vector(reverse_buffer, arraysize(reverse_buffer));
|
|
|
|
const char* reverse_string = DoubleToCString(d, reverse_vector);
|
|
|
|
for (int i = 0; i < length; ++i) {
|
|
|
|
if (static_cast<uint16_t>(reverse_string[i]) != buffer[i]) return false;
|
2015-03-10 19:11:11 +00:00
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
2015-06-01 22:46:54 +00:00
|
|
|
} // namespace internal
|
|
|
|
} // namespace v8
|