v8/src/parsing/parser.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4354 lines
165 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/parsing/parser.h"
#include <algorithm>
#include <memory>
#include "src/api.h"
#include "src/ast/ast-function-literal-id-reindexer.h"
#include "src/ast/ast-traversal-visitor.h"
#include "src/ast/ast.h"
#include "src/bailout-reason.h"
#include "src/base/platform/platform.h"
#include "src/char-predicates-inl.h"
#include "src/compiler-dispatcher/compiler-dispatcher.h"
#include "src/log.h"
#include "src/messages.h"
#include "src/objects-inl.h"
#include "src/parsing/duplicate-finder.h"
#include "src/parsing/expression-scope-reparenter.h"
#include "src/parsing/parse-info.h"
#include "src/parsing/rewriter.h"
#include "src/runtime/runtime.h"
#include "src/string-stream.h"
#include "src/tracing/trace-event.h"
namespace v8 {
namespace internal {
ScriptData::ScriptData(const byte* data, int length)
: owns_data_(false), rejected_(false), data_(data), length_(length) {
if (!IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment)) {
byte* copy = NewArray<byte>(length);
DCHECK(IsAligned(reinterpret_cast<intptr_t>(copy), kPointerAlignment));
CopyBytes(copy, data, length);
data_ = copy;
AcquireDataOwnership();
}
}
FunctionEntry ParseData::GetFunctionEntry(int start) {
// The current pre-data entry must be a FunctionEntry with the given
// start position.
if ((function_index_ + FunctionEntry::kSize <= Length()) &&
(static_cast<int>(Data()[function_index_]) == start)) {
int index = function_index_;
function_index_ += FunctionEntry::kSize;
Vector<unsigned> subvector(&(Data()[index]), FunctionEntry::kSize);
return FunctionEntry(subvector);
}
return FunctionEntry();
}
int ParseData::FunctionCount() {
int functions_size = FunctionsSize();
if (functions_size < 0) return 0;
if (functions_size % FunctionEntry::kSize != 0) return 0;
return functions_size / FunctionEntry::kSize;
}
bool ParseData::IsSane() {
if (!IsAligned(script_data_->length(), sizeof(unsigned))) return false;
// Check that the header data is valid and doesn't specify
// point to positions outside the store.
int data_length = Length();
if (data_length < PreparseDataConstants::kHeaderSize) return false;
if (Magic() != PreparseDataConstants::kMagicNumber) return false;
if (Version() != PreparseDataConstants::kCurrentVersion) return false;
// Check that the space allocated for function entries is sane.
int functions_size = FunctionsSize();
if (functions_size < 0) return false;
if (functions_size % FunctionEntry::kSize != 0) return false;
// Check that the total size has room for header and function entries.
int minimum_size =
PreparseDataConstants::kHeaderSize + functions_size;
if (data_length < minimum_size) return false;
return true;
}
void ParseData::Initialize() {
// Prepares state for use.
int data_length = Length();
if (data_length >= PreparseDataConstants::kHeaderSize) {
function_index_ = PreparseDataConstants::kHeaderSize;
}
}
unsigned ParseData::Magic() {
return Data()[PreparseDataConstants::kMagicOffset];
}
unsigned ParseData::Version() {
return Data()[PreparseDataConstants::kVersionOffset];
}
int ParseData::FunctionsSize() {
return static_cast<int>(Data()[PreparseDataConstants::kFunctionsSizeOffset]);
}
// Helper for putting parts of the parse results into a temporary zone when
// parsing inner function bodies.
class DiscardableZoneScope {
public:
DiscardableZoneScope(Parser* parser, Zone* temp_zone, bool use_temp_zone)
: fni_(parser->ast_value_factory_, temp_zone),
parser_(parser),
prev_fni_(parser->fni_),
prev_zone_(parser->zone_),
prev_allow_lazy_(parser->allow_lazy_),
prev_temp_zoned_(parser->temp_zoned_) {
if (use_temp_zone) {
DCHECK(!parser_->temp_zoned_);
parser_->allow_lazy_ = false;
parser_->temp_zoned_ = true;
parser_->fni_ = &fni_;
parser_->zone_ = temp_zone;
parser_->factory()->set_zone(temp_zone);
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
if (parser_->reusable_preparser_ != nullptr) {
parser_->reusable_preparser_->zone_ = temp_zone;
parser_->reusable_preparser_->factory()->set_zone(temp_zone);
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
}
}
}
void Reset() {
parser_->fni_ = prev_fni_;
parser_->zone_ = prev_zone_;
parser_->factory()->set_zone(prev_zone_);
parser_->allow_lazy_ = prev_allow_lazy_;
parser_->temp_zoned_ = prev_temp_zoned_;
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
if (parser_->reusable_preparser_ != nullptr) {
parser_->reusable_preparser_->zone_ = prev_zone_;
parser_->reusable_preparser_->factory()->set_zone(prev_zone_);
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
}
}
~DiscardableZoneScope() { Reset(); }
private:
FuncNameInferrer fni_;
Parser* parser_;
FuncNameInferrer* prev_fni_;
Zone* prev_zone_;
bool prev_allow_lazy_;
bool prev_temp_zoned_;
DISALLOW_COPY_AND_ASSIGN(DiscardableZoneScope);
};
void Parser::SetCachedData(ParseInfo* info) {
DCHECK_NULL(cached_parse_data_);
if (consume_cached_parse_data()) {
if (allow_lazy_) {
cached_parse_data_ = ParseData::FromCachedData(*info->cached_data());
if (cached_parse_data_ != nullptr) return;
}
compile_options_ = ScriptCompiler::kNoCompileOptions;
}
}
FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name,
bool call_super, int pos,
int end_pos) {
int expected_property_count = -1;
const int parameter_count = 0;
FunctionKind kind = call_super ? FunctionKind::kDefaultDerivedConstructor
: FunctionKind::kDefaultBaseConstructor;
DeclarationScope* function_scope = NewFunctionScope(kind);
SetLanguageMode(function_scope, LanguageMode::kStrict);
// Set start and end position to the same value
function_scope->set_start_position(pos);
function_scope->set_end_position(pos);
ZoneList<Statement*>* body = nullptr;
{
FunctionState function_state(&function_state_, &scope_, function_scope);
body = new (zone()) ZoneList<Statement*>(call_super ? 2 : 1, zone());
if (call_super) {
// Create a SuperCallReference and handle in BytecodeGenerator.
auto constructor_args_name = ast_value_factory()->empty_string();
bool is_duplicate;
bool is_rest = true;
bool is_optional = false;
Variable* constructor_args = function_scope->DeclareParameter(
constructor_args_name, TEMPORARY, is_optional, is_rest, &is_duplicate,
ast_value_factory(), pos);
ZoneList<Expression*>* args =
new (zone()) ZoneList<Expression*>(1, zone());
Spread* spread_args = factory()->NewSpread(
factory()->NewVariableProxy(constructor_args), pos, pos);
args->Add(spread_args, zone());
Expression* super_call_ref = NewSuperCallReference(pos);
Expression* call = factory()->NewCall(super_call_ref, args, pos);
body->Add(factory()->NewReturnStatement(call, pos), zone());
}
expected_property_count = function_state.expected_property_count();
}
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
name, function_scope, body, expected_property_count, parameter_count,
parameter_count, FunctionLiteral::kNoDuplicateParameters,
FunctionLiteral::kAnonymousExpression, default_eager_compile_hint(), pos,
true, GetNextFunctionLiteralId());
return function_literal;
}
// ----------------------------------------------------------------------------
// The CHECK_OK macro is a convenient macro to enforce error
// handling for functions that may fail (by returning !*ok).
//
// CAUTION: This macro appends extra statements after a call,
// thus it must never be used where only a single statement
// is correct (e.g. an if statement branch w/o braces)!
#define CHECK_OK_VALUE(x) ok); \
if (!*ok) return x; \
((void)0
#define DUMMY ) // to make indentation work
#undef DUMMY
#define CHECK_OK CHECK_OK_VALUE(nullptr)
#define CHECK_OK_VOID CHECK_OK_VALUE(this->Void())
#define CHECK_FAILED /**/); \
if (failed_) return nullptr; \
((void)0
#define DUMMY ) // to make indentation work
#undef DUMMY
// ----------------------------------------------------------------------------
// Implementation of Parser
bool Parser::ShortcutNumericLiteralBinaryExpression(Expression** x,
Expression* y,
Token::Value op, int pos) {
if ((*x)->IsNumberLiteral() && y->IsNumberLiteral()) {
double x_val = (*x)->AsLiteral()->AsNumber();
double y_val = y->AsLiteral()->AsNumber();
switch (op) {
case Token::ADD:
*x = factory()->NewNumberLiteral(x_val + y_val, pos);
return true;
case Token::SUB:
*x = factory()->NewNumberLiteral(x_val - y_val, pos);
return true;
case Token::MUL:
*x = factory()->NewNumberLiteral(x_val * y_val, pos);
return true;
case Token::DIV:
*x = factory()->NewNumberLiteral(x_val / y_val, pos);
return true;
case Token::BIT_OR: {
int value = DoubleToInt32(x_val) | DoubleToInt32(y_val);
*x = factory()->NewNumberLiteral(value, pos);
return true;
}
case Token::BIT_AND: {
int value = DoubleToInt32(x_val) & DoubleToInt32(y_val);
*x = factory()->NewNumberLiteral(value, pos);
return true;
}
case Token::BIT_XOR: {
int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val);
*x = factory()->NewNumberLiteral(value, pos);
return true;
}
case Token::SHL: {
int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1F);
*x = factory()->NewNumberLiteral(value, pos);
return true;
}
case Token::SHR: {
uint32_t shift = DoubleToInt32(y_val) & 0x1F;
uint32_t value = DoubleToUint32(x_val) >> shift;
*x = factory()->NewNumberLiteral(value, pos);
return true;
}
case Token::SAR: {
uint32_t shift = DoubleToInt32(y_val) & 0x1F;
int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift);
*x = factory()->NewNumberLiteral(value, pos);
return true;
}
case Token::EXP: {
double value = Pow(x_val, y_val);
int int_value = static_cast<int>(value);
*x = factory()->NewNumberLiteral(
int_value == value && value != -0.0 ? int_value : value, pos);
return true;
}
default:
break;
}
}
return false;
}
bool Parser::CollapseNaryExpression(Expression** x, Expression* y,
Token::Value op, int pos,
const SourceRange& range) {
// Filter out unsupported ops.
if (!Token::IsBinaryOp(op) || op == Token::EXP) return false;
// Convert *x into an nary operation with the given op, returning false if
// this is not possible.
NaryOperation* nary = nullptr;
if ((*x)->IsBinaryOperation()) {
BinaryOperation* binop = (*x)->AsBinaryOperation();
if (binop->op() != op) return false;
nary = factory()->NewNaryOperation(op, binop->left(), 2);
nary->AddSubsequent(binop->right(), binop->position());
ConvertBinaryToNaryOperationSourceRange(binop, nary);
*x = nary;
} else if ((*x)->IsNaryOperation()) {
nary = (*x)->AsNaryOperation();
if (nary->op() != op) return false;
} else {
return false;
}
// Append our current expression to the nary operation.
// TODO(leszeks): Do some literal collapsing here if we're appending Smi or
// String literals.
nary->AddSubsequent(y, pos);
AppendNaryOperationSourceRange(nary, range);
return true;
}
Expression* Parser::BuildUnaryExpression(Expression* expression,
Token::Value op, int pos) {
DCHECK_NOT_NULL(expression);
const Literal* literal = expression->AsLiteral();
if (literal != nullptr) {
if (op == Token::NOT) {
// Convert the literal to a boolean condition and negate it.
return factory()->NewBooleanLiteral(literal->ToBooleanIsFalse(), pos);
} else if (literal->IsNumberLiteral()) {
// Compute some expressions involving only number literals.
double value = literal->AsNumber();
switch (op) {
case Token::ADD:
return expression;
case Token::SUB:
return factory()->NewNumberLiteral(-value, pos);
case Token::BIT_NOT:
return factory()->NewNumberLiteral(~DoubleToInt32(value), pos);
default:
break;
}
}
}
return factory()->NewUnaryOperation(op, expression, pos);
}
Expression* Parser::NewThrowError(Runtime::FunctionId id,
MessageTemplate::Template message,
const AstRawString* arg, int pos) {
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
args->Add(factory()->NewSmiLiteral(message, pos), zone());
args->Add(factory()->NewStringLiteral(arg, pos), zone());
CallRuntime* call_constructor = factory()->NewCallRuntime(id, args, pos);
return factory()->NewThrow(call_constructor, pos);
}
Expression* Parser::NewSuperPropertyReference(int pos) {
// this_function[home_object_symbol]
VariableProxy* this_function_proxy =
NewUnresolved(ast_value_factory()->this_function_string(), pos);
Expression* home_object_symbol_literal = factory()->NewSymbolLiteral(
AstSymbol::kHomeObjectSymbol, kNoSourcePosition);
Expression* home_object = factory()->NewProperty(
this_function_proxy, home_object_symbol_literal, pos);
return factory()->NewSuperPropertyReference(
ThisExpression(pos)->AsVariableProxy(), home_object, pos);
}
Expression* Parser::NewSuperCallReference(int pos) {
VariableProxy* new_target_proxy =
NewUnresolved(ast_value_factory()->new_target_string(), pos);
VariableProxy* this_function_proxy =
NewUnresolved(ast_value_factory()->this_function_string(), pos);
return factory()->NewSuperCallReference(
ThisExpression(pos)->AsVariableProxy(), new_target_proxy,
this_function_proxy, pos);
}
Expression* Parser::NewTargetExpression(int pos) {
auto proxy = NewUnresolved(ast_value_factory()->new_target_string(), pos);
proxy->set_is_new_target();
return proxy;
}
Expression* Parser::FunctionSentExpression(int pos) {
// We desugar function.sent into %_GeneratorGetInputOrDebugPos(generator).
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
VariableProxy* generator = factory()->NewVariableProxy(
function_state_->scope()->generator_object_var());
args->Add(generator, zone());
return factory()->NewCallRuntime(Runtime::kInlineGeneratorGetInputOrDebugPos,
args, pos);
}
Expression* Parser::ImportMetaExpression(int pos) {
return factory()->NewCallRuntime(
Runtime::kInlineGetImportMetaObject,
new (zone()) ZoneList<Expression*>(0, zone()), pos);
}
Literal* Parser::ExpressionFromLiteral(Token::Value token, int pos) {
switch (token) {
case Token::NULL_LITERAL:
return factory()->NewNullLiteral(pos);
case Token::TRUE_LITERAL:
return factory()->NewBooleanLiteral(true, pos);
case Token::FALSE_LITERAL:
return factory()->NewBooleanLiteral(false, pos);
case Token::SMI: {
uint32_t value = scanner()->smi_value();
return factory()->NewSmiLiteral(value, pos);
}
case Token::NUMBER: {
double value = scanner()->DoubleValue();
return factory()->NewNumberLiteral(value, pos);
}
case Token::BIGINT:
return factory()->NewBigIntLiteral(
AstBigInt(scanner()->CurrentLiteralAsCString(zone())), pos);
default:
DCHECK(false);
}
return nullptr;
}
Expression* Parser::NewV8Intrinsic(const AstRawString* name,
ZoneList<Expression*>* args, int pos,
bool* ok) {
if (extension_ != nullptr) {
// The extension structures are only accessible while parsing the
// very first time, not when reparsing because of lazy compilation.
GetClosureScope()->ForceEagerCompilation();
}
DCHECK(name->is_one_byte());
const Runtime::Function* function =
Runtime::FunctionForName(name->raw_data(), name->length());
if (function != nullptr) {
// Check for possible name clash.
DCHECK_EQ(Context::kNotFound,
Context::IntrinsicIndexForName(name->raw_data(), name->length()));
// Check for built-in IS_VAR macro.
if (function->function_id == Runtime::kIS_VAR) {
DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type);
// %IS_VAR(x) evaluates to x if x is a variable,
// leads to a parse error otherwise. Could be implemented as an
// inline function %_IS_VAR(x) to eliminate this special case.
if (args->length() == 1 && args->at(0)->AsVariableProxy() != nullptr) {
return args->at(0);
} else {
ReportMessage(MessageTemplate::kNotIsvar);
*ok = false;
return nullptr;
}
}
// Check that the expected number of arguments are being passed.
if (function->nargs != -1 && function->nargs != args->length()) {
ReportMessage(MessageTemplate::kRuntimeWrongNumArgs);
*ok = false;
return nullptr;
}
return factory()->NewCallRuntime(function, args, pos);
}
int context_index =
Context::IntrinsicIndexForName(name->raw_data(), name->length());
// Check that the function is defined.
if (context_index == Context::kNotFound) {
ReportMessage(MessageTemplate::kNotDefined, name);
*ok = false;
return nullptr;
}
return factory()->NewCallRuntime(context_index, args, pos);
}
Parser::Parser(ParseInfo* info)
: ParserBase<Parser>(info->zone(), &scanner_, info->stack_limit(),
info->extension(), info->GetOrCreateAstValueFactory(),
info->pending_error_handler(),
info->runtime_call_stats(), info->logger(),
info->script().is_null() ? -1 : info->script()->id(),
info->is_module(), true),
scanner_(info->unicode_cache()),
reusable_preparser_(nullptr),
mode_(PARSE_EAGERLY), // Lazy mode must be set explicitly.
source_range_map_(info->source_range_map()),
target_stack_(nullptr),
compile_options_(info->compile_options()),
cached_parse_data_(nullptr),
total_preparse_skipped_(0),
temp_zoned_(false),
log_(nullptr),
consumed_preparsed_scope_data_(info->consumed_preparsed_scope_data()),
Implement new Function.prototype.toString --harmony-function-tostring For functions declared in source code, the .toString() representation will be an excerpt of the source code. * For functions declared with the "function" keyword, the excerpt starts at the "function" or "async" keyword and ends at the final "}". The previous behavior would start the excerpt at the "(" of the parameter list, and prepend a canonical `"function " + name` or similar, which would discard comments and formatting surrounding the function's name. Anonymous functions declared as function expressions no longer get the name "anonymous" in their toString representation. * For methods, the excerpt starts at the "get", "set", "*" (for generator methods), or property name, whichever comes first. Previously, the toString representation for methods would use a canonical prefix before the "(" of the parameter list. Note that any "static" keyword is omitted. * For arrow functions and class declarations, the excerpt is unchanged. For functions created with the Function, GeneratorFunction, or AsyncFunction constructors: * The string separating the parameter text and body text is now "\n) {\n", where previously it was "\n/*``*/) {\n" or ") {\n". * At one point, newline normalization was required by the spec here, but that was removed from the spec, and so this CL does not do it. Included in this CL is a fix for CreateDynamicFunction parsing. ')' and '`' characters in the parameter string are no longer disallowed, and Function("a=function(", "}){") is no longer allowed. BUG=v8:4958, v8:4230 Review-Url: https://codereview.chromium.org/2156303002 Cr-Commit-Position: refs/heads/master@{#43262}
2017-02-16 20:19:24 +00:00
parameters_end_pos_(info->parameters_end_pos()) {
// Even though we were passed ParseInfo, we should not store it in
// Parser - this makes sure that Isolate is not accidentally accessed via
// ParseInfo during background parsing.
DCHECK_NOT_NULL(info->character_stream());
// Determine if functions can be lazily compiled. This is necessary to
// allow some of our builtin JS files to be lazily compiled. These
// builtins cannot be handled lazily by the parser, since we have to know
// if a function uses the special natives syntax, which is something the
// parser records.
// If the debugger requests compilation for break points, we cannot be
// aggressive about lazy compilation, because it might trigger compilation
// of functions without an outer context when setting a breakpoint through
// Debug::FindSharedFunctionInfoInScript
// We also compile eagerly for kProduceExhaustiveCodeCache.
bool can_compile_lazily = FLAG_lazy && !info->is_eager();
set_default_eager_compile_hint(can_compile_lazily
? FunctionLiteral::kShouldLazyCompile
: FunctionLiteral::kShouldEagerCompile);
allow_lazy_ = FLAG_lazy && info->allow_lazy_parsing() && !info->is_native() &&
info->extension() == nullptr && can_compile_lazily;
set_allow_natives(FLAG_allow_natives_syntax || info->is_native());
set_allow_harmony_do_expressions(FLAG_harmony_do_expressions);
set_allow_harmony_function_sent(FLAG_harmony_function_sent);
set_allow_harmony_public_fields(FLAG_harmony_public_fields);
set_allow_harmony_dynamic_import(FLAG_harmony_dynamic_import);
set_allow_harmony_import_meta(FLAG_harmony_import_meta);
set_allow_harmony_async_iteration(FLAG_harmony_async_iteration);
set_allow_harmony_bigint(FLAG_harmony_bigint);
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
++feature) {
use_counts_[feature] = 0;
}
}
void Parser::DeserializeScopeChain(
ParseInfo* info, MaybeHandle<ScopeInfo> maybe_outer_scope_info) {
// TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native
// context, which will have the "this" binding for script scopes.
DeclarationScope* script_scope = NewScriptScope();
info->set_script_scope(script_scope);
Scope* scope = script_scope;
Handle<ScopeInfo> outer_scope_info;
if (maybe_outer_scope_info.ToHandle(&outer_scope_info)) {
DCHECK(ThreadId::Current().Equals(
outer_scope_info->GetIsolate()->thread_id()));
scope = Scope::DeserializeScopeChain(
zone(), *outer_scope_info, script_scope, ast_value_factory(),
Scope::DeserializationMode::kScopesOnly);
}
original_scope_ = scope;
}
namespace {
void MaybeResetCharacterStream(ParseInfo* info, FunctionLiteral* literal) {
// Don't reset the character stream if there is an asm.js module since it will
// be used again by the asm-parser.
if (!FLAG_stress_validate_asm &&
(literal == nullptr || !literal->scope()->ContainsAsmModule())) {
info->ResetCharacterStream();
}
}
} // namespace
FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) {
// TODO(bmeurer): We temporarily need to pass allow_nesting = true here,
// see comment for HistogramTimerScope class.
// It's OK to use the Isolate & counters here, since this function is only
// called in the main thread.
DCHECK(parsing_on_main_thread_);
RuntimeCallTimerScope runtime_timer(
runtime_call_stats_, info->is_eval()
? RuntimeCallCounterId::kParseEval
: RuntimeCallCounterId::kParseProgram);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseProgram");
base::ElapsedTimer timer;
if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
// Initialize parser state.
ParserLogger logger;
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
if (produce_cached_parse_data()) {
if (allow_lazy_) {
log_ = &logger;
} else {
compile_options_ = ScriptCompiler::kNoCompileOptions;
}
} else if (consume_cached_parse_data()) {
cached_parse_data_->Initialize();
}
DeserializeScopeChain(info, info->maybe_outer_scope_info());
scanner_.Initialize(info->character_stream(), info->is_module());
FunctionLiteral* result = DoParseProgram(info);
MaybeResetCharacterStream(info, result);
HandleSourceURLComments(isolate, info->script());
if (produce_cached_parse_data() && result != nullptr) {
*info->cached_data() = logger.GetScriptData();
}
log_ = nullptr;
if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
double ms = timer.Elapsed().InMillisecondsF();
const char* event_name = "parse-eval";
Script* script = *info->script();
int start = -1;
int end = -1;
if (!info->is_eval()) {
event_name = "parse-script";
start = 0;
end = String::cast(script->source())->length();
}
LOG(script->GetIsolate(),
FunctionEvent(event_name, script, -1, ms, start, end, "", 0));
}
return result;
}
FunctionLiteral* Parser::DoParseProgram(ParseInfo* info) {
// Note that this function can be called from the main thread or from a
// background thread. We should not access anything Isolate / heap dependent
// via ParseInfo, and also not pass it forward.
DCHECK_NULL(scope_);
DCHECK_NULL(target_stack_);
ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
ResetFunctionLiteralId();
DCHECK(info->function_literal_id() == FunctionLiteral::kIdTypeTopLevel ||
info->function_literal_id() == FunctionLiteral::kIdTypeInvalid);
FunctionLiteral* result = nullptr;
{
Scope* outer = original_scope_;
DCHECK_NOT_NULL(outer);
if (info->is_eval()) {
outer = NewEvalScope(outer);
} else if (parsing_module_) {
DCHECK_EQ(outer, info->script_scope());
outer = NewModuleScope(info->script_scope());
Static resolution of outer variables in eval code. So far free variables references in eval code are not statically resolved. For example in function foo() { var x = 1; eval("y = x"); } the variable x will get mode DYNAMIC and y will get mode DYNAMIC_GLOBAL, i.e. free variable references trigger dynamic lookups with a fast case handling for global variables. The CL introduces static resolution of free variables references in eval code. If possible variable references are resolved to bindings belonging to outer scopes of the eval call site. This is achieved by deserializing the outer scope chain using Scope::DeserializeScopeChain prior to parsing the eval code similar to lazy parsing of functions. The existing code for variable resolution is used, however resolution starts at the first outer unresolved scope instead of always starting at the root of the scope tree. This is a prerequisite for statically checking validity of assignments in the extended code as specified by the current ES.next draft which will be introduced by a subsequent CL. More specifically section 11.13 of revision 4 of the ES.next draft reads: * It is a Syntax Error if the AssignmentExpression is contained in extended code and the LeftHandSideExpression is an Identifier that does not statically resolve to a declarative environment record binding or if the resolved binding is an immutable binding. TEST=existing tests in mjsunit Review URL: http://codereview.chromium.org/8508052 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9999 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-11-15 13:48:40 +00:00
}
DeclarationScope* scope = outer->AsDeclarationScope();
scope->set_start_position(0);
FunctionState function_state(&function_state_, &scope_, scope);
ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16, zone());
bool ok = true;
int beg_pos = scanner()->location().beg_pos;
if (parsing_module_) {
DCHECK(info->is_module());
// Declare the special module parameter.
auto name = ast_value_factory()->empty_string();
bool is_duplicate = false;
bool is_rest = false;
bool is_optional = false;
auto var =
scope->DeclareParameter(name, VAR, is_optional, is_rest,
&is_duplicate, ast_value_factory(), beg_pos);
DCHECK(!is_duplicate);
var->AllocateTo(VariableLocation::PARAMETER, 0);
PrepareGeneratorVariables();
Expression* initial_yield =
BuildInitialYield(kNoSourcePosition, kGeneratorFunction);
body->Add(
factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
zone());
ParseModuleItemList(body, &ok);
ok = ok && module()->Validate(this->scope()->AsModuleScope(),
pending_error_handler(), zone());
} else {
// Don't count the mode in the use counters--give the program a chance
// to enable script-wide strict mode below.
this->scope()->SetLanguageMode(info->language_mode());
ParseStatementList(body, Token::EOS, &ok);
}
// The parser will peek but not consume EOS. Our scope logically goes all
// the way to the EOS, though.
scope->set_end_position(scanner()->peek_location().beg_pos);
if (ok && is_strict(language_mode())) {
CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok);
}
if (ok && is_sloppy(language_mode())) {
// TODO(littledan): Function bindings on the global object that modify
// pre-existing bindings should be made writable, enumerable and
// nonconfigurable if possible, whereas this code will leave attributes
// unchanged if the property already exists.
InsertSloppyBlockFunctionVarBindings(scope);
}
if (ok) {
CheckConflictingVarDeclarations(scope, &ok);
}
if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) {
if (body->length() != 1 ||
!body->at(0)->IsExpressionStatement() ||
!body->at(0)->AsExpressionStatement()->
expression()->IsFunctionLiteral()) {
ReportMessage(MessageTemplate::kSingleFunctionLiteral);
ok = false;
}
}
if (ok) {
RewriteDestructuringAssignments();
int parameter_count = parsing_module_ ? 1 : 0;
result = factory()->NewScriptOrEvalFunctionLiteral(
scope, body, function_state.expected_property_count(),
parameter_count);
}
}
info->set_max_function_literal_id(GetLastFunctionLiteralId());
// Make sure the target stack is empty.
DCHECK_NULL(target_stack_);
return result;
}
FunctionLiteral* Parser::ParseFunction(Isolate* isolate, ParseInfo* info,
Handle<SharedFunctionInfo> shared_info) {
// It's OK to use the Isolate & counters here, since this function is only
// called in the main thread.
DCHECK(parsing_on_main_thread_);
RuntimeCallTimerScope runtime_timer(runtime_call_stats_,
RuntimeCallCounterId::kParseFunction);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseFunction");
base::ElapsedTimer timer;
if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
DeserializeScopeChain(info, info->maybe_outer_scope_info());
DCHECK_EQ(factory()->zone(), info->zone());
// Initialize parser state.
Handle<String> name(shared_info->name());
info->set_function_name(ast_value_factory()->GetString(name));
scanner_.Initialize(info->character_stream(), info->is_module());
FunctionLiteral* result = DoParseFunction(info, info->function_name());
MaybeResetCharacterStream(info, result);
if (result != nullptr) {
Handle<String> inferred_name(shared_info->inferred_name());
result->set_inferred_name(inferred_name);
}
if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
double ms = timer.Elapsed().InMillisecondsF();
// We need to make sure that the debug-name is available.
ast_value_factory()->Internalize(isolate);
DeclarationScope* function_scope = result->scope();
Script* script = *info->script();
std::unique_ptr<char[]> function_name = result->GetDebugName();
LOG(script->GetIsolate(),
FunctionEvent("parse-function", script, -1, ms,
function_scope->start_position(),
function_scope->end_position(), function_name.get(),
strlen(function_name.get())));
}
return result;
}
static FunctionLiteral::FunctionType ComputeFunctionType(ParseInfo* info) {
if (info->is_declaration()) {
return FunctionLiteral::kDeclaration;
} else if (info->is_named_expression()) {
return FunctionLiteral::kNamedExpression;
} else if (IsConciseMethod(info->function_kind()) ||
IsAccessorFunction(info->function_kind())) {
return FunctionLiteral::kAccessorOrMethod;
}
return FunctionLiteral::kAnonymousExpression;
}
FunctionLiteral* Parser::DoParseFunction(ParseInfo* info,
const AstRawString* raw_name) {
DCHECK_NOT_NULL(raw_name);
DCHECK_NULL(scope_);
DCHECK_NULL(target_stack_);
DCHECK(ast_value_factory());
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
fni_->PushEnclosingName(raw_name);
ResetFunctionLiteralId();
DCHECK_LT(0, info->function_literal_id());
SkipFunctionLiterals(info->function_literal_id() - 1);
ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
// Place holder for the result.
FunctionLiteral* result = nullptr;
{
// Parse the function literal.
Scope* outer = original_scope_;
2016-09-27 09:49:26 +00:00
DeclarationScope* outer_function = outer->GetClosureScope();
DCHECK(outer);
FunctionState function_state(&function_state_, &scope_, outer_function);
BlockState block_state(&scope_, outer);
DCHECK(is_sloppy(outer->language_mode()) ||
is_strict(info->language_mode()));
FunctionLiteral::FunctionType function_type = ComputeFunctionType(info);
FunctionKind kind = info->function_kind();
bool ok = true;
if (IsArrowFunction(kind)) {
if (IsAsyncFunction(kind)) {
DCHECK(!scanner()->HasAnyLineTerminatorAfterNext());
if (!Check(Token::ASYNC)) {
CHECK(stack_overflow());
return nullptr;
}
if (!(peek_any_identifier() || peek() == Token::LPAREN)) {
CHECK(stack_overflow());
return nullptr;
}
}
// TODO(adamk): We should construct this scope from the ScopeInfo.
DeclarationScope* scope = NewFunctionScope(kind);
// This bit only needs to be explicitly set because we're
// not passing the ScopeInfo to the Scope constructor.
SetLanguageMode(scope, info->language_mode());
scope->set_start_position(info->start_position());
ExpressionClassifier formals_classifier(this);
ParserFormalParameters formals(scope);
int rewritable_length =
function_state.destructuring_assignments_to_rewrite().length();
{
// Parsing patterns as variable reference expression creates
// NewUnresolved references in current scope. Enter arrow function
// scope for formal parameter parsing.
BlockState block_state(&scope_, scope);
if (Check(Token::LPAREN)) {
// '(' StrictFormalParameters ')'
ParseFormalParameterList(&formals, &ok);
if (ok) ok = Check(Token::RPAREN);
} else {
// BindingIdentifier
ParseFormalParameter(&formals, &ok);
if (ok) {
DeclareFormalParameters(formals.scope, formals.params,
formals.is_simple);
}
}
}
if (ok) {
if (GetLastFunctionLiteralId() != info->function_literal_id() - 1) {
// If there were FunctionLiterals in the parameters, we need to
// renumber them to shift down so the next function literal id for
// the arrow function is the one requested.
AstFunctionLiteralIdReindexer reindexer(
stack_limit_,
(info->function_literal_id() - 1) - GetLastFunctionLiteralId());
for (auto p : formals.params) {
if (p->pattern != nullptr) reindexer.Reindex(p->pattern);
if (p->initializer != nullptr) reindexer.Reindex(p->initializer);
}
ResetFunctionLiteralId();
SkipFunctionLiterals(info->function_literal_id() - 1);
}
// Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should
// not be observable, or else the preparser would have failed.
Expression* expression =
ParseArrowFunctionLiteral(true, formals, rewritable_length, &ok);
if (ok) {
// Scanning must end at the same position that was recorded
// previously. If not, parsing has been interrupted due to a stack
// overflow, at which point the partially parsed arrow function
// concise body happens to be a valid expression. This is a problem
// only for arrow functions with single expression bodies, since there
// is no end token such as "}" for normal functions.
if (scanner()->location().end_pos == info->end_position()) {
// The pre-parser saw an arrow function here, so the full parser
// must produce a FunctionLiteral.
DCHECK(expression->IsFunctionLiteral());
result = expression->AsFunctionLiteral();
// Rewrite destructuring assignments in the parameters. (The ones
// inside the function body are rewritten by
// ParseArrowFunctionLiteral.)
RewriteDestructuringAssignments();
} else {
ok = false;
}
}
}
} else if (IsDefaultConstructor(kind)) {
DCHECK_EQ(scope(), outer);
result = DefaultConstructor(raw_name, IsDerivedConstructor(kind),
info->start_position(), info->end_position());
} else {
result = ParseFunctionLiteral(
raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, kind,
kNoSourcePosition, function_type, info->language_mode(), &ok);
[class] Store class fields initializer on the constructor Previously, the class fields initializer function was stored on a synthetic context allocated variable. This approach had sevaral problems: - We didn't know that class literal had fields until after we had completely parsed the class literal. This meant that we had to go back and fix up the scope of the constructor to have this synthetic variable. This resulted in mismatch between parser and preparsed scope data. - This synthetic variable could potentially resolve to an initializer of an outer class. For ex: class X extends Object { c = 1; constructor() { var t = () => { class P extends Object { constructor() { var t = () => { super(); }; t(); } } super(); } t(); } } In this the inner class P could access the outer class X's initiliazer function. We would have to maintain extra metadata to make sure this doesn't happen. Instead this new approach uses a private symbol to store the initializer function on the class constructor itself. For the base constructor case, we can simply check for a bit on the constructor function literal to see if we need to emit code that loads and calls this initializer function. Therefore, we don't pay the cost of loading this function in case there are no class fields. For the derived constructor case, there are two possiblities: (a) We are in a super() call directly in the derived constructor: In this case we can do a check similar to the base constructor check, we can check for a bit on the derived constructor and emit code for loading and calling the initializer function. This is usually the common case and we don't pay any cost for not using class fields. (b) We are in a super() call inside an arrow function in the derived constructor: In this case, we /always/ emit code to load and call the initializer function. If the function doesn't exist then we have undefined and we don't call anything. Otherwise we call the function. super() can't be called twice so even if we emit code to load and call the initializer function multiple times, it doesn't matter because it would have already been an error. Bug: v8:5367 Change-Id: I7f77cd6493ff84cf0e430a8c1039bc9ac6941a88 Reviewed-on: https://chromium-review.googlesource.com/781660 Commit-Queue: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Reviewed-by: Mythri Alle <mythria@chromium.org> Cr-Commit-Position: refs/heads/master@{#49628}
2017-11-27 09:56:36 +00:00
}
if (ok) {
result->set_requires_instance_fields_initializer(
info->requires_instance_fields_initializer());
}
// Make sure the results agree.
DCHECK(ok == (result != nullptr));
}
// Make sure the target stack is empty.
DCHECK_NULL(target_stack_);
DCHECK_IMPLIES(result,
info->function_literal_id() == result->function_literal_id());
return result;
}
Statement* Parser::ParseModuleItem(bool* ok) {
// ecma262/#prod-ModuleItem
// ModuleItem :
// ImportDeclaration
// ExportDeclaration
// StatementListItem
Token::Value next = peek();
if (next == Token::EXPORT) {
return ParseExportDeclaration(ok);
}
if (next == Token::IMPORT) {
// We must be careful not to parse a dynamic import expression as an import
// declaration. Same for import.meta expressions.
Token::Value peek_ahead = PeekAhead();
if ((!allow_harmony_dynamic_import() || peek_ahead != Token::LPAREN) &&
(!allow_harmony_import_meta() || peek_ahead != Token::PERIOD)) {
ParseImportDeclaration(CHECK_OK);
return factory()->NewEmptyStatement(kNoSourcePosition);
}
}
return ParseStatementListItem(ok);
}
void Parser::ParseModuleItemList(ZoneList<Statement*>* body, bool* ok) {
// ecma262/#prod-Module
// Module :
// ModuleBody?
//
// ecma262/#prod-ModuleItemList
// ModuleBody :
// ModuleItem*
DCHECK(scope()->is_module_scope());
while (peek() != Token::EOS) {
Statement* stat = ParseModuleItem(CHECK_OK_VOID);
if (stat && !stat->IsEmpty()) {
body->Add(stat, zone());
}
}
}
const AstRawString* Parser::ParseModuleSpecifier(bool* ok) {
// ModuleSpecifier :
// StringLiteral
Expect(Token::STRING, CHECK_OK);
return GetSymbol();
}
void Parser::ParseExportClause(ZoneList<const AstRawString*>* export_names,
ZoneList<Scanner::Location>* export_locations,
ZoneList<const AstRawString*>* local_names,
Scanner::Location* reserved_loc, bool* ok) {
// ExportClause :
// '{' '}'
// '{' ExportsList '}'
// '{' ExportsList ',' '}'
//
// ExportsList :
// ExportSpecifier
// ExportsList ',' ExportSpecifier
//
// ExportSpecifier :
// IdentifierName
// IdentifierName 'as' IdentifierName
Expect(Token::LBRACE, CHECK_OK_VOID);
Token::Value name_tok;
while ((name_tok = peek()) != Token::RBRACE) {
// Keep track of the first reserved word encountered in case our
// caller needs to report an error.
if (!reserved_loc->IsValid() &&
!Token::IsIdentifier(name_tok, LanguageMode::kStrict, false,
parsing_module_)) {
*reserved_loc = scanner()->location();
}
const AstRawString* local_name = ParseIdentifierName(CHECK_OK_VOID);
const AstRawString* export_name = nullptr;
Scanner::Location location = scanner()->location();
if (CheckContextualKeyword(Token::AS)) {
export_name = ParseIdentifierName(CHECK_OK_VOID);
// Set the location to the whole "a as b" string, so that it makes sense
// both for errors due to "a" and for errors due to "b".
location.end_pos = scanner()->location().end_pos;
}
if (export_name == nullptr) {
export_name = local_name;
}
export_names->Add(export_name, zone());
local_names->Add(local_name, zone());
export_locations->Add(location, zone());
if (peek() == Token::RBRACE) break;
Expect(Token::COMMA, CHECK_OK_VOID);
}
Expect(Token::RBRACE, CHECK_OK_VOID);
}
ZoneList<const Parser::NamedImport*>* Parser::ParseNamedImports(
int pos, bool* ok) {
// NamedImports :
// '{' '}'
// '{' ImportsList '}'
// '{' ImportsList ',' '}'
//
// ImportsList :
// ImportSpecifier
// ImportsList ',' ImportSpecifier
//
// ImportSpecifier :
// BindingIdentifier
// IdentifierName 'as' BindingIdentifier
Expect(Token::LBRACE, CHECK_OK);
auto result = new (zone()) ZoneList<const NamedImport*>(1, zone());
while (peek() != Token::RBRACE) {
const AstRawString* import_name = ParseIdentifierName(CHECK_OK);
const AstRawString* local_name = import_name;
Scanner::Location location = scanner()->location();
// In the presence of 'as', the left-side of the 'as' can
// be any IdentifierName. But without 'as', it must be a valid
// BindingIdentifier.
if (CheckContextualKeyword(Token::AS)) {
local_name = ParseIdentifierName(CHECK_OK);
}
if (!Token::IsIdentifier(scanner()->current_token(), LanguageMode::kStrict,
false, parsing_module_)) {
*ok = false;
ReportMessage(MessageTemplate::kUnexpectedReserved);
return nullptr;
} else if (IsEvalOrArguments(local_name)) {
*ok = false;
ReportMessage(MessageTemplate::kStrictEvalArguments);
return nullptr;
}
DeclareVariable(local_name, CONST, kNeedsInitialization, position(),
CHECK_OK);
NamedImport* import =
new (zone()) NamedImport(import_name, local_name, location);
result->Add(import, zone());
if (peek() == Token::RBRACE) break;
Expect(Token::COMMA, CHECK_OK);
}
Expect(Token::RBRACE, CHECK_OK);
return result;
}
void Parser::ParseImportDeclaration(bool* ok) {
// ImportDeclaration :
// 'import' ImportClause 'from' ModuleSpecifier ';'
// 'import' ModuleSpecifier ';'
//
// ImportClause :
// ImportedDefaultBinding
// NameSpaceImport
// NamedImports
// ImportedDefaultBinding ',' NameSpaceImport
// ImportedDefaultBinding ',' NamedImports
//
// NameSpaceImport :
// '*' 'as' ImportedBinding
int pos = peek_position();
Expect(Token::IMPORT, CHECK_OK_VOID);
Token::Value tok = peek();
// 'import' ModuleSpecifier ';'
if (tok == Token::STRING) {
Scanner::Location specifier_loc = scanner()->peek_location();
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
ExpectSemicolon(CHECK_OK_VOID);
module()->AddEmptyImport(module_specifier, specifier_loc);
return;
}
// Parse ImportedDefaultBinding if present.
const AstRawString* import_default_binding = nullptr;
Scanner::Location import_default_binding_loc;
if (tok != Token::MUL && tok != Token::LBRACE) {
import_default_binding =
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
import_default_binding_loc = scanner()->location();
DeclareVariable(import_default_binding, CONST, kNeedsInitialization, pos,
CHECK_OK_VOID);
}
// Parse NameSpaceImport or NamedImports if present.
const AstRawString* module_namespace_binding = nullptr;
Scanner::Location module_namespace_binding_loc;
const ZoneList<const NamedImport*>* named_imports = nullptr;
if (import_default_binding == nullptr || Check(Token::COMMA)) {
switch (peek()) {
case Token::MUL: {
Consume(Token::MUL);
ExpectContextualKeyword(Token::AS, CHECK_OK_VOID);
module_namespace_binding =
ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
module_namespace_binding_loc = scanner()->location();
DeclareVariable(module_namespace_binding, CONST, kCreatedInitialized,
pos, CHECK_OK_VOID);
break;
}
case Token::LBRACE:
named_imports = ParseNamedImports(pos, CHECK_OK_VOID);
break;
default:
*ok = false;
ReportUnexpectedToken(scanner()->current_token());
return;
}
}
ExpectContextualKeyword(Token::FROM, CHECK_OK_VOID);
Scanner::Location specifier_loc = scanner()->peek_location();
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
ExpectSemicolon(CHECK_OK_VOID);
// Now that we have all the information, we can make the appropriate
// declarations.
// TODO(neis): Would prefer to call DeclareVariable for each case below rather
// than above and in ParseNamedImports, but then a possible error message
// would point to the wrong location. Maybe have a DeclareAt version of
// Declare that takes a location?
if (module_namespace_binding != nullptr) {
module()->AddStarImport(module_namespace_binding, module_specifier,
module_namespace_binding_loc, specifier_loc,
zone());
}
if (import_default_binding != nullptr) {
module()->AddImport(ast_value_factory()->default_string(),
import_default_binding, module_specifier,
import_default_binding_loc, specifier_loc, zone());
}
if (named_imports != nullptr) {
if (named_imports->length() == 0) {
module()->AddEmptyImport(module_specifier, specifier_loc);
} else {
for (int i = 0; i < named_imports->length(); ++i) {
const NamedImport* import = named_imports->at(i);
module()->AddImport(import->import_name, import->local_name,
module_specifier, import->location, specifier_loc,
zone());
}
}
}
}
Statement* Parser::ParseExportDefault(bool* ok) {
// Supports the following productions, starting after the 'default' token:
// 'export' 'default' HoistableDeclaration
// 'export' 'default' ClassDeclaration
// 'export' 'default' AssignmentExpression[In] ';'
Expect(Token::DEFAULT, CHECK_OK);
Scanner::Location default_loc = scanner()->location();
ZoneList<const AstRawString*> local_names(1, zone());
Statement* result = nullptr;
switch (peek()) {
case Token::FUNCTION:
result = ParseHoistableDeclaration(&local_names, true, CHECK_OK);
break;
case Token::CLASS:
Consume(Token::CLASS);
result = ParseClassDeclaration(&local_names, true, CHECK_OK);
break;
case Token::ASYNC:
if (PeekAhead() == Token::FUNCTION &&
!scanner()->HasAnyLineTerminatorAfterNext()) {
Consume(Token::ASYNC);
result = ParseAsyncFunctionDeclaration(&local_names, true, CHECK_OK);
break;
}
/* falls through */
default: {
int pos = position();
ExpressionClassifier classifier(this);
Expression* value = ParseAssignmentExpression(true, CHECK_OK);
SetFunctionName(value, ast_value_factory()->default_string());
const AstRawString* local_name =
ast_value_factory()->star_default_star_string();
local_names.Add(local_name, zone());
// It's fine to declare this as CONST because the user has no way of
// writing to it.
Declaration* decl = DeclareVariable(local_name, CONST, pos, CHECK_OK);
decl->proxy()->var()->set_initializer_position(position());
Assignment* assignment = factory()->NewAssignment(
Token::INIT, decl->proxy(), value, kNoSourcePosition);
result = IgnoreCompletion(
factory()->NewExpressionStatement(assignment, kNoSourcePosition));
ExpectSemicolon(CHECK_OK);
break;
}
}
DCHECK_EQ(local_names.length(), 1);
module()->AddExport(local_names.first(),
ast_value_factory()->default_string(), default_loc,
zone());
DCHECK_NOT_NULL(result);
return result;
}
Statement* Parser::ParseExportDeclaration(bool* ok) {
// ExportDeclaration:
// 'export' '*' 'from' ModuleSpecifier ';'
// 'export' ExportClause ('from' ModuleSpecifier)? ';'
// 'export' VariableStatement
// 'export' Declaration
// 'export' 'default' ... (handled in ParseExportDefault)
Expect(Token::EXPORT, CHECK_OK);
int pos = position();
Statement* result = nullptr;
ZoneList<const AstRawString*> names(1, zone());
Scanner::Location loc = scanner()->peek_location();
switch (peek()) {
case Token::DEFAULT:
return ParseExportDefault(ok);
case Token::MUL: {
Consume(Token::MUL);
loc = scanner()->location();
ExpectContextualKeyword(Token::FROM, CHECK_OK);
Scanner::Location specifier_loc = scanner()->peek_location();
const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK);
ExpectSemicolon(CHECK_OK);
module()->AddStarExport(module_specifier, loc, specifier_loc, zone());
return factory()->NewEmptyStatement(pos);
}
case Token::LBRACE: {
// There are two cases here:
//
// 'export' ExportClause ';'
// and
// 'export' ExportClause FromClause ';'
//
// In the first case, the exported identifiers in ExportClause must
// not be reserved words, while in the latter they may be. We
// pass in a location that gets filled with the first reserved word
// encountered, and then throw a SyntaxError if we are in the
// non-FromClause case.
Scanner::Location reserved_loc = Scanner::Location::invalid();
ZoneList<const AstRawString*> export_names(1, zone());
ZoneList<Scanner::Location> export_locations(1, zone());
ZoneList<const AstRawString*> original_names(1, zone());
ParseExportClause(&export_names, &export_locations, &original_names,
&reserved_loc, CHECK_OK);
const AstRawString* module_specifier = nullptr;
Scanner::Location specifier_loc;
if (CheckContextualKeyword(Token::FROM)) {
specifier_loc = scanner()->peek_location();
module_specifier = ParseModuleSpecifier(CHECK_OK);
} else if (reserved_loc.IsValid()) {
// No FromClause, so reserved words are invalid in ExportClause.
*ok = false;
ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved);
return nullptr;
}
ExpectSemicolon(CHECK_OK);
const int length = export_names.length();
DCHECK_EQ(length, original_names.length());
DCHECK_EQ(length, export_locations.length());
if (module_specifier == nullptr) {
for (int i = 0; i < length; ++i) {
module()->AddExport(original_names[i], export_names[i],
export_locations[i], zone());
}
} else if (length == 0) {
module()->AddEmptyImport(module_specifier, specifier_loc);
} else {
for (int i = 0; i < length; ++i) {
module()->AddExport(original_names[i], export_names[i],
module_specifier, export_locations[i],
specifier_loc, zone());
}
}
return factory()->NewEmptyStatement(pos);
}
case Token::FUNCTION:
result = ParseHoistableDeclaration(&names, false, CHECK_OK);
break;
case Token::CLASS:
Consume(Token::CLASS);
result = ParseClassDeclaration(&names, false, CHECK_OK);
break;
case Token::VAR:
case Token::LET:
case Token::CONST:
result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK);
break;
case Token::ASYNC:
// TODO(neis): Why don't we have the same check here as in
// ParseStatementListItem?
Consume(Token::ASYNC);
result = ParseAsyncFunctionDeclaration(&names, false, CHECK_OK);
break;
default:
*ok = false;
ReportUnexpectedToken(scanner()->current_token());
return nullptr;
}
loc.end_pos = scanner()->location().end_pos;
ModuleDescriptor* descriptor = module();
for (int i = 0; i < names.length(); ++i) {
descriptor->AddExport(names[i], names[i], loc, zone());
}
DCHECK_NOT_NULL(result);
return result;
}
VariableProxy* Parser::NewUnresolved(const AstRawString* name, int begin_pos,
VariableKind kind) {
return scope()->NewUnresolved(factory(), name, begin_pos, kind);
}
VariableProxy* Parser::NewUnresolved(const AstRawString* name) {
return scope()->NewUnresolved(factory(), name, scanner()->location().beg_pos);
}
Declaration* Parser::DeclareVariable(const AstRawString* name,
VariableMode mode, int pos, bool* ok) {
return DeclareVariable(name, mode, Variable::DefaultInitializationFlag(mode),
pos, ok);
}
Declaration* Parser::DeclareVariable(const AstRawString* name,
VariableMode mode, InitializationFlag init,
int pos, bool* ok) {
DCHECK_NOT_NULL(name);
VariableProxy* proxy = factory()->NewVariableProxy(
name, NORMAL_VARIABLE, scanner()->location().beg_pos);
Declaration* declaration;
if (mode == VAR && !scope()->is_declaration_scope()) {
DCHECK(scope()->is_block_scope() || scope()->is_with_scope());
declaration = factory()->NewNestedVariableDeclaration(proxy, scope(), pos);
} else {
declaration = factory()->NewVariableDeclaration(proxy, pos);
}
Declare(declaration, DeclarationDescriptor::NORMAL, mode, init, ok, nullptr,
scanner()->location().end_pos);
if (!*ok) return nullptr;
return declaration;
}
Variable* Parser::Declare(Declaration* declaration,
DeclarationDescriptor::Kind declaration_kind,
VariableMode mode, InitializationFlag init, bool* ok,
Scope* scope, int var_end_pos) {
if (scope == nullptr) {
scope = this->scope();
}
bool sloppy_mode_block_scope_function_redefinition = false;
Variable* variable = scope->DeclareVariable(
declaration, mode, init, &sloppy_mode_block_scope_function_redefinition,
ok);
if (!*ok) {
// If we only have the start position of a proxy, we can't highlight the
// whole variable name. Pretend its length is 1 so that we highlight at
// least the first character.
Scanner::Location loc(declaration->proxy()->position(),
var_end_pos != kNoSourcePosition
? var_end_pos
: declaration->proxy()->position() + 1);
if (declaration_kind == DeclarationDescriptor::PARAMETER) {
ReportMessageAt(loc, MessageTemplate::kParamDupe);
} else {
ReportMessageAt(loc, MessageTemplate::kVarRedeclaration,
declaration->proxy()->raw_name());
}
return nullptr;
}
if (sloppy_mode_block_scope_function_redefinition) {
++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition];
}
return variable;
}
Block* Parser::BuildInitializationBlock(
DeclarationParsingResult* parsing_result,
ZoneList<const AstRawString*>* names, bool* ok) {
Block* result = factory()->NewBlock(1, true);
for (auto declaration : parsing_result->declarations) {
DeclareAndInitializeVariables(result, &(parsing_result->descriptor),
&declaration, names, CHECK_OK);
}
return result;
}
Statement* Parser::DeclareFunction(const AstRawString* variable_name,
FunctionLiteral* function, VariableMode mode,
int pos, bool is_sloppy_block_function,
ZoneList<const AstRawString*>* names,
bool* ok) {
VariableProxy* proxy =
factory()->NewVariableProxy(variable_name, NORMAL_VARIABLE);
Declaration* declaration =
factory()->NewFunctionDeclaration(proxy, function, pos);
Declare(declaration, DeclarationDescriptor::NORMAL, mode, kCreatedInitialized,
CHECK_OK);
if (names) names->Add(variable_name, zone());
if (is_sloppy_block_function) {
SloppyBlockFunctionStatement* statement =
factory()->NewSloppyBlockFunctionStatement();
GetDeclarationScope()->DeclareSloppyBlockFunction(variable_name, scope(),
statement);
return statement;
}
return factory()->NewEmptyStatement(kNoSourcePosition);
}
Statement* Parser::DeclareClass(const AstRawString* variable_name,
Expression* value,
ZoneList<const AstRawString*>* names,
int class_token_pos, int end_pos, bool* ok) {
Declaration* decl =
DeclareVariable(variable_name, LET, class_token_pos, CHECK_OK);
decl->proxy()->var()->set_initializer_position(end_pos);
if (names) names->Add(variable_name, zone());
Assignment* assignment = factory()->NewAssignment(Token::INIT, decl->proxy(),
value, class_token_pos);
return IgnoreCompletion(
factory()->NewExpressionStatement(assignment, kNoSourcePosition));
}
Statement* Parser::DeclareNative(const AstRawString* name, int pos, bool* ok) {
// Make sure that the function containing the native declaration
// isn't lazily compiled. The extension structures are only
// accessible while parsing the first time not when reparsing
// because of lazy compilation.
GetClosureScope()->ForceEagerCompilation();
// TODO(1240846): It's weird that native function declarations are
// introduced dynamically when we meet their declarations, whereas
// other functions are set up when entering the surrounding scope.
Declaration* decl = DeclareVariable(name, VAR, pos, CHECK_OK);
NativeFunctionLiteral* lit =
factory()->NewNativeFunctionLiteral(name, extension_, kNoSourcePosition);
return factory()->NewExpressionStatement(
factory()->NewAssignment(Token::INIT, decl->proxy(), lit,
kNoSourcePosition),
pos);
}
ZoneList<const AstRawString*>* Parser::DeclareLabel(
ZoneList<const AstRawString*>* labels, VariableProxy* var, bool* ok) {
DCHECK(IsIdentifier(var));
const AstRawString* label = var->raw_name();
// TODO(1240780): We don't check for redeclaration of labels
// during preparsing since keeping track of the set of active
// labels requires nontrivial changes to the way scopes are
// structured. However, these are probably changes we want to
// make later anyway so we should go back and fix this then.
if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) {
ReportMessage(MessageTemplate::kLabelRedeclaration, label);
*ok = false;
return nullptr;
}
if (labels == nullptr) {
labels = new (zone()) ZoneList<const AstRawString*>(1, zone());
}
labels->Add(label, zone());
// Remove the "ghost" variable that turned out to be a label
// from the top scope. This way, we don't try to resolve it
// during the scope processing.
scope()->RemoveUnresolved(var);
return labels;
}
bool Parser::ContainsLabel(ZoneList<const AstRawString*>* labels,
const AstRawString* label) {
DCHECK_NOT_NULL(label);
if (labels != nullptr) {
for (int i = labels->length(); i-- > 0;) {
if (labels->at(i) == label) return true;
}
}
return false;
}
Block* Parser::IgnoreCompletion(Statement* statement) {
Block* block = factory()->NewBlock(1, true);
block->statements()->Add(statement, zone());
return block;
}
Expression* Parser::RewriteReturn(Expression* return_value, int pos) {
if (IsDerivedConstructor(function_state_->kind())) {
// For subclass constructors we need to return this in case of undefined;
// other primitive values trigger an exception in the ConstructStub.
//
// return expr;
//
// Is rewritten as:
//
// return (temp = expr) === undefined ? this : temp;
// temp = expr
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
Assignment* assign = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos);
// temp === undefined
Expression* is_undefined = factory()->NewCompareOperation(
Token::EQ_STRICT, assign,
factory()->NewUndefinedLiteral(kNoSourcePosition), pos);
// is_undefined ? this : temp
return_value =
factory()->NewConditional(is_undefined, ThisExpression(pos),
factory()->NewVariableProxy(temp), pos);
}
return return_value;
}
Expression* Parser::RewriteDoExpression(Block* body, int pos, bool* ok) {
Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
DoExpression* expr = factory()->NewDoExpression(body, result, pos);
if (!Rewriter::Rewrite(this, GetClosureScope(), expr, ast_value_factory())) {
*ok = false;
return nullptr;
}
return expr;
}
Statement* Parser::RewriteSwitchStatement(SwitchStatement* switch_statement,
Scope* scope) {
// In order to get the CaseClauses to execute in their own lexical scope,
// but without requiring downstream code to have special scope handling
// code for switch statements, desugar into blocks as follows:
// { // To group the statements--harmless to evaluate Expression in scope
// .tag_variable = Expression;
// { // To give CaseClauses a scope
// switch (.tag_variable) { CaseClause* }
// }
// }
DCHECK_NOT_NULL(scope);
DCHECK(scope->is_block_scope());
DCHECK_GE(switch_statement->position(), scope->start_position());
DCHECK_LT(switch_statement->position(), scope->end_position());
Block* switch_block = factory()->NewBlock(2, false);
Expression* tag = switch_statement->tag();
Variable* tag_variable =
NewTemporary(ast_value_factory()->dot_switch_tag_string());
Assignment* tag_assign = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag,
tag->position());
// Wrap with IgnoreCompletion so the tag isn't returned as the completion
// value, in case the switch statements don't have a value.
Statement* tag_statement = IgnoreCompletion(
factory()->NewExpressionStatement(tag_assign, kNoSourcePosition));
switch_block->statements()->Add(tag_statement, zone());
switch_statement->set_tag(factory()->NewVariableProxy(tag_variable));
Block* cases_block = factory()->NewBlock(1, false);
cases_block->statements()->Add(switch_statement, zone());
cases_block->set_scope(scope);
switch_block->statements()->Add(cases_block, zone());
return switch_block;
}
void Parser::RewriteCatchPattern(CatchInfo* catch_info, bool* ok) {
if (catch_info->name == nullptr) {
DCHECK_NOT_NULL(catch_info->pattern);
catch_info->name = ast_value_factory()->dot_catch_string();
}
Variable* catch_variable =
catch_info->scope->DeclareLocal(catch_info->name, VAR);
if (catch_info->pattern != nullptr) {
DeclarationDescriptor descriptor;
descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
descriptor.scope = scope();
descriptor.mode = LET;
descriptor.declaration_pos = catch_info->pattern->position();
descriptor.initialization_pos = catch_info->pattern->position();
// Initializer position for variables declared by the pattern.
const int initializer_position = position();
DeclarationParsingResult::Declaration decl(
catch_info->pattern, initializer_position,
factory()->NewVariableProxy(catch_variable));
catch_info->init_block = factory()->NewBlock(8, true);
DeclareAndInitializeVariables(catch_info->init_block, &descriptor, &decl,
&catch_info->bound_names, ok);
} else {
catch_info->bound_names.Add(catch_info->name, zone());
}
}
void Parser::ValidateCatchBlock(const CatchInfo& catch_info, bool* ok) {
// Check for `catch(e) { let e; }` and similar errors.
Scope* inner_block_scope = catch_info.inner_block->scope();
if (inner_block_scope != nullptr) {
Declaration* decl = inner_block_scope->CheckLexDeclarationsConflictingWith(
catch_info.bound_names);
if (decl != nullptr) {
const AstRawString* name = decl->proxy()->raw_name();
int position = decl->proxy()->position();
Scanner::Location location =
position == kNoSourcePosition
? Scanner::Location::invalid()
: Scanner::Location(position, position + 1);
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
*ok = false;
}
}
}
Statement* Parser::RewriteTryStatement(Block* try_block, Block* catch_block,
const SourceRange& catch_range,
Block* finally_block,
const SourceRange& finally_range,
const CatchInfo& catch_info, int pos) {
// Simplify the AST nodes by converting:
// 'try B0 catch B1 finally B2'
// to:
// 'try { try B0 catch B1 } finally B2'
if (catch_block != nullptr && finally_block != nullptr) {
// If we have both, create an inner try/catch.
Revert "[language] Implement optional catch binding proposal" This reverts commit d0651bd108e0ee70ae822eda9bad7049cb2f3df4. Reason for revert: Breaks gc stress with embedded snapshot: https://build.chromium.org/p/client.v8/builders/V8%20Linux64%20GC%20Stress%20-%20custom%20snapshot/builds/15355 Original change's description: > [language] Implement optional catch binding proposal > > This allows the syntax `try {} catch {}` (with no binding after the > `catch`). > > See https://github.com/michaelficarra/optional-catch-binding-proposal/ > > Currently behind --harmony-optional-catch-binding. > > As part of the implementation, this allows TryCatchStatements to not > have an associated catch scope; various paths which assumed they > would have been updated to handle this case. > > Cq-Include-Trybots: master.tryserver.v8:v8_linux_noi18n_rel_ng > Change-Id: Ic525b45199eef025eb05da562e10fbd4f3d7465f > Reviewed-on: https://chromium-review.googlesource.com/571453 > Reviewed-by: Marja Hölttä <marja@chromium.org> > Reviewed-by: Adam Klein <adamk@chromium.org> > Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> > Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> > Commit-Queue: Kevin Gibbons <bakkot@gmail.com> > Cr-Commit-Position: refs/heads/master@{#48300} TBR=rmcilroy@chromium.org,adamk@chromium.org,marja@chromium.org,gsathya@chromium.org,bakkot@gmail.com Change-Id: I63d68160ec75b87e28d3dcdddca2d8b7d0503b46 No-Presubmit: true No-Tree-Checks: true No-Try: true Cq-Include-Trybots: master.tryserver.v8:v8_linux_noi18n_rel_ng Reviewed-on: https://chromium-review.googlesource.com/702334 Reviewed-by: Michael Achenbach <machenbach@chromium.org> Commit-Queue: Michael Achenbach <machenbach@chromium.org> Cr-Commit-Position: refs/heads/master@{#48303}
2017-10-05 08:30:58 +00:00
DCHECK_NOT_NULL(catch_info.scope);
TryCatchStatement* statement;
statement = factory()->NewTryCatchStatement(try_block, catch_info.scope,
catch_block, kNoSourcePosition);
RecordTryCatchStatementSourceRange(statement, catch_range);
try_block = factory()->NewBlock(1, false);
try_block->statements()->Add(statement, zone());
catch_block = nullptr; // Clear to indicate it's been handled.
}
if (catch_block != nullptr) {
DCHECK_NULL(finally_block);
Revert "[language] Implement optional catch binding proposal" This reverts commit d0651bd108e0ee70ae822eda9bad7049cb2f3df4. Reason for revert: Breaks gc stress with embedded snapshot: https://build.chromium.org/p/client.v8/builders/V8%20Linux64%20GC%20Stress%20-%20custom%20snapshot/builds/15355 Original change's description: > [language] Implement optional catch binding proposal > > This allows the syntax `try {} catch {}` (with no binding after the > `catch`). > > See https://github.com/michaelficarra/optional-catch-binding-proposal/ > > Currently behind --harmony-optional-catch-binding. > > As part of the implementation, this allows TryCatchStatements to not > have an associated catch scope; various paths which assumed they > would have been updated to handle this case. > > Cq-Include-Trybots: master.tryserver.v8:v8_linux_noi18n_rel_ng > Change-Id: Ic525b45199eef025eb05da562e10fbd4f3d7465f > Reviewed-on: https://chromium-review.googlesource.com/571453 > Reviewed-by: Marja Hölttä <marja@chromium.org> > Reviewed-by: Adam Klein <adamk@chromium.org> > Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> > Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> > Commit-Queue: Kevin Gibbons <bakkot@gmail.com> > Cr-Commit-Position: refs/heads/master@{#48300} TBR=rmcilroy@chromium.org,adamk@chromium.org,marja@chromium.org,gsathya@chromium.org,bakkot@gmail.com Change-Id: I63d68160ec75b87e28d3dcdddca2d8b7d0503b46 No-Presubmit: true No-Tree-Checks: true No-Try: true Cq-Include-Trybots: master.tryserver.v8:v8_linux_noi18n_rel_ng Reviewed-on: https://chromium-review.googlesource.com/702334 Reviewed-by: Michael Achenbach <machenbach@chromium.org> Commit-Queue: Michael Achenbach <machenbach@chromium.org> Cr-Commit-Position: refs/heads/master@{#48303}
2017-10-05 08:30:58 +00:00
DCHECK_NOT_NULL(catch_info.scope);
TryCatchStatement* stmt = factory()->NewTryCatchStatement(
try_block, catch_info.scope, catch_block, pos);
RecordTryCatchStatementSourceRange(stmt, catch_range);
return stmt;
} else {
DCHECK_NOT_NULL(finally_block);
TryFinallyStatement* stmt =
factory()->NewTryFinallyStatement(try_block, finally_block, pos);
RecordTryFinallyStatementSourceRange(stmt, finally_range);
return stmt;
}
}
void Parser::ParseAndRewriteGeneratorFunctionBody(int pos, FunctionKind kind,
ZoneList<Statement*>* body,
bool* ok) {
// For ES6 Generators, we just prepend the initial yield.
Expression* initial_yield = BuildInitialYield(pos, kind);
body->Add(factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
zone());
ParseStatementList(body, Token::RBRACE, ok);
}
void Parser::ParseAndRewriteAsyncGeneratorFunctionBody(
int pos, FunctionKind kind, ZoneList<Statement*>* body, bool* ok) {
// For ES2017 Async Generators, we produce:
//
// try {
// InitialYield;
// ...body...;
// return undefined; // See comment below
// } catch (.catch) {
// %AsyncGeneratorReject(generator, .catch);
// } finally {
// %_GeneratorClose(generator);
// }
//
// - InitialYield yields the actual generator object.
// - Any return statement inside the body will have its argument wrapped
// in an iterator result object with a "done" property set to `true`.
// - If the generator terminates for whatever reason, we must close it.
// Hence the finally clause.
// - BytecodeGenerator performs special handling for ReturnStatements in
// async generator functions, resolving the appropriate Promise with an
// "done" iterator result object containing a Promise-unwrapped value.
DCHECK(IsAsyncGeneratorFunction(kind));
Block* try_block = factory()->NewBlock(3, false);
Expression* initial_yield = BuildInitialYield(pos, kind);
try_block->statements()->Add(
factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
zone());
ParseStatementList(try_block->statements(), Token::RBRACE, ok);
if (!*ok) return;
// Don't create iterator result for async generators, as the resume methods
// will create it.
Statement* final_return = BuildReturnStatement(
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
try_block->statements()->Add(final_return, zone());
// For AsyncGenerators, a top-level catch block will reject the Promise.
Scope* catch_scope = NewHiddenCatchScope();
ZoneList<Expression*>* reject_args =
new (zone()) ZoneList<Expression*>(2, zone());
reject_args->Add(factory()->NewVariableProxy(
function_state_->scope()->generator_object_var()),
zone());
reject_args->Add(factory()->NewVariableProxy(catch_scope->catch_variable()),
zone());
Expression* reject_call = factory()->NewCallRuntime(
Runtime::kInlineAsyncGeneratorReject, reject_args, kNoSourcePosition);
Block* catch_block = IgnoreCompletion(
factory()->NewReturnStatement(reject_call, kNoSourcePosition));
TryStatement* try_catch = factory()->NewTryCatchStatementForAsyncAwait(
try_block, catch_scope, catch_block, kNoSourcePosition);
try_block = factory()->NewBlock(1, false);
try_block->statements()->Add(try_catch, zone());
Block* finally_block = factory()->NewBlock(1, false);
ZoneList<Expression*>* close_args =
new (zone()) ZoneList<Expression*>(1, zone());
VariableProxy* call_proxy = factory()->NewVariableProxy(
function_state_->scope()->generator_object_var());
close_args->Add(call_proxy, zone());
Expression* close_call = factory()->NewCallRuntime(
Runtime::kInlineGeneratorClose, close_args, kNoSourcePosition);
finally_block->statements()->Add(
factory()->NewExpressionStatement(close_call, kNoSourcePosition), zone());
body->Add(factory()->NewTryFinallyStatement(try_block, finally_block,
kNoSourcePosition),
zone());
}
void Parser::DeclareFunctionNameVar(const AstRawString* function_name,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope) {
if (function_type == FunctionLiteral::kNamedExpression &&
function_scope->LookupLocal(function_name) == nullptr) {
DCHECK_EQ(function_scope, scope());
function_scope->DeclareFunctionVar(function_name);
}
}
// [if (IteratorType == kNormal)]
// !%_IsJSReceiver(result = iterator.next()) &&
// %ThrowIteratorResultNotAnObject(result)
// [else if (IteratorType == kAsync)]
// !%_IsJSReceiver(result = Await(iterator.next())) &&
// %ThrowIteratorResultNotAnObject(result)
// [endif]
Expression* Parser::BuildIteratorNextResult(Expression* iterator,
Variable* result, IteratorType type,
int pos) {
Expression* next_literal = factory()->NewStringLiteral(
ast_value_factory()->next_string(), kNoSourcePosition);
Expression* next_property =
factory()->NewProperty(iterator, next_literal, kNoSourcePosition);
ZoneList<Expression*>* next_arguments =
new (zone()) ZoneList<Expression*>(0, zone());
Expression* next_call =
factory()->NewCall(next_property, next_arguments, kNoSourcePosition);
if (type == IteratorType::kAsync) {
[generators] remove SuspendFlags enum and related code SuspendFlags was originally used by the suspend operation to determine which field to record the bytecode offset of a suspended generator, and the value the generator was resumed with. For async generators, await operations would use a separate field, in order to preserve the previous yield input value. This was important to ensure `function.sent` continued to function correctly. As function.sent is being retired, this allows the removal of support for that. Given that this was the only real need for SuspendFlags in the first place (with other uses tacked on as a hack), this involves several other changes as well: - Modification of MacroAssembler AssertGeneratorObject. No longer accepts a SuspendFlags parameter to determine which type of check to perform. - Removal of `flags` operand from SuspendGenerator bytecode, and the GeneratorStore js-operator. - Removal of `flags` parameter from ResumeGeneratorTrampoline builtins. - Removal of Runtime functions, interpreter intrinsics and AccessBuilders associated with the [[await_input_or_debug_pos]] field in JSAsyncGeneratorObject, as this field no longer exists. - Addition of a new `Yield` AST node (subclass of Suspend) in order to prevent the need for the other SuspendFlag values. BUG=v8:5855 TBR=bmeurer@chromium.org Change-Id: Iff2881e4742497fe5b774915e988c3d9d8fbe487 Reviewed-on: https://chromium-review.googlesource.com/570485 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#46683}
2017-07-14 15:20:23 +00:00
next_call = factory()->NewAwait(next_call, pos);
}
Expression* result_proxy = factory()->NewVariableProxy(result);
Expression* left =
factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos);
// %_IsJSReceiver(...)
ZoneList<Expression*>* is_spec_object_args =
new (zone()) ZoneList<Expression*>(1, zone());
is_spec_object_args->Add(left, zone());
Expression* is_spec_object_call = factory()->NewCallRuntime(
Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
// %ThrowIteratorResultNotAnObject(result)
Expression* result_proxy_again = factory()->NewVariableProxy(result);
ZoneList<Expression*>* throw_arguments =
new (zone()) ZoneList<Expression*>(1, zone());
throw_arguments->Add(result_proxy_again, zone());
Expression* throw_call = factory()->NewCallRuntime(
Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos);
return factory()->NewBinaryOperation(
Token::AND,
factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos),
throw_call, pos);
}
Statement* Parser::InitializeForEachStatement(ForEachStatement* stmt,
Expression* each,
Expression* subject,
Statement* body) {
ForOfStatement* for_of = stmt->AsForOfStatement();
if (for_of != nullptr) {
const bool finalize = true;
return InitializeForOfStatement(for_of, each, subject, body, finalize,
IteratorType::kNormal, each->position());
} else {
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
Expression* assign_each =
RewriteDestructuringAssignment(factory()->NewAssignment(
Token::ASSIGN, each, temp_proxy, kNoSourcePosition));
auto block = factory()->NewBlock(2, false);
block->statements()->Add(
factory()->NewExpressionStatement(assign_each, kNoSourcePosition),
zone());
block->statements()->Add(body, zone());
body = block;
each = factory()->NewVariableProxy(temp);
}
MarkExpressionAsAssigned(each);
stmt->AsForInStatement()->Initialize(each, subject, body);
}
return stmt;
}
// Special case for legacy for
//
// for (var x = initializer in enumerable) body
//
// An initialization block of the form
//
// {
// x = initializer;
// }
//
// is returned in this case. It has reserved space for two statements,
// so that (later on during parsing), the equivalent of
//
// for (x in enumerable) body
//
// is added as a second statement to it.
Block* Parser::RewriteForVarInLegacy(const ForInfo& for_info) {
const DeclarationParsingResult::Declaration& decl =
for_info.parsing_result.declarations[0];
if (!IsLexicalVariableMode(for_info.parsing_result.descriptor.mode) &&
decl.pattern->IsVariableProxy() && decl.initializer != nullptr) {
++use_counts_[v8::Isolate::kForInInitializer];
const AstRawString* name = decl.pattern->AsVariableProxy()->raw_name();
VariableProxy* single_var = NewUnresolved(name);
Block* init_block = factory()->NewBlock(2, true);
init_block->statements()->Add(
factory()->NewExpressionStatement(
factory()->NewAssignment(Token::ASSIGN, single_var,
decl.initializer, kNoSourcePosition),
kNoSourcePosition),
zone());
return init_block;
}
return nullptr;
}
// Rewrite a for-in/of statement of the form
//
// for (let/const/var x in/of e) b
//
// into
//
// {
// var temp;
// for (temp in/of e) {
// let/const/var x = temp;
// b;
// }
// let x; // for TDZ
// }
void Parser::DesugarBindingInForEachStatement(ForInfo* for_info,
Block** body_block,
Expression** each_variable,
bool* ok) {
DCHECK_EQ(1, for_info->parsing_result.declarations.size());
DeclarationParsingResult::Declaration& decl =
for_info->parsing_result.declarations[0];
Variable* temp = NewTemporary(ast_value_factory()->dot_for_string());
auto each_initialization_block = factory()->NewBlock(1, true);
{
auto descriptor = for_info->parsing_result.descriptor;
descriptor.declaration_pos = kNoSourcePosition;
descriptor.initialization_pos = kNoSourcePosition;
descriptor.scope = scope();
decl.initializer = factory()->NewVariableProxy(temp);
bool is_for_var_of =
for_info->mode == ForEachStatement::ITERATE &&
for_info->parsing_result.descriptor.mode == VariableMode::VAR;
bool collect_names =
IsLexicalVariableMode(for_info->parsing_result.descriptor.mode) ||
is_for_var_of;
DeclareAndInitializeVariables(
each_initialization_block, &descriptor, &decl,
collect_names ? &for_info->bound_names : nullptr, CHECK_OK_VOID);
// Annex B.3.5 prohibits the form
// `try {} catch(e) { for (var e of {}); }`
// So if we are parsing a statement like `for (var ... of ...)`
// we need to walk up the scope chain and look for catch scopes
// which have a simple binding, then compare their binding against
// all of the names declared in the init of the for-of we're
// parsing.
if (is_for_var_of) {
Scope* catch_scope = scope();
while (catch_scope != nullptr && !catch_scope->is_declaration_scope()) {
if (catch_scope->is_catch_scope()) {
auto name = catch_scope->catch_variable()->raw_name();
// If it's a simple binding and the name is declared in the for loop.
if (name != ast_value_factory()->dot_catch_string() &&
for_info->bound_names.Contains(name)) {
ReportMessageAt(for_info->parsing_result.bindings_loc,
MessageTemplate::kVarRedeclaration, name);
*ok = false;
return;
}
}
catch_scope = catch_scope->outer_scope();
}
}
}
*body_block = factory()->NewBlock(3, false);
(*body_block)->statements()->Add(each_initialization_block, zone());
*each_variable = factory()->NewVariableProxy(temp, for_info->position);
}
// Create a TDZ for any lexically-bound names in for in/of statements.
Block* Parser::CreateForEachStatementTDZ(Block* init_block,
const ForInfo& for_info, bool* ok) {
if (IsLexicalVariableMode(for_info.parsing_result.descriptor.mode)) {
DCHECK_NULL(init_block);
init_block = factory()->NewBlock(1, false);
for (int i = 0; i < for_info.bound_names.length(); ++i) {
// TODO(adamk): This needs to be some sort of special
// INTERNAL variable that's invisible to the debugger
// but visible to everything else.
Declaration* tdz_decl = DeclareVariable(for_info.bound_names[i], LET,
kNoSourcePosition, CHECK_OK);
tdz_decl->proxy()->var()->set_initializer_position(position());
}
}
return init_block;
}
Statement* Parser::InitializeForOfStatement(
ForOfStatement* for_of, Expression* each, Expression* iterable,
Statement* body, bool finalize, IteratorType type, int next_result_pos) {
// Create the auxiliary expressions needed for iterating over the iterable,
// and initialize the given ForOfStatement with them.
// If finalize is true, also instrument the loop with code that performs the
// proper ES6 iterator finalization. In that case, the result is not
// immediately a ForOfStatement.
const int nopos = kNoSourcePosition;
auto avfactory = ast_value_factory();
Variable* iterator = NewTemporary(avfactory->dot_iterator_string());
Variable* result = NewTemporary(avfactory->dot_result_string());
Variable* completion = NewTemporary(avfactory->empty_string());
// iterator = GetIterator(iterable, type)
Expression* assign_iterator;
{
assign_iterator = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(iterator),
factory()->NewGetIterator(iterable, type, iterable->position()),
[ignition] desugar GetIterator() via bytecode rather than via AST Introduces: - a new AST node representing the GetIterator() algorithm in the specification, to be used by ForOfStatement, YieldExpression (in the case of delegating yield*), and the future `for-await-of` loop proposed in http://tc39.github.io/proposal-async-iteration/#sec-async-iterator-value-unwrap-functions. - a new opcode (JumpIfJSReceiver), which is useful for `if Type(object) is not Object` checks which are common throughout the specification. This node is easily eliminated by TurboFan. The AST node is desugared specially in bytecode, rather than manually when building the AST. The benefit of this is that desugaring in the BytecodeGenerator is much simpler and easier to understand than desugaring the AST. This also reduces parse time very slightly, and allows us to use LoadIC rather than KeyedLoadIC, which seems to have better baseline performance. This results in a ~20% improvement in test/js-perf-test/Iterators micro-benchmarks, which I believe owes to the use of the slightly faster LoadIC as opposed to the KeyedLoadIC in the baseline case. Both produce identical optimized code via TurboFan when the type check can be eliminated, and the load can be replaced with a constant value. BUG=v8:4280 R=bmeurer@chromium.org, rmcilroy@chromium.org, adamk@chromium.org, neis@chromium.org, jarin@chromium.org TBR=rossberg@chromium.org Review-Url: https://codereview.chromium.org/2557593004 Cr-Commit-Position: refs/heads/master@{#41555}
2016-12-07 15:19:52 +00:00
iterable->position());
}
// [if (IteratorType == kNormal)]
// !%_IsJSReceiver(result = iterator.next()) &&
// %ThrowIteratorResultNotAnObject(result)
// [else if (IteratorType == kAsync)]
// !%_IsJSReceiver(result = Await(iterator.next())) &&
// %ThrowIteratorResultNotAnObject(result)
// [endif]
Expression* next_result;
{
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
next_result =
BuildIteratorNextResult(iterator_proxy, result, type, next_result_pos);
}
// result.done
Expression* result_done;
{
Expression* done_literal = factory()->NewStringLiteral(
ast_value_factory()->done_string(), kNoSourcePosition);
Expression* result_proxy = factory()->NewVariableProxy(result);
result_done =
factory()->NewProperty(result_proxy, done_literal, kNoSourcePosition);
}
// result.value
Expression* result_value;
{
Expression* value_literal =
factory()->NewStringLiteral(avfactory->value_string(), nopos);
Expression* result_proxy = factory()->NewVariableProxy(result);
result_value = factory()->NewProperty(result_proxy, value_literal, nopos);
}
// {{tmp = #result_value, completion = kAbruptCompletion, tmp}}
// Expression* result_value (gets overwritten)
if (finalize) {
Variable* tmp = NewTemporary(avfactory->empty_string());
Expression* save_result = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(tmp), result_value, nopos);
Expression* set_completion_abrupt = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(completion),
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
result_value = factory()->NewBinaryOperation(Token::COMMA, save_result,
set_completion_abrupt, nopos);
result_value = factory()->NewBinaryOperation(
Token::COMMA, result_value, factory()->NewVariableProxy(tmp), nopos);
}
// each = #result_value;
Expression* assign_each;
{
assign_each =
factory()->NewAssignment(Token::ASSIGN, each, result_value, nopos);
if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
assign_each = RewriteDestructuringAssignment(assign_each->AsAssignment());
}
}
// {{completion = kNormalCompletion;}}
Statement* set_completion_normal;
if (finalize) {
Expression* proxy = factory()->NewVariableProxy(completion);
Expression* assignment = factory()->NewAssignment(
Token::ASSIGN, proxy,
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
set_completion_normal =
IgnoreCompletion(factory()->NewExpressionStatement(assignment, nopos));
}
// { #loop-body; #set_completion_normal }
// Statement* body (gets overwritten)
if (finalize) {
Block* block = factory()->NewBlock(2, false);
block->statements()->Add(body, zone());
block->statements()->Add(set_completion_normal, zone());
body = block;
}
for_of->Initialize(body, iterator, assign_iterator, next_result, result_done,
assign_each);
return finalize ? FinalizeForOfStatement(for_of, completion, type, nopos)
: for_of;
}
Statement* Parser::DesugarLexicalBindingsInForStatement(
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
Statement* body, Scope* inner_scope, const ForInfo& for_info, bool* ok) {
// ES6 13.7.4.8 specifies that on each loop iteration the let variables are
// copied into a new environment. Moreover, the "next" statement must be
// evaluated not in the environment of the just completed iteration but in
// that of the upcoming one. We achieve this with the following desugaring.
// Extra care is needed to preserve the completion value of the original loop.
//
// We are given a for statement of the form
//
// labels: for (let/const x = i; cond; next) body
//
// and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie.,
// blocks whose ignore_completion_value_ flag is set.
//
// {
// let/const x = i;
// temp_x = x;
// first = 1;
// undefined;
// outer: for (;;) {
// let/const x = temp_x;
// {{ if (first == 1) {
// first = 0;
// } else {
// next;
// }
// flag = 1;
// if (!cond) break;
// }}
// labels: for (; flag == 1; flag = 0, temp_x = x) {
// body
// }
// {{ if (flag == 1) // Body used break.
// break;
// }}
// }
// }
DCHECK_GT(for_info.bound_names.length(), 0);
ZoneList<Variable*> temps(for_info.bound_names.length(), zone());
Block* outer_block =
factory()->NewBlock(for_info.bound_names.length() + 4, false);
// Add statement: let/const x = i.
outer_block->statements()->Add(init, zone());
const AstRawString* temp_name = ast_value_factory()->dot_for_string();
// For each lexical variable x:
// make statement: temp_x = x.
for (int i = 0; i < for_info.bound_names.length(); i++) {
VariableProxy* proxy = NewUnresolved(for_info.bound_names[i]);
Variable* temp = NewTemporary(temp_name);
VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
Assignment* assignment = factory()->NewAssignment(Token::ASSIGN, temp_proxy,
proxy, kNoSourcePosition);
Statement* assignment_statement =
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
outer_block->statements()->Add(assignment_statement, zone());
temps.Add(temp, zone());
}
Variable* first = nullptr;
// Make statement: first = 1.
if (next) {
first = NewTemporary(temp_name);
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
Assignment* assignment = factory()->NewAssignment(
Token::ASSIGN, first_proxy, const1, kNoSourcePosition);
Statement* assignment_statement =
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
outer_block->statements()->Add(assignment_statement, zone());
}
// make statement: undefined;
outer_block->statements()->Add(
factory()->NewExpressionStatement(
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
zone());
// Make statement: outer: for (;;)
// Note that we don't actually create the label, or set this loop up as an
// explicit break target, instead handing it directly to those nodes that
// need to know about it. This should be safe because we don't run any code
// in this function that looks up break targets.
ForStatement* outer_loop =
factory()->NewForStatement(nullptr, kNoSourcePosition);
outer_block->statements()->Add(outer_loop, zone());
outer_block->set_scope(scope());
Block* inner_block = factory()->NewBlock(3, false);
{
BlockState block_state(&scope_, inner_scope);
Block* ignore_completion_block =
factory()->NewBlock(for_info.bound_names.length() + 3, true);
ZoneList<Variable*> inner_vars(for_info.bound_names.length(), zone());
// For each let variable x:
// make statement: let/const x = temp_x.
for (int i = 0; i < for_info.bound_names.length(); i++) {
Declaration* decl = DeclareVariable(
for_info.bound_names[i], for_info.parsing_result.descriptor.mode,
kNoSourcePosition, CHECK_OK);
inner_vars.Add(decl->proxy()->var(), zone());
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
Assignment* assignment = factory()->NewAssignment(
Token::INIT, decl->proxy(), temp_proxy, kNoSourcePosition);
Statement* assignment_statement =
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
int declaration_pos = for_info.parsing_result.descriptor.declaration_pos;
DCHECK_NE(declaration_pos, kNoSourcePosition);
decl->proxy()->var()->set_initializer_position(declaration_pos);
ignore_completion_block->statements()->Add(assignment_statement, zone());
}
// Make statement: if (first == 1) { first = 0; } else { next; }
if (next) {
DCHECK(first);
Expression* compare = nullptr;
// Make compare expression: first == 1.
{
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1,
kNoSourcePosition);
}
Statement* clear_first = nullptr;
// Make statement: first = 0.
{
VariableProxy* first_proxy = factory()->NewVariableProxy(first);
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
Assignment* assignment = factory()->NewAssignment(
Token::ASSIGN, first_proxy, const0, kNoSourcePosition);
clear_first =
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
}
Statement* clear_first_or_next = factory()->NewIfStatement(
compare, clear_first, next, kNoSourcePosition);
ignore_completion_block->statements()->Add(clear_first_or_next, zone());
}
Variable* flag = NewTemporary(temp_name);
// Make statement: flag = 1.
{
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
Assignment* assignment = factory()->NewAssignment(
Token::ASSIGN, flag_proxy, const1, kNoSourcePosition);
Statement* assignment_statement =
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
ignore_completion_block->statements()->Add(assignment_statement, zone());
}
// Make statement: if (!cond) break.
if (cond) {
Statement* stop =
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
Statement* noop = factory()->NewEmptyStatement(kNoSourcePosition);
ignore_completion_block->statements()->Add(
factory()->NewIfStatement(cond, noop, stop, cond->position()),
zone());
}
inner_block->statements()->Add(ignore_completion_block, zone());
// Make cond expression for main loop: flag == 1.
Expression* flag_cond = nullptr;
{
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
kNoSourcePosition);
}
// Create chain of expressions "flag = 0, temp_x = x, ..."
Statement* compound_next_statement = nullptr;
{
Expression* compound_next = nullptr;
// Make expression: flag = 0.
{
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy,
const0, kNoSourcePosition);
}
// Make the comma-separated list of temp_x = x assignments.
int inner_var_proxy_pos = scanner()->location().beg_pos;
for (int i = 0; i < for_info.bound_names.length(); i++) {
VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
VariableProxy* proxy =
factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos);
Assignment* assignment = factory()->NewAssignment(
Token::ASSIGN, temp_proxy, proxy, kNoSourcePosition);
compound_next = factory()->NewBinaryOperation(
Token::COMMA, compound_next, assignment, kNoSourcePosition);
}
compound_next_statement =
factory()->NewExpressionStatement(compound_next, kNoSourcePosition);
}
// Make statement: labels: for (; flag == 1; flag = 0, temp_x = x)
// Note that we re-use the original loop node, which retains its labels
// and ensures that any break or continue statements in body point to
// the right place.
loop->Initialize(nullptr, flag_cond, compound_next_statement, body);
inner_block->statements()->Add(loop, zone());
// Make statement: {{if (flag == 1) break;}}
{
Expression* compare = nullptr;
// Make compare expresion: flag == 1.
{
Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
kNoSourcePosition);
}
Statement* stop =
factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
Statement* empty = factory()->NewEmptyStatement(kNoSourcePosition);
Statement* if_flag_break =
factory()->NewIfStatement(compare, stop, empty, kNoSourcePosition);
inner_block->statements()->Add(IgnoreCompletion(if_flag_break), zone());
}
inner_block->set_scope(inner_scope);
}
outer_loop->Initialize(nullptr, nullptr, nullptr, inner_block);
return outer_block;
}
void Parser::AddArrowFunctionFormalParameters(
ParserFormalParameters* parameters, Expression* expr, int end_pos,
bool* ok) {
// ArrowFunctionFormals ::
// Nary(Token::COMMA, VariableProxy*, Tail)
// Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail)
// Tail
// NonTailArrowFunctionFormals ::
// Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy)
// VariableProxy
// Tail ::
// VariableProxy
// Spread(VariableProxy)
//
// We need to visit the parameters in left-to-right order
//
// For the Nary case, we simply visit the parameters in a loop.
if (expr->IsNaryOperation()) {
NaryOperation* nary = expr->AsNaryOperation();
// The classifier has already run, so we know that the expression is a valid
// arrow function formals production.
DCHECK_EQ(nary->op(), Token::COMMA);
// Each op position is the end position of the *previous* expr, with the
// second (i.e. first "subsequent") op position being the end position of
// the first child expression.
Expression* next = nary->first();
for (size_t i = 0; i < nary->subsequent_length(); ++i) {
AddArrowFunctionFormalParameters(
parameters, next, nary->subsequent_op_position(i), CHECK_OK_VOID);
next = nary->subsequent(i);
}
AddArrowFunctionFormalParameters(parameters, next, end_pos, CHECK_OK_VOID);
return;
}
// For the binary case, we recurse on the left-hand side of binary comma
// expressions.
if (expr->IsBinaryOperation()) {
BinaryOperation* binop = expr->AsBinaryOperation();
// The classifier has already run, so we know that the expression is a valid
// arrow function formals production.
DCHECK_EQ(binop->op(), Token::COMMA);
Expression* left = binop->left();
Expression* right = binop->right();
int comma_pos = binop->position();
AddArrowFunctionFormalParameters(parameters, left, comma_pos,
CHECK_OK_VOID);
// LHS of comma expression should be unparenthesized.
expr = right;
}
// Only the right-most expression may be a rest parameter.
DCHECK(!parameters->has_rest);
bool is_rest = expr->IsSpread();
if (is_rest) {
expr = expr->AsSpread()->expression();
parameters->has_rest = true;
}
DCHECK_IMPLIES(parameters->is_simple, !is_rest);
DCHECK_IMPLIES(parameters->is_simple, expr->IsVariableProxy());
Expression* initializer = nullptr;
if (expr->IsAssignment()) {
if (expr->IsRewritableExpression()) {
// This expression was parsed as a possible destructuring assignment.
// Mark it as already-rewritten to avoid an unnecessary visit later.
expr->AsRewritableExpression()->set_rewritten();
}
Assignment* assignment = expr->AsAssignment();
DCHECK(!assignment->IsCompoundAssignment());
initializer = assignment->value();
expr = assignment->target();
}
AddFormalParameter(parameters, expr, initializer,
end_pos, is_rest);
}
void Parser::DeclareArrowFunctionFormalParameters(
ParserFormalParameters* parameters, Expression* expr,
const Scanner::Location& params_loc, Scanner::Location* duplicate_loc,
bool* ok) {
if (expr->IsEmptyParentheses()) return;
AddArrowFunctionFormalParameters(parameters, expr, params_loc.end_pos,
CHECK_OK_VOID);
if (parameters->arity > Code::kMaxArguments) {
ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList);
*ok = false;
return;
}
bool has_duplicate = false;
DeclareFormalParameters(parameters->scope, parameters->params,
parameters->is_simple, &has_duplicate);
if (has_duplicate) {
*duplicate_loc = scanner()->location();
}
DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters());
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
}
void Parser::PrepareGeneratorVariables() {
// The code produced for generators relies on forced context allocation of
// parameters (it does not restore the frame's parameters upon resume).
function_state_->scope()->ForceContextAllocationForParameters();
// Calling a generator returns a generator object. That object is stored
// in a temporary variable, a definition that is used by "yield"
// expressions.
function_state_->scope()->DeclareGeneratorObjectVar(
ast_value_factory()->dot_generator_object_string());
}
FunctionLiteral* Parser::ParseFunctionLiteral(
const AstRawString* function_name, Scanner::Location function_name_location,
FunctionNameValidity function_name_validity, FunctionKind kind,
int function_token_pos, FunctionLiteral::FunctionType function_type,
LanguageMode language_mode, bool* ok) {
// Function ::
// '(' FormalParameterList? ')' '{' FunctionBody '}'
//
// Getter ::
// '(' ')' '{' FunctionBody '}'
//
// Setter ::
// '(' PropertySetParameterList ')' '{' FunctionBody '}'
int pos = function_token_pos == kNoSourcePosition ? peek_position()
: function_token_pos;
// Anonymous functions were passed either the empty symbol or a null
// handle as the function name. Remember if we were passed a non-empty
// handle to decide whether to invoke function name inference.
bool should_infer_name = function_name == nullptr;
// We want a non-null handle as the function name by default. We will handle
// the "function does not have a shared name" case later.
if (should_infer_name) {
function_name = ast_value_factory()->empty_string();
}
FunctionLiteral::EagerCompileHint eager_compile_hint =
function_state_->next_function_is_likely_called()
? FunctionLiteral::kShouldEagerCompile
: default_eager_compile_hint();
// Determine if the function can be parsed lazily. Lazy parsing is
// different from lazy compilation; we need to parse more eagerly than we
// compile.
// We can only parse lazily if we also compile lazily. The heuristics for lazy
// compilation are:
// - It must not have been prohibited by the caller to Parse (some callers
// need a full AST).
// - The outer scope must allow lazy compilation of inner functions.
// - The function mustn't be a function expression with an open parenthesis
// before; we consider that a hint that the function will be called
// immediately, and it would be a waste of time to make it lazily
// compiled.
// These are all things we can know at this point, without looking at the
// function itself.
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
// We separate between lazy parsing top level functions and lazy parsing inner
// functions, because the latter needs to do more work. In particular, we need
// to track unresolved variables to distinguish between these cases:
// (function foo() {
// bar = function() { return 1; }
// })();
// and
// (function foo() {
// var a = 1;
// bar = function() { return a; }
// })();
// Now foo will be parsed eagerly and compiled eagerly (optimization: assume
// parenthesis before the function means that it will be called
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
// immediately). bar can be parsed lazily, but we need to parse it in a mode
// that tracks unresolved variables.
DCHECK_IMPLIES(parse_lazily(), FLAG_lazy);
DCHECK_IMPLIES(parse_lazily(), allow_lazy_);
DCHECK_IMPLIES(parse_lazily(), extension_ == nullptr);
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
const bool is_lazy =
eager_compile_hint == FunctionLiteral::kShouldLazyCompile;
const bool is_top_level = AllowsLazyParsingWithoutUnresolvedVariables();
const bool is_lazy_top_level_function = is_lazy && is_top_level;
const bool is_lazy_inner_function = is_lazy && !is_top_level;
const bool is_expression =
function_type == FunctionLiteral::kAnonymousExpression ||
function_type == FunctionLiteral::kNamedExpression;
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
RuntimeCallTimerScope runtime_timer(
runtime_call_stats_,
parsing_on_main_thread_
? RuntimeCallCounterId::kParseFunctionLiteral
: RuntimeCallCounterId::kParseBackgroundFunctionLiteral);
base::ElapsedTimer timer;
if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
// Determine whether we can still lazy parse the inner function.
// The preconditions are:
// - Lazy compilation has to be enabled.
// - Neither V8 natives nor native function declarations can be allowed,
// since parsing one would retroactively force the function to be
// eagerly compiled.
// - The invoker of this parser can't depend on the AST being eagerly
// built (either because the function is about to be compiled, or
// because the AST is going to be inspected for some reason).
// - Because of the above, we can't be attempting to parse a
// FunctionExpression; even without enclosing parentheses it might be
// immediately invoked.
// - The function literal shouldn't be hinted to eagerly compile.
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
// Inner functions will be parsed using a temporary Zone. After parsing, we
// will migrate unresolved variable into a Scope in the main Zone.
const bool should_preparse_inner =
parse_lazily() && FLAG_lazy_inner_functions && is_lazy_inner_function &&
(!is_expression || FLAG_aggressive_lazy_inner_functions);
// This may be modified later to reflect preparsing decision taken
bool should_preparse =
(parse_lazily() && is_lazy_top_level_function) || should_preparse_inner;
ZoneList<Statement*>* body = nullptr;
int expected_property_count = -1;
int num_parameters = -1;
int function_length = -1;
bool has_duplicate_parameters = false;
int function_literal_id = GetNextFunctionLiteralId();
ProducedPreParsedScopeData* produced_preparsed_scope_data = nullptr;
Zone* outer_zone = zone();
DeclarationScope* scope;
{
// Temporary zones can nest. When we migrate free variables (see below), we
// need to recreate them in the previous Zone.
AstNodeFactory previous_zone_ast_node_factory(ast_value_factory(), zone());
// Open a new zone scope, which sets our AstNodeFactory to allocate in the
// new temporary zone if the preconditions are satisfied, and ensures that
// the previous zone is always restored after parsing the body. To be able
// to do scope analysis correctly after full parsing, we migrate needed
// information when the function is parsed.
Zone temp_zone(zone()->allocator(), ZONE_NAME);
DiscardableZoneScope zone_scope(this, &temp_zone, should_preparse);
// This Scope lives in the main zone. We'll migrate data into that zone
// later.
scope = NewFunctionScope(kind, outer_zone);
SetLanguageMode(scope, language_mode);
#ifdef DEBUG
scope->SetScopeName(function_name);
if (should_preparse) scope->set_needs_migration();
#endif
Expect(Token::LPAREN, CHECK_OK);
scope->set_start_position(scanner()->location().beg_pos);
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
// Eager or lazy parse? If is_lazy_top_level_function, we'll parse
// lazily. We'll call SkipFunction, which may decide to
// abort lazy parsing if it suspects that wasn't a good idea. If so (in
// which case the parser is expected to have backtracked), or if we didn't
// try to lazy parse in the first place, we'll have to parse eagerly.
if (should_preparse) {
DCHECK(parse_lazily());
DCHECK(is_lazy_top_level_function || is_lazy_inner_function);
Scanner::BookmarkScope bookmark(scanner());
bookmark.Set();
LazyParsingResult result = SkipFunction(
function_name, kind, function_type, scope, &num_parameters,
&produced_preparsed_scope_data, is_lazy_inner_function,
is_lazy_top_level_function, CHECK_OK);
if (result == kLazyParsingAborted) {
DCHECK(is_lazy_top_level_function);
bookmark.Apply();
// This is probably an initialization function. Inform the compiler it
Reland "[Compiler] Remove code aging support." > This reverts commit 42d3d36bc3b4e76cbdf883432dcc3647526fbf58. > > Original change's description: > > [Compiler] Remove code aging support. > > > > Code aging is no longer supported by any remaining compilers now > > that full codegen has been removed. This CL removes all vestiges of > > code aging. > > > > BUG=v8:6409 > > > > Change-Id: I945ebcc20c7c55120550c8ee36188bfa042ea65e > > Reviewed-on: https://chromium-review.googlesource.com/619153 > > Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> > > Reviewed-by: Yang Guo <yangguo@chromium.org> > > Reviewed-by: Ulan Degenbaev <ulan@chromium.org> > > Reviewed-by: Marja Hölttä <marja@chromium.org> > > Commit-Queue: Ross McIlroy <rmcilroy@chromium.org> > > Cr-Commit-Position: refs/heads/master@{#47501} > > TBR=ulan@chromium.org,rmcilroy@chromium.org,marja@chromium.org,yangguo@chromium.org,mstarzinger@chromium.org,rodolph.perfetta@arm.com > > Change-Id: I9d8b2985e2d472697908270d93a35eb7ef9c88a8 > No-Presubmit: true > No-Tree-Checks: true > No-Try: true > Bug: v8:6409 > Reviewed-on: https://chromium-review.googlesource.com/625998 > Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> > Commit-Queue: Ross McIlroy <rmcilroy@chromium.org> > Cr-Commit-Position: refs/heads/master@{#47506} TBR=ulan@chromium.org,rmcilroy@chromium.org,marja@chromium.org,yangguo@chromium.org,mstarzinger@chromium.org,rodolph.perfetta@arm.com Change-Id: I68785c6be7686e874b3848103e3a34483eaeb519 No-Presubmit: true No-Tree-Checks: true No-Try: true Bug: v8:6409 Reviewed-on: https://chromium-review.googlesource.com/625919 Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Yang Guo <yangguo@chromium.org> Commit-Queue: Ross McIlroy <rmcilroy@chromium.org> Cr-Commit-Position: refs/heads/master@{#47535}
2017-08-23 08:22:33 +00:00
// should also eager-compile this function.
eager_compile_hint = FunctionLiteral::kShouldEagerCompile;
scope->ResetAfterPreparsing(ast_value_factory(), true);
zone_scope.Reset();
// Trigger eager (re-)parsing, just below this block.
should_preparse = false;
}
}
if (should_preparse) {
scope->AnalyzePartially(&previous_zone_ast_node_factory);
} else {
body = ParseFunction(function_name, pos, kind, function_type, scope,
&num_parameters, &function_length,
&has_duplicate_parameters, &expected_property_count,
CHECK_OK);
}
DCHECK_EQ(should_preparse, temp_zoned_);
if (V8_UNLIKELY(FLAG_log_function_events)) {
double ms = timer.Elapsed().InMillisecondsF();
const char* event_name = should_preparse
? (is_top_level ? "preparse-no-resolution"
: "preparse-resolution")
: "full-parse";
logger_->FunctionEvent(
event_name, nullptr, script_id(), ms, scope->start_position(),
scope->end_position(),
reinterpret_cast<const char*>(function_name->raw_data()),
function_name->byte_length());
}
if (V8_UNLIKELY(FLAG_runtime_stats)) {
if (should_preparse) {
RuntimeCallCounterId counter_id =
parsing_on_main_thread_
? RuntimeCallCounterId::kPreParseWithVariableResolution
: RuntimeCallCounterId::
kPreParseBackgroundWithVariableResolution;
if (is_top_level) {
counter_id = parsing_on_main_thread_
? RuntimeCallCounterId::kPreParseNoVariableResolution
: RuntimeCallCounterId::
kPreParseBackgroundNoVariableResolution;
}
if (runtime_call_stats_) {
runtime_call_stats_->CorrectCurrentCounterId(counter_id);
}
}
}
// Validate function name. We can do this only after parsing the function,
// since the function can declare itself strict.
language_mode = scope->language_mode();
CheckFunctionName(language_mode, function_name, function_name_validity,
function_name_location, CHECK_OK);
if (is_strict(language_mode)) {
CheckStrictOctalLiteral(scope->start_position(), scope->end_position(),
CHECK_OK);
}
CheckConflictingVarDeclarations(scope, CHECK_OK);
} // DiscardableZoneScope goes out of scope.
FunctionLiteral::ParameterFlag duplicate_parameters =
has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters
: FunctionLiteral::kNoDuplicateParameters;
// Note that the FunctionLiteral needs to be created in the main Zone again.
FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
function_name, scope, body, expected_property_count, num_parameters,
function_length, duplicate_parameters, function_type, eager_compile_hint,
pos, true, function_literal_id, produced_preparsed_scope_data);
function_literal->set_function_token_position(function_token_pos);
if (should_infer_name) {
DCHECK_NOT_NULL(fni_);
fni_->AddFunction(function_literal);
}
return function_literal;
}
Parser::LazyParsingResult Parser::SkipFunction(
const AstRawString* function_name, FunctionKind kind,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope, int* num_parameters,
ProducedPreParsedScopeData** produced_preparsed_scope_data,
bool is_inner_function, bool may_abort, bool* ok) {
FunctionState function_state(&function_state_, &scope_, function_scope);
DCHECK_NE(kNoSourcePosition, function_scope->start_position());
Implement new Function.prototype.toString --harmony-function-tostring For functions declared in source code, the .toString() representation will be an excerpt of the source code. * For functions declared with the "function" keyword, the excerpt starts at the "function" or "async" keyword and ends at the final "}". The previous behavior would start the excerpt at the "(" of the parameter list, and prepend a canonical `"function " + name` or similar, which would discard comments and formatting surrounding the function's name. Anonymous functions declared as function expressions no longer get the name "anonymous" in their toString representation. * For methods, the excerpt starts at the "get", "set", "*" (for generator methods), or property name, whichever comes first. Previously, the toString representation for methods would use a canonical prefix before the "(" of the parameter list. Note that any "static" keyword is omitted. * For arrow functions and class declarations, the excerpt is unchanged. For functions created with the Function, GeneratorFunction, or AsyncFunction constructors: * The string separating the parameter text and body text is now "\n) {\n", where previously it was "\n/*``*/) {\n" or ") {\n". * At one point, newline normalization was required by the spec here, but that was removed from the spec, and so this CL does not do it. Included in this CL is a fix for CreateDynamicFunction parsing. ')' and '`' characters in the parameter string are no longer disallowed, and Function("a=function(", "}){") is no longer allowed. BUG=v8:4958, v8:4230 Review-Url: https://codereview.chromium.org/2156303002 Cr-Commit-Position: refs/heads/master@{#43262}
2017-02-16 20:19:24 +00:00
DCHECK_EQ(kNoSourcePosition, parameters_end_pos_);
if (produce_cached_parse_data()) CHECK(log_);
DCHECK_IMPLIES(IsArrowFunction(kind),
scanner()->current_token() == Token::ARROW);
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
// Inner functions are not part of the cached data.
if (!is_inner_function && consume_cached_parse_data() &&
!cached_parse_data_->rejected()) {
// If we have cached data, we use it to skip parsing the function. The data
// contains the information we need to construct the lazy function.
FunctionEntry entry =
cached_parse_data_->GetFunctionEntry(function_scope->start_position());
// Check that cached data is valid. If not, mark it as invalid (the embedder
// handles it). Note that end position greater than end of stream is safe,
// and hard to check.
if (entry.is_valid() &&
entry.end_pos() > function_scope->start_position()) {
total_preparse_skipped_ += entry.end_pos() - position();
function_scope->set_end_position(entry.end_pos());
scanner()->SeekForward(entry.end_pos() - 1);
Expect(Token::RBRACE, CHECK_OK_VALUE(kLazyParsingComplete));
*num_parameters = entry.num_parameters();
SetLanguageMode(function_scope, entry.language_mode());
if (entry.uses_super_property())
function_scope->RecordSuperPropertyUsage();
SkipFunctionLiterals(entry.num_inner_functions());
return kLazyParsingComplete;
}
cached_parse_data_->Reject();
}
// FIXME(marja): There are 3 ways to skip functions now. Unify them.
DCHECK_NOT_NULL(consumed_preparsed_scope_data_);
if (consumed_preparsed_scope_data_->HasData()) {
DCHECK(FLAG_preparser_scope_analysis);
int end_position;
LanguageMode language_mode;
int num_inner_functions;
bool uses_super_property;
*produced_preparsed_scope_data =
consumed_preparsed_scope_data_->GetDataForSkippableFunction(
main_zone(), function_scope->start_position(), &end_position,
num_parameters, &num_inner_functions, &uses_super_property,
&language_mode);
function_scope->outer_scope()->SetMustUsePreParsedScopeData();
function_scope->set_is_skipped_function(true);
function_scope->set_end_position(end_position);
scanner()->SeekForward(end_position - 1);
Expect(Token::RBRACE, CHECK_OK_VALUE(kLazyParsingComplete));
SetLanguageMode(function_scope, language_mode);
if (uses_super_property) {
function_scope->RecordSuperPropertyUsage();
}
SkipFunctionLiterals(num_inner_functions);
return kLazyParsingComplete;
}
// With no cached data, we partially parse the function, without building an
// AST. This gathers the data needed to build a lazy function.
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.PreParse");
// Aborting inner function preparsing would leave scopes in an inconsistent
// state; we don't parse inner functions in the abortable mode anyway.
DCHECK(!is_inner_function || !may_abort);
PreParser::PreParseResult result = reusable_preparser()->PreParseFunction(
function_name, kind, function_type, function_scope, is_inner_function,
may_abort, use_counts_, produced_preparsed_scope_data, this->script_id());
2016-09-27 09:49:26 +00:00
// Return immediately if pre-parser decided to abort parsing.
if (result == PreParser::kPreParseAbort) return kLazyParsingAborted;
if (result == PreParser::kPreParseStackOverflow) {
// Propagate stack overflow.
set_stack_overflow();
*ok = false;
return kLazyParsingComplete;
}
if (pending_error_handler()->has_pending_error()) {
*ok = false;
return kLazyParsingComplete;
}
PreParserLogger* logger = reusable_preparser()->logger();
function_scope->set_end_position(logger->end());
Expect(Token::RBRACE, CHECK_OK_VALUE(kLazyParsingComplete));
total_preparse_skipped_ +=
function_scope->end_position() - function_scope->start_position();
*num_parameters = logger->num_parameters();
SkipFunctionLiterals(logger->num_inner_functions());
Reland of Preparse inner functions (new try) (patchset #1 id:1 of https://codereview.chromium.org/2373443003/ ) Reason for revert: Stability thief found, relanding speculative reverts. Original issue's description: > Revert of Preparse inner functions (new try) (patchset #21 id:420001 of https://codereview.chromium.org/2352593002/ ) > > Reason for revert: > We currently have some stability issues on Canary. Let's reland this after we verified that we "fixed" Canary again. > > Original issue's description: > > Preparse inner functions (new try) > > > > This is an overly pessimistic approach where PreParser only keeps > > track of unresolved variables, but doesn't declare anything. This > > will result in context-allocating variables in the outer function > > unnecessarily, if the variable names clash with variable names > > used by the inner function (even if the variables are not the > > same). However, we have been unable to prove that this approach > > wouldn't be good enough for the practical purposes. > > > > Fixes after the previous try ( https://codereview.chromium.org/2322243002/ ): > > Keep the context-allocation decision stable when compiling fully eagerly. > > > > Tests which exercise this functionality: > > mjsunit/fixed-context-shapes-when-recompiling.js > > > > Design document (chromium): > > > > https://docs.google.com/a/chromium.org/document/d/1rRv5JJZ0JpOZAZN2CSUwZPFJiBAdRnTiSYhazseNHFg/edit?usp=sharing > > > > BUG= > > > > Committed: https://crrev.com/7c73cf32c60484cdf37c84f1d61b4640e87068d7 > > Cr-Commit-Position: refs/heads/master@{#39719} > > TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG= > > Committed: https://crrev.com/1e6296b2a7cfc307fd9e722e619f42965da4a267 > Cr-Commit-Position: refs/heads/master@{#39730} TBR=verwaest@chromium.org,adamk@chromium.org,marja@chromium.org,hablich@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review-Url: https://codereview.chromium.org/2377513006 Cr-Commit-Position: refs/heads/master@{#39755}
2016-09-27 09:48:17 +00:00
if (!is_inner_function && produce_cached_parse_data()) {
DCHECK(log_);
log_->LogFunction(function_scope->start_position(),
function_scope->end_position(), *num_parameters,
language_mode(), function_scope->NeedsHomeObject(),
logger->num_inner_functions());
}
return kLazyParsingComplete;
}
[parser] Better error message when destructuring against undefined/null Previously, when destructuring against null or undefined we would print: d8> var { x } = null (d8):1: TypeError: Cannot match against 'undefined' or 'null'. var { x } = null ^ TypeError: Cannot match against 'undefined' or 'null'. at (d8):1:1 The above message uses the term "match" which isn't a common term in JavaScript to describe destructuring. This message also doesn't provide the name of the property that fails destructuring. This patch changes the error message to be: d8> var { x } = null; (d8):1: TypeError: Cannot destructure property `x` of 'undefined' or 'null'. var { x } = null; ^ TypeError: Cannot destructure property `x` of 'undefined' or 'null'. at (d8):1:1 This patch changes the message to say "destructure" instead of "match". This patch adds support for printing property names that are string literals. We iterate through every property and pick the first string literal property name if it exists. This provides at least some feedback to the developer. This patch also makes the pointer point to the position of the property name that fails destructuring. For computed and numeric property names, we print a generic error: d8> var { 1: x } = null (d8):1: TypeError: Cannot destructure against 'undefined' or 'null'. var { 1: x } = null ^ TypeError: Cannot destructure against 'undefined' or 'null'. at (d8):1:1 Bug: v8:6499 Change-Id: I35b1ac749489828686f042975294b9926e2dfc53 Reviewed-on: https://chromium-review.googlesource.com/537341 Reviewed-by: Adam Klein <adamk@chromium.org> Commit-Queue: Sathya Gunasekaran <gsathya@chromium.org> Cr-Commit-Position: refs/heads/master@{#45965}
2017-06-15 21:24:37 +00:00
Statement* Parser::BuildAssertIsCoercible(Variable* var,
ObjectLiteral* pattern) {
// if (var === null || var === undefined)
// throw /* type error kNonCoercible) */;
[parser] Better error message when destructuring against undefined/null Previously, when destructuring against null or undefined we would print: d8> var { x } = null (d8):1: TypeError: Cannot match against 'undefined' or 'null'. var { x } = null ^ TypeError: Cannot match against 'undefined' or 'null'. at (d8):1:1 The above message uses the term "match" which isn't a common term in JavaScript to describe destructuring. This message also doesn't provide the name of the property that fails destructuring. This patch changes the error message to be: d8> var { x } = null; (d8):1: TypeError: Cannot destructure property `x` of 'undefined' or 'null'. var { x } = null; ^ TypeError: Cannot destructure property `x` of 'undefined' or 'null'. at (d8):1:1 This patch changes the message to say "destructure" instead of "match". This patch adds support for printing property names that are string literals. We iterate through every property and pick the first string literal property name if it exists. This provides at least some feedback to the developer. This patch also makes the pointer point to the position of the property name that fails destructuring. For computed and numeric property names, we print a generic error: d8> var { 1: x } = null (d8):1: TypeError: Cannot destructure against 'undefined' or 'null'. var { 1: x } = null ^ TypeError: Cannot destructure against 'undefined' or 'null'. at (d8):1:1 Bug: v8:6499 Change-Id: I35b1ac749489828686f042975294b9926e2dfc53 Reviewed-on: https://chromium-review.googlesource.com/537341 Reviewed-by: Adam Klein <adamk@chromium.org> Commit-Queue: Sathya Gunasekaran <gsathya@chromium.org> Cr-Commit-Position: refs/heads/master@{#45965}
2017-06-15 21:24:37 +00:00
auto source_position = pattern->position();
const AstRawString* property = ast_value_factory()->empty_string();
MessageTemplate::Template msg = MessageTemplate::kNonCoercible;
for (ObjectLiteralProperty* literal_property : *pattern->properties()) {
Expression* key = literal_property->key();
if (key->IsPropertyName()) {
property = key->AsLiteral()->AsRawPropertyName();
msg = MessageTemplate::kNonCoercibleWithProperty;
source_position = key->position();
break;
}
}
Expression* condition = factory()->NewBinaryOperation(
Token::OR,
factory()->NewCompareOperation(
Token::EQ_STRICT, factory()->NewVariableProxy(var),
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
factory()->NewCompareOperation(
Token::EQ_STRICT, factory()->NewVariableProxy(var),
factory()->NewNullLiteral(kNoSourcePosition), kNoSourcePosition),
kNoSourcePosition);
Expression* throw_type_error =
[parser] Better error message when destructuring against undefined/null Previously, when destructuring against null or undefined we would print: d8> var { x } = null (d8):1: TypeError: Cannot match against 'undefined' or 'null'. var { x } = null ^ TypeError: Cannot match against 'undefined' or 'null'. at (d8):1:1 The above message uses the term "match" which isn't a common term in JavaScript to describe destructuring. This message also doesn't provide the name of the property that fails destructuring. This patch changes the error message to be: d8> var { x } = null; (d8):1: TypeError: Cannot destructure property `x` of 'undefined' or 'null'. var { x } = null; ^ TypeError: Cannot destructure property `x` of 'undefined' or 'null'. at (d8):1:1 This patch changes the message to say "destructure" instead of "match". This patch adds support for printing property names that are string literals. We iterate through every property and pick the first string literal property name if it exists. This provides at least some feedback to the developer. This patch also makes the pointer point to the position of the property name that fails destructuring. For computed and numeric property names, we print a generic error: d8> var { 1: x } = null (d8):1: TypeError: Cannot destructure against 'undefined' or 'null'. var { 1: x } = null ^ TypeError: Cannot destructure against 'undefined' or 'null'. at (d8):1:1 Bug: v8:6499 Change-Id: I35b1ac749489828686f042975294b9926e2dfc53 Reviewed-on: https://chromium-review.googlesource.com/537341 Reviewed-by: Adam Klein <adamk@chromium.org> Commit-Queue: Sathya Gunasekaran <gsathya@chromium.org> Cr-Commit-Position: refs/heads/master@{#45965}
2017-06-15 21:24:37 +00:00
NewThrowTypeError(msg, property, source_position);
IfStatement* if_statement = factory()->NewIfStatement(
condition,
factory()->NewExpressionStatement(throw_type_error, kNoSourcePosition),
factory()->NewEmptyStatement(kNoSourcePosition), kNoSourcePosition);
return if_statement;
}
class InitializerRewriter final
: public AstTraversalVisitor<InitializerRewriter> {
public:
InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser)
: AstTraversalVisitor(stack_limit, root), parser_(parser) {}
private:
// This is required so that the overriden Visit* methods can be
// called by the base class (template).
friend class AstTraversalVisitor<InitializerRewriter>;
// Just rewrite destructuring assignments wrapped in RewritableExpressions.
void VisitRewritableExpression(RewritableExpression* to_rewrite) {
if (to_rewrite->is_rewritten()) return;
parser_->RewriteDestructuringAssignment(to_rewrite);
AstTraversalVisitor::VisitRewritableExpression(to_rewrite);
}
// Code in function literals does not need to be eagerly rewritten, it will be
// rewritten when scheduled.
void VisitFunctionLiteral(FunctionLiteral* expr) {}
Parser* parser_;
};
void Parser::RewriteParameterInitializer(Expression* expr) {
InitializerRewriter rewriter(stack_limit_, expr, this);
rewriter.Run();
}
Block* Parser::BuildParameterInitializationBlock(
const ParserFormalParameters& parameters, bool* ok) {
DCHECK(!parameters.is_simple);
DCHECK(scope()->is_function_scope());
DCHECK_EQ(scope(), parameters.scope);
Block* init_block = factory()->NewBlock(1, true);
int index = 0;
for (auto parameter : parameters.params) {
DeclarationDescriptor descriptor;
descriptor.declaration_kind = DeclarationDescriptor::PARAMETER;
descriptor.scope = scope();
descriptor.mode = LET;
descriptor.declaration_pos = parameter->pattern->position();
// The position that will be used by the AssignmentExpression
// which copies from the temp parameter to the pattern.
//
// TODO(adamk): Should this be kNoSourcePosition, since
// it's just copying from a temp var to the real param var?
descriptor.initialization_pos = parameter->pattern->position();
Expression* initial_value =
factory()->NewVariableProxy(parameters.scope->parameter(index));
if (parameter->initializer != nullptr) {
// IS_UNDEFINED($param) ? initializer : $param
// Ensure initializer is rewritten
RewriteParameterInitializer(parameter->initializer);
auto condition = factory()->NewCompareOperation(
Token::EQ_STRICT,
factory()->NewVariableProxy(parameters.scope->parameter(index)),
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
initial_value = factory()->NewConditional(
condition, parameter->initializer, initial_value, kNoSourcePosition);
descriptor.initialization_pos = parameter->initializer->position();
}
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
Scope* param_scope = scope();
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
Block* param_block = init_block;
if (!parameter->is_simple() &&
scope()->AsDeclarationScope()->calls_sloppy_eval()) {
param_scope = NewVarblockScope();
param_scope->set_start_position(descriptor.initialization_pos);
param_scope->set_end_position(parameter->initializer_end_position);
param_scope->RecordEvalCall();
param_block = factory()->NewBlock(8, true);
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
param_block->set_scope(param_scope);
Reland of write scopes of non-simple default arguments (patchset #1 id:1 of https://codereview.chromium.org/2081323006/ ) Reason for revert: Infra issue appears to be over TBR=adamk@chromium.org Original issue's description: > Revert of Rewrite scopes of non-simple default arguments (patchset #5 id:80001 of https://codereview.chromium.org/2077283004/ ) > > Reason for revert: > Seems to close tree (but it could be an infra issue) > > Original issue's description: > > Rewrite scopes of non-simple default arguments > > > > Default parameters have additional declaration block scopes inserted > > around them when something in the function scope calls eval. This > > patch sets the parent scope of the expressions introduced due to > > those defaults to the new block scope. > > > > R=adamk > > BUG=chromium:616386 > > > > Committed: https://crrev.com/0e14baf712955a1993f742647bb2adc293702b80 > > Cr-Commit-Position: refs/heads/master@{#37198} > > TBR=adamk@chromium.org > # Skipping CQ checks because original CL landed less than 1 days ago. > NOPRESUBMIT=true > NOTREECHECKS=true > NOTRY=true > BUG=chromium:616386 > > Committed: https://crrev.com/dd50262933d2ac087da32be887a7c18385fd998e > Cr-Commit-Position: refs/heads/master@{#37201} TBR=adamk@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG=chromium:616386 Review-Url: https://codereview.chromium.org/2086353003 Cr-Commit-Position: refs/heads/master@{#37202}
2016-06-22 21:07:53 +00:00
// Pass the appropriate scope in so that PatternRewriter can appropriately
// rewrite inner initializers of the pattern to param_scope
descriptor.scope = param_scope;
// Rewrite the outer initializer to point to param_scope
ReparentExpressionScope(stack_limit(), initial_value, param_scope);
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
}
BlockState block_state(&scope_, param_scope);
DeclarationParsingResult::Declaration decl(
parameter->pattern, parameter->initializer_end_position, initial_value);
DeclareAndInitializeVariables(param_block, &descriptor, &decl, nullptr,
CHECK_OK);
if (param_block != init_block) {
param_scope = param_scope->FinalizeBlockScope();
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
if (param_scope != nullptr) {
CheckConflictingVarDeclarations(param_scope, CHECK_OK);
}
init_block->statements()->Add(param_block, zone());
[es6] Parameter scopes for sloppy eval This CL is a nightmare! For the utterly irrelevant edge case of a sloppy function with non-simple parameters and a call to direct eval, like here, let x = 1;   function f(g = () => x) {     var y     eval("var x = 2")     return g() + x // f() = 3   } we have to do all of the following, on top of the declaration block ("varblock") contexts we already introduce around the body: - Introduce the ability for varblock contexts to have both a ScopeInfo and an extension object (e.g., the body varblock in the example will contain both a static var y and a dynamic var x). No other scope needs that. Since there are no context slots left, a special new struct is introduced that pairs up scope info and extension object. - When declaring lookup slots in the runtime, this new struct is allocated in the case where an extension object has to be added to a block scope (at which point the block's extension slot still contains a plain ScopeInfo). - While at it, introduce some abstraction to access context extension slots in a more controlled manner, in order to keep special-casing to a minimum. - Make sure that even empty varblock contexts do not get optimised away when they contain a sloppy eval, so that they can host the potential extension object. - Extend dynamic search for declaration contexts (used by sloppy direct eval) to recognize varblock contexts. - In the parser, if a function has a sloppy direct eval, introduce an additional varblock scope around each non-simple (desugared) parameter, as required by the spec to contain possible dynamic var bindings. - In the pattern rewriter, add the ability to hoist the named variables the pattern declares to an outer scope. That is required because the actual destructuring has to be evaluated inside the protecting varblock scope, but the bindings that the desugaring introduces are in the outer scope. - ScopeInfos need to save the information whether a block is a varblock, to make sloppy eval calls work correctly that deserialise them as part of the scope chain. - Add the ability to materialize block scopes with extension objects in the debugger. Likewise, enable setting extension variables in block scopes via the debugger interface. - While at it, refactor and unify some respective code in the debugger. Sorry, this CL is large. I could try to split it up, but everything is rather entangled. @mstarzinger: Please review the changes to contexts. @yangguo: Please have a look at the debugger stuff. R=littledan@chromium.org, mstarzinger@chromium.org, yangguo@chromium.org BUG=v8:811,v8:2160 LOG=N Review URL: https://codereview.chromium.org/1292753007 Cr-Commit-Position: refs/heads/master@{#30295}
2015-08-21 10:58:35 +00:00
}
++index;
}
return init_block;
}
Scope* Parser::NewHiddenCatchScope() {
Scope* catch_scope = NewScopeWithParent(scope(), CATCH_SCOPE);
catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(), VAR);
catch_scope->set_is_hidden();
return catch_scope;
}
Block* Parser::BuildRejectPromiseOnException(Block* inner_block) {
Improve stack traces for async functions This patch tracks the stack of async functions differently from other Promise async stack tracking. With this patch, the stack trace of a callstack of async functions should look similarly to the call stack if all of the functions were synchronous. An example can be found in the updated test expectations: https://codereview.chromium.org/2362923002 . The new stack traces are implemented using existing mechanisms in the inspector. The inspector has two ways to save async stack traces: recurring and non-recurring stacks. An example of a non-recurring stack is setTimeout, and a recurring one is saved for setInterval. Recurring stacks are deleted only when a special "cancel" function is called, rather than being deleted after being used the first time. Previous Promise async stack tracking always used non-recurring stacks. For async functions, this patch saves a recurring stack. The top frame of the stack is duplicated, as the resuming function contains a similar frame; the devtools frontend is responsible for removing or marking this frame, which it can do based on seeing the [async function] line which follows it. The second frame will instead be provided by the resuming execution context. The recurring stack is saved when the async function is entered, and it is deleted from a finally block. The id of the stack is saved in the outer Promise being constructed by the async function. When an intermediate throwaway Promise will be triggered as a reaction, it will be identified as such based on its debugging metadata, and the corresponding async function's recurring stack will be used. BUG=v8:4483 Review-Url: https://codereview.chromium.org/2357423002 Cr-Commit-Position: refs/heads/master@{#39695}
2016-09-23 22:23:50 +00:00
// .promise = %AsyncFunctionPromiseCreate();
// try {
// <inner_block>
// } catch (.catch) {
// %RejectPromise(.promise, .catch);
// return .promise;
// } finally {
Improve stack traces for async functions This patch tracks the stack of async functions differently from other Promise async stack tracking. With this patch, the stack trace of a callstack of async functions should look similarly to the call stack if all of the functions were synchronous. An example can be found in the updated test expectations: https://codereview.chromium.org/2362923002 . The new stack traces are implemented using existing mechanisms in the inspector. The inspector has two ways to save async stack traces: recurring and non-recurring stacks. An example of a non-recurring stack is setTimeout, and a recurring one is saved for setInterval. Recurring stacks are deleted only when a special "cancel" function is called, rather than being deleted after being used the first time. Previous Promise async stack tracking always used non-recurring stacks. For async functions, this patch saves a recurring stack. The top frame of the stack is duplicated, as the resuming function contains a similar frame; the devtools frontend is responsible for removing or marking this frame, which it can do based on seeing the [async function] line which follows it. The second frame will instead be provided by the resuming execution context. The recurring stack is saved when the async function is entered, and it is deleted from a finally block. The id of the stack is saved in the outer Promise being constructed by the async function. When an intermediate throwaway Promise will be triggered as a reaction, it will be identified as such based on its debugging metadata, and the corresponding async function's recurring stack will be used. BUG=v8:4483 Review-Url: https://codereview.chromium.org/2357423002 Cr-Commit-Position: refs/heads/master@{#39695}
2016-09-23 22:23:50 +00:00
// %AsyncFunctionPromiseRelease(.promise);
// }
Block* result = factory()->NewBlock(2, true);
Improve stack traces for async functions This patch tracks the stack of async functions differently from other Promise async stack tracking. With this patch, the stack trace of a callstack of async functions should look similarly to the call stack if all of the functions were synchronous. An example can be found in the updated test expectations: https://codereview.chromium.org/2362923002 . The new stack traces are implemented using existing mechanisms in the inspector. The inspector has two ways to save async stack traces: recurring and non-recurring stacks. An example of a non-recurring stack is setTimeout, and a recurring one is saved for setInterval. Recurring stacks are deleted only when a special "cancel" function is called, rather than being deleted after being used the first time. Previous Promise async stack tracking always used non-recurring stacks. For async functions, this patch saves a recurring stack. The top frame of the stack is duplicated, as the resuming function contains a similar frame; the devtools frontend is responsible for removing or marking this frame, which it can do based on seeing the [async function] line which follows it. The second frame will instead be provided by the resuming execution context. The recurring stack is saved when the async function is entered, and it is deleted from a finally block. The id of the stack is saved in the outer Promise being constructed by the async function. When an intermediate throwaway Promise will be triggered as a reaction, it will be identified as such based on its debugging metadata, and the corresponding async function's recurring stack will be used. BUG=v8:4483 Review-Url: https://codereview.chromium.org/2357423002 Cr-Commit-Position: refs/heads/master@{#39695}
2016-09-23 22:23:50 +00:00
// .promise = %AsyncFunctionPromiseCreate();
Statement* set_promise;
{
Expression* create_promise = factory()->NewCallRuntime(
Improve stack traces for async functions This patch tracks the stack of async functions differently from other Promise async stack tracking. With this patch, the stack trace of a callstack of async functions should look similarly to the call stack if all of the functions were synchronous. An example can be found in the updated test expectations: https://codereview.chromium.org/2362923002 . The new stack traces are implemented using existing mechanisms in the inspector. The inspector has two ways to save async stack traces: recurring and non-recurring stacks. An example of a non-recurring stack is setTimeout, and a recurring one is saved for setInterval. Recurring stacks are deleted only when a special "cancel" function is called, rather than being deleted after being used the first time. Previous Promise async stack tracking always used non-recurring stacks. For async functions, this patch saves a recurring stack. The top frame of the stack is duplicated, as the resuming function contains a similar frame; the devtools frontend is responsible for removing or marking this frame, which it can do based on seeing the [async function] line which follows it. The second frame will instead be provided by the resuming execution context. The recurring stack is saved when the async function is entered, and it is deleted from a finally block. The id of the stack is saved in the outer Promise being constructed by the async function. When an intermediate throwaway Promise will be triggered as a reaction, it will be identified as such based on its debugging metadata, and the corresponding async function's recurring stack will be used. BUG=v8:4483 Review-Url: https://codereview.chromium.org/2357423002 Cr-Commit-Position: refs/heads/master@{#39695}
2016-09-23 22:23:50 +00:00
Context::ASYNC_FUNCTION_PROMISE_CREATE_INDEX,
new (zone()) ZoneList<Expression*>(0, zone()), kNoSourcePosition);
Assignment* assign_promise = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(PromiseVariable()),
create_promise, kNoSourcePosition);
set_promise =
factory()->NewExpressionStatement(assign_promise, kNoSourcePosition);
}
result->statements()->Add(set_promise, zone());
// catch (.catch) { return %RejectPromise(.promise, .catch), .promise }
Scope* catch_scope = NewHiddenCatchScope();
Expression* promise_reject = BuildRejectPromise(
factory()->NewVariableProxy(catch_scope->catch_variable()),
kNoSourcePosition);
Block* catch_block = IgnoreCompletion(
factory()->NewReturnStatement(promise_reject, kNoSourcePosition));
TryStatement* try_catch_statement =
factory()->NewTryCatchStatementForAsyncAwait(
inner_block, catch_scope, catch_block, kNoSourcePosition);
// There is no TryCatchFinally node, so wrap it in an outer try/finally
Block* outer_try_block = IgnoreCompletion(try_catch_statement);
Improve stack traces for async functions This patch tracks the stack of async functions differently from other Promise async stack tracking. With this patch, the stack trace of a callstack of async functions should look similarly to the call stack if all of the functions were synchronous. An example can be found in the updated test expectations: https://codereview.chromium.org/2362923002 . The new stack traces are implemented using existing mechanisms in the inspector. The inspector has two ways to save async stack traces: recurring and non-recurring stacks. An example of a non-recurring stack is setTimeout, and a recurring one is saved for setInterval. Recurring stacks are deleted only when a special "cancel" function is called, rather than being deleted after being used the first time. Previous Promise async stack tracking always used non-recurring stacks. For async functions, this patch saves a recurring stack. The top frame of the stack is duplicated, as the resuming function contains a similar frame; the devtools frontend is responsible for removing or marking this frame, which it can do based on seeing the [async function] line which follows it. The second frame will instead be provided by the resuming execution context. The recurring stack is saved when the async function is entered, and it is deleted from a finally block. The id of the stack is saved in the outer Promise being constructed by the async function. When an intermediate throwaway Promise will be triggered as a reaction, it will be identified as such based on its debugging metadata, and the corresponding async function's recurring stack will be used. BUG=v8:4483 Review-Url: https://codereview.chromium.org/2357423002 Cr-Commit-Position: refs/heads/master@{#39695}
2016-09-23 22:23:50 +00:00
// finally { %AsyncFunctionPromiseRelease(.promise) }
Block* finally_block;
{
Improve stack traces for async functions This patch tracks the stack of async functions differently from other Promise async stack tracking. With this patch, the stack trace of a callstack of async functions should look similarly to the call stack if all of the functions were synchronous. An example can be found in the updated test expectations: https://codereview.chromium.org/2362923002 . The new stack traces are implemented using existing mechanisms in the inspector. The inspector has two ways to save async stack traces: recurring and non-recurring stacks. An example of a non-recurring stack is setTimeout, and a recurring one is saved for setInterval. Recurring stacks are deleted only when a special "cancel" function is called, rather than being deleted after being used the first time. Previous Promise async stack tracking always used non-recurring stacks. For async functions, this patch saves a recurring stack. The top frame of the stack is duplicated, as the resuming function contains a similar frame; the devtools frontend is responsible for removing or marking this frame, which it can do based on seeing the [async function] line which follows it. The second frame will instead be provided by the resuming execution context. The recurring stack is saved when the async function is entered, and it is deleted from a finally block. The id of the stack is saved in the outer Promise being constructed by the async function. When an intermediate throwaway Promise will be triggered as a reaction, it will be identified as such based on its debugging metadata, and the corresponding async function's recurring stack will be used. BUG=v8:4483 Review-Url: https://codereview.chromium.org/2357423002 Cr-Commit-Position: refs/heads/master@{#39695}
2016-09-23 22:23:50 +00:00
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
Expression* call_promise_release = factory()->NewCallRuntime(
Context::ASYNC_FUNCTION_PROMISE_RELEASE_INDEX, args, kNoSourcePosition);
Statement* promise_release = factory()->NewExpressionStatement(
call_promise_release, kNoSourcePosition);
finally_block = IgnoreCompletion(promise_release);
}
Statement* try_finally_statement = factory()->NewTryFinallyStatement(
outer_try_block, finally_block, kNoSourcePosition);
result->statements()->Add(try_finally_statement, zone());
return result;
}
Expression* Parser::BuildResolvePromise(Expression* value, int pos) {
// %ResolvePromise(.promise, value), .promise
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone());
args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
args->Add(value, zone());
Expression* call_runtime =
factory()->NewCallRuntime(Context::PROMISE_RESOLVE_INDEX, args, pos);
return factory()->NewBinaryOperation(
Token::COMMA, call_runtime,
factory()->NewVariableProxy(PromiseVariable()), pos);
}
Expression* Parser::BuildRejectPromise(Expression* value, int pos) {
// %promise_internal_reject(.promise, value, false), .promise
// Disables the additional debug event for the rejection since a debug event
// already happened for the exception that got us here.
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(3, zone());
args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
args->Add(value, zone());
args->Add(factory()->NewBooleanLiteral(false, pos), zone());
Expression* call_runtime = factory()->NewCallRuntime(
Context::PROMISE_INTERNAL_REJECT_INDEX, args, pos);
return factory()->NewBinaryOperation(
Token::COMMA, call_runtime,
factory()->NewVariableProxy(PromiseVariable()), pos);
}
Variable* Parser::PromiseVariable() {
// Based on the various compilation paths, there are many different code
// paths which may be the first to access the Promise temporary. Whichever
// comes first should create it and stash it in the FunctionState.
Variable* promise = function_state_->scope()->promise_var();
if (promise == nullptr) {
promise = function_state_->scope()->DeclarePromiseVar(
ast_value_factory()->empty_string());
}
return promise;
}
Expression* Parser::BuildInitialYield(int pos, FunctionKind kind) {
Expression* yield_result = factory()->NewVariableProxy(
function_state_->scope()->generator_object_var());
// The position of the yield is important for reporting the exception
// caused by calling the .throw method on a generator suspended at the
// initial yield (i.e. right after generator instantiation).
[generators] remove SuspendFlags enum and related code SuspendFlags was originally used by the suspend operation to determine which field to record the bytecode offset of a suspended generator, and the value the generator was resumed with. For async generators, await operations would use a separate field, in order to preserve the previous yield input value. This was important to ensure `function.sent` continued to function correctly. As function.sent is being retired, this allows the removal of support for that. Given that this was the only real need for SuspendFlags in the first place (with other uses tacked on as a hack), this involves several other changes as well: - Modification of MacroAssembler AssertGeneratorObject. No longer accepts a SuspendFlags parameter to determine which type of check to perform. - Removal of `flags` operand from SuspendGenerator bytecode, and the GeneratorStore js-operator. - Removal of `flags` parameter from ResumeGeneratorTrampoline builtins. - Removal of Runtime functions, interpreter intrinsics and AccessBuilders associated with the [[await_input_or_debug_pos]] field in JSAsyncGeneratorObject, as this field no longer exists. - Addition of a new `Yield` AST node (subclass of Suspend) in order to prevent the need for the other SuspendFlag values. BUG=v8:5855 TBR=bmeurer@chromium.org Change-Id: Iff2881e4742497fe5b774915e988c3d9d8fbe487 Reviewed-on: https://chromium-review.googlesource.com/570485 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#46683}
2017-07-14 15:20:23 +00:00
return factory()->NewYield(yield_result, scope()->start_position(),
Suspend::kOnExceptionThrow);
}
ZoneList<Statement*>* Parser::ParseFunction(
const AstRawString* function_name, int pos, FunctionKind kind,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope, int* num_parameters, int* function_length,
bool* has_duplicate_parameters, int* expected_property_count, bool* ok) {
ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
FunctionState function_state(&function_state_, &scope_, function_scope);
DuplicateFinder duplicate_finder;
ExpressionClassifier formals_classifier(this, &duplicate_finder);
Implement new Function.prototype.toString --harmony-function-tostring For functions declared in source code, the .toString() representation will be an excerpt of the source code. * For functions declared with the "function" keyword, the excerpt starts at the "function" or "async" keyword and ends at the final "}". The previous behavior would start the excerpt at the "(" of the parameter list, and prepend a canonical `"function " + name` or similar, which would discard comments and formatting surrounding the function's name. Anonymous functions declared as function expressions no longer get the name "anonymous" in their toString representation. * For methods, the excerpt starts at the "get", "set", "*" (for generator methods), or property name, whichever comes first. Previously, the toString representation for methods would use a canonical prefix before the "(" of the parameter list. Note that any "static" keyword is omitted. * For arrow functions and class declarations, the excerpt is unchanged. For functions created with the Function, GeneratorFunction, or AsyncFunction constructors: * The string separating the parameter text and body text is now "\n) {\n", where previously it was "\n/*``*/) {\n" or ") {\n". * At one point, newline normalization was required by the spec here, but that was removed from the spec, and so this CL does not do it. Included in this CL is a fix for CreateDynamicFunction parsing. ')' and '`' characters in the parameter string are no longer disallowed, and Function("a=function(", "}){") is no longer allowed. BUG=v8:4958, v8:4230 Review-Url: https://codereview.chromium.org/2156303002 Cr-Commit-Position: refs/heads/master@{#43262}
2017-02-16 20:19:24 +00:00
int expected_parameters_end_pos = parameters_end_pos_;
if (expected_parameters_end_pos != kNoSourcePosition) {
// This is the first function encountered in a CreateDynamicFunction eval.
parameters_end_pos_ = kNoSourcePosition;
// The function name should have been ignored, giving us the empty string
Implement new Function.prototype.toString --harmony-function-tostring For functions declared in source code, the .toString() representation will be an excerpt of the source code. * For functions declared with the "function" keyword, the excerpt starts at the "function" or "async" keyword and ends at the final "}". The previous behavior would start the excerpt at the "(" of the parameter list, and prepend a canonical `"function " + name` or similar, which would discard comments and formatting surrounding the function's name. Anonymous functions declared as function expressions no longer get the name "anonymous" in their toString representation. * For methods, the excerpt starts at the "get", "set", "*" (for generator methods), or property name, whichever comes first. Previously, the toString representation for methods would use a canonical prefix before the "(" of the parameter list. Note that any "static" keyword is omitted. * For arrow functions and class declarations, the excerpt is unchanged. For functions created with the Function, GeneratorFunction, or AsyncFunction constructors: * The string separating the parameter text and body text is now "\n) {\n", where previously it was "\n/*``*/) {\n" or ") {\n". * At one point, newline normalization was required by the spec here, but that was removed from the spec, and so this CL does not do it. Included in this CL is a fix for CreateDynamicFunction parsing. ')' and '`' characters in the parameter string are no longer disallowed, and Function("a=function(", "}){") is no longer allowed. BUG=v8:4958, v8:4230 Review-Url: https://codereview.chromium.org/2156303002 Cr-Commit-Position: refs/heads/master@{#43262}
2017-02-16 20:19:24 +00:00
// here.
DCHECK_EQ(function_name, ast_value_factory()->empty_string());
Implement new Function.prototype.toString --harmony-function-tostring For functions declared in source code, the .toString() representation will be an excerpt of the source code. * For functions declared with the "function" keyword, the excerpt starts at the "function" or "async" keyword and ends at the final "}". The previous behavior would start the excerpt at the "(" of the parameter list, and prepend a canonical `"function " + name` or similar, which would discard comments and formatting surrounding the function's name. Anonymous functions declared as function expressions no longer get the name "anonymous" in their toString representation. * For methods, the excerpt starts at the "get", "set", "*" (for generator methods), or property name, whichever comes first. Previously, the toString representation for methods would use a canonical prefix before the "(" of the parameter list. Note that any "static" keyword is omitted. * For arrow functions and class declarations, the excerpt is unchanged. For functions created with the Function, GeneratorFunction, or AsyncFunction constructors: * The string separating the parameter text and body text is now "\n) {\n", where previously it was "\n/*``*/) {\n" or ") {\n". * At one point, newline normalization was required by the spec here, but that was removed from the spec, and so this CL does not do it. Included in this CL is a fix for CreateDynamicFunction parsing. ')' and '`' characters in the parameter string are no longer disallowed, and Function("a=function(", "}){") is no longer allowed. BUG=v8:4958, v8:4230 Review-Url: https://codereview.chromium.org/2156303002 Cr-Commit-Position: refs/heads/master@{#43262}
2017-02-16 20:19:24 +00:00
}
ParserFormalParameters formals(function_scope);
ParseFormalParameterList(&formals, CHECK_OK);
Implement new Function.prototype.toString --harmony-function-tostring For functions declared in source code, the .toString() representation will be an excerpt of the source code. * For functions declared with the "function" keyword, the excerpt starts at the "function" or "async" keyword and ends at the final "}". The previous behavior would start the excerpt at the "(" of the parameter list, and prepend a canonical `"function " + name` or similar, which would discard comments and formatting surrounding the function's name. Anonymous functions declared as function expressions no longer get the name "anonymous" in their toString representation. * For methods, the excerpt starts at the "get", "set", "*" (for generator methods), or property name, whichever comes first. Previously, the toString representation for methods would use a canonical prefix before the "(" of the parameter list. Note that any "static" keyword is omitted. * For arrow functions and class declarations, the excerpt is unchanged. For functions created with the Function, GeneratorFunction, or AsyncFunction constructors: * The string separating the parameter text and body text is now "\n) {\n", where previously it was "\n/*``*/) {\n" or ") {\n". * At one point, newline normalization was required by the spec here, but that was removed from the spec, and so this CL does not do it. Included in this CL is a fix for CreateDynamicFunction parsing. ')' and '`' characters in the parameter string are no longer disallowed, and Function("a=function(", "}){") is no longer allowed. BUG=v8:4958, v8:4230 Review-Url: https://codereview.chromium.org/2156303002 Cr-Commit-Position: refs/heads/master@{#43262}
2017-02-16 20:19:24 +00:00
if (expected_parameters_end_pos != kNoSourcePosition) {
// Check for '(' or ')' shenanigans in the parameter string for dynamic
// functions.
int position = peek_position();
if (position < expected_parameters_end_pos) {
ReportMessageAt(Scanner::Location(position, position + 1),
MessageTemplate::kArgStringTerminatesParametersEarly);
*ok = false;
return nullptr;
} else if (position > expected_parameters_end_pos) {
ReportMessageAt(Scanner::Location(expected_parameters_end_pos - 2,
expected_parameters_end_pos),
MessageTemplate::kUnexpectedEndOfArgString);
*ok = false;
return nullptr;
}
}
Expect(Token::RPAREN, CHECK_OK);
int formals_end_position = scanner()->location().end_pos;
*num_parameters = formals.num_parameters();
*function_length = formals.function_length;
CheckArityRestrictions(formals.arity, kind, formals.has_rest,
function_scope->start_position(), formals_end_position,
CHECK_OK);
Expect(Token::LBRACE, CHECK_OK);
ZoneList<Statement*>* body = new (zone()) ZoneList<Statement*>(8, zone());
ParseFunctionBody(body, function_name, pos, formals, kind, function_type, ok);
// Validate parameter names. We can do this only after parsing the function,
// since the function can declare itself strict.
const bool allow_duplicate_parameters =
is_sloppy(function_scope->language_mode()) && formals.is_simple &&
!IsConciseMethod(kind);
ValidateFormalParameters(function_scope->language_mode(),
allow_duplicate_parameters, CHECK_OK);
RewriteDestructuringAssignments();
*has_duplicate_parameters =
!classifier()->is_valid_formal_parameter_list_without_duplicates();
*expected_property_count = function_state.expected_property_count();
return body;
}
void Parser::DeclareClassVariable(const AstRawString* name,
ClassInfo* class_info, int class_token_pos,
bool* ok) {
#ifdef DEBUG
scope()->SetScopeName(name);
#endif
if (name != nullptr) {
VariableProxy* proxy = factory()->NewVariableProxy(name, NORMAL_VARIABLE);
Declaration* declaration =
factory()->NewVariableDeclaration(proxy, class_token_pos);
class_info->variable =
Declare(declaration, DeclarationDescriptor::NORMAL, CONST,
Variable::DefaultInitializationFlag(CONST), ok);
}
}
// TODO(gsathya): Ideally, this should just bypass scope analysis and
// allocate a slot directly on the context. We should just store this
// index in the AST, instead of storing the variable.
Variable* Parser::CreateSyntheticContextVariable(const AstRawString* name,
bool* ok) {
VariableProxy* proxy = factory()->NewVariableProxy(name, NORMAL_VARIABLE);
Declaration* declaration =
factory()->NewVariableDeclaration(proxy, kNoSourcePosition);
Variable* var = Declare(declaration, DeclarationDescriptor::NORMAL, CONST,
Variable::DefaultInitializationFlag(CONST), CHECK_OK);
var->ForceContextAllocation();
return var;
}
// This method declares a property of the given class. It updates the
// following fields of class_info, as appropriate:
// - constructor
// - properties
void Parser::DeclareClassProperty(const AstRawString* class_name,
ClassLiteralProperty* property,
ClassLiteralProperty::Kind kind,
bool is_static, bool is_constructor,
bool is_computed_name, ClassInfo* class_info,
bool* ok) {
if (is_constructor) {
DCHECK(!class_info->constructor);
class_info->constructor = property->value()->AsFunctionLiteral();
DCHECK_NOT_NULL(class_info->constructor);
class_info->constructor->set_raw_name(
class_name != nullptr ? ast_value_factory()->NewConsString(class_name)
: nullptr);
return;
}
if (kind != ClassLiteralProperty::FIELD) {
class_info->properties->Add(property, zone());
return;
}
DCHECK(allow_harmony_public_fields());
if (is_static) {
class_info->static_fields->Add(property, zone());
} else {
class_info->instance_fields->Add(property, zone());
}
if (is_computed_name) {
// We create a synthetic variable name here so that scope
// analysis doesn't dedupe the vars.
Variable* computed_name_var = CreateSyntheticContextVariable(
ClassFieldVariableName(ast_value_factory(),
class_info->computed_field_count),
CHECK_OK_VOID);
property->set_computed_name_var(computed_name_var);
class_info->properties->Add(property, zone());
}
}
FunctionLiteral* Parser::CreateInitializerFunction(
DeclarationScope* scope, ZoneList<ClassLiteral::Property*>* fields) {
// function() { .. class fields initializer .. }
ZoneList<Statement*>* statements = NewStatementList(1);
InitializeClassFieldsStatement* static_fields =
factory()->NewInitializeClassFieldsStatement(fields, kNoSourcePosition);
statements->Add(static_fields, zone());
return factory()->NewFunctionLiteral(
ast_value_factory()->empty_string(), scope, statements, 0, 0, 0,
FunctionLiteral::kNoDuplicateParameters,
FunctionLiteral::kAnonymousExpression,
FunctionLiteral::kShouldEagerCompile, scope->start_position(), true,
GetNextFunctionLiteralId());
}
// This method generates a ClassLiteral AST node.
// It uses the following fields of class_info:
// - constructor (if missing, it updates it with a default constructor)
// - proxy
// - extends
// - properties
// - has_name_static_property
// - has_static_computed_names
Expression* Parser::RewriteClassLiteral(Scope* block_scope,
const AstRawString* name,
ClassInfo* class_info, int pos,
int end_pos, bool* ok) {
DCHECK_NOT_NULL(block_scope);
DCHECK_EQ(block_scope->scope_type(), BLOCK_SCOPE);
DCHECK_EQ(block_scope->language_mode(), LanguageMode::kStrict);
bool has_extends = class_info->extends != nullptr;
bool has_default_constructor = class_info->constructor == nullptr;
if (has_default_constructor) {
class_info->constructor =
DefaultConstructor(name, has_extends, pos, end_pos);
}
if (name != nullptr) {
DCHECK_NOT_NULL(class_info->variable);
class_info->variable->set_initializer_position(end_pos);
}
FunctionLiteral* static_fields_initializer = nullptr;
if (class_info->has_static_class_fields) {
static_fields_initializer = CreateInitializerFunction(
class_info->static_fields_scope, class_info->static_fields);
}
FunctionLiteral* instance_fields_initializer_function = nullptr;
if (class_info->has_instance_class_fields) {
instance_fields_initializer_function = CreateInitializerFunction(
class_info->instance_fields_scope, class_info->instance_fields);
[class] Store class fields initializer on the constructor Previously, the class fields initializer function was stored on a synthetic context allocated variable. This approach had sevaral problems: - We didn't know that class literal had fields until after we had completely parsed the class literal. This meant that we had to go back and fix up the scope of the constructor to have this synthetic variable. This resulted in mismatch between parser and preparsed scope data. - This synthetic variable could potentially resolve to an initializer of an outer class. For ex: class X extends Object { c = 1; constructor() { var t = () => { class P extends Object { constructor() { var t = () => { super(); }; t(); } } super(); } t(); } } In this the inner class P could access the outer class X's initiliazer function. We would have to maintain extra metadata to make sure this doesn't happen. Instead this new approach uses a private symbol to store the initializer function on the class constructor itself. For the base constructor case, we can simply check for a bit on the constructor function literal to see if we need to emit code that loads and calls this initializer function. Therefore, we don't pay the cost of loading this function in case there are no class fields. For the derived constructor case, there are two possiblities: (a) We are in a super() call directly in the derived constructor: In this case we can do a check similar to the base constructor check, we can check for a bit on the derived constructor and emit code for loading and calling the initializer function. This is usually the common case and we don't pay any cost for not using class fields. (b) We are in a super() call inside an arrow function in the derived constructor: In this case, we /always/ emit code to load and call the initializer function. If the function doesn't exist then we have undefined and we don't call anything. Otherwise we call the function. super() can't be called twice so even if we emit code to load and call the initializer function multiple times, it doesn't matter because it would have already been an error. Bug: v8:5367 Change-Id: I7f77cd6493ff84cf0e430a8c1039bc9ac6941a88 Reviewed-on: https://chromium-review.googlesource.com/781660 Commit-Queue: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Reviewed-by: Mythri Alle <mythria@chromium.org> Cr-Commit-Position: refs/heads/master@{#49628}
2017-11-27 09:56:36 +00:00
class_info->constructor->set_requires_instance_fields_initializer(true);
}
ClassLiteral* class_literal = factory()->NewClassLiteral(
block_scope, class_info->variable, class_info->extends,
class_info->constructor, class_info->properties,
[class] Store class fields initializer on the constructor Previously, the class fields initializer function was stored on a synthetic context allocated variable. This approach had sevaral problems: - We didn't know that class literal had fields until after we had completely parsed the class literal. This meant that we had to go back and fix up the scope of the constructor to have this synthetic variable. This resulted in mismatch between parser and preparsed scope data. - This synthetic variable could potentially resolve to an initializer of an outer class. For ex: class X extends Object { c = 1; constructor() { var t = () => { class P extends Object { constructor() { var t = () => { super(); }; t(); } } super(); } t(); } } In this the inner class P could access the outer class X's initiliazer function. We would have to maintain extra metadata to make sure this doesn't happen. Instead this new approach uses a private symbol to store the initializer function on the class constructor itself. For the base constructor case, we can simply check for a bit on the constructor function literal to see if we need to emit code that loads and calls this initializer function. Therefore, we don't pay the cost of loading this function in case there are no class fields. For the derived constructor case, there are two possiblities: (a) We are in a super() call directly in the derived constructor: In this case we can do a check similar to the base constructor check, we can check for a bit on the derived constructor and emit code for loading and calling the initializer function. This is usually the common case and we don't pay any cost for not using class fields. (b) We are in a super() call inside an arrow function in the derived constructor: In this case, we /always/ emit code to load and call the initializer function. If the function doesn't exist then we have undefined and we don't call anything. Otherwise we call the function. super() can't be called twice so even if we emit code to load and call the initializer function multiple times, it doesn't matter because it would have already been an error. Bug: v8:5367 Change-Id: I7f77cd6493ff84cf0e430a8c1039bc9ac6941a88 Reviewed-on: https://chromium-review.googlesource.com/781660 Commit-Queue: Sathya Gunasekaran <gsathya@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Reviewed-by: Mythri Alle <mythria@chromium.org> Cr-Commit-Position: refs/heads/master@{#49628}
2017-11-27 09:56:36 +00:00
static_fields_initializer, instance_fields_initializer_function, pos,
end_pos, class_info->has_name_static_property,
class_info->has_static_computed_names, class_info->is_anonymous);
AddFunctionForNameInference(class_info->constructor);
return class_literal;
}
void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) {
Declaration* decl = scope->CheckConflictingVarDeclarations();
if (decl != nullptr) {
// In ES6, conflicting variable bindings are early errors.
const AstRawString* name = decl->proxy()->raw_name();
int position = decl->proxy()->position();
Scanner::Location location =
position == kNoSourcePosition
? Scanner::Location::invalid()
: Scanner::Location(position, position + 1);
ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
*ok = false;
}
}
void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) {
// For each var-binding that shadows a parameter, insert an assignment
// initializing the variable with the parameter.
Scope* inner_scope = inner_block->scope();
DCHECK(inner_scope->is_declaration_scope());
Scope* function_scope = inner_scope->outer_scope();
DCHECK(function_scope->is_function_scope());
BlockState block_state(&scope_, inner_scope);
for (Declaration* decl : *inner_scope->declarations()) {
if (decl->proxy()->var()->mode() != VAR || !decl->IsVariableDeclaration()) {
continue;
}
const AstRawString* name = decl->proxy()->raw_name();
Variable* parameter = function_scope->LookupLocal(name);
if (parameter == nullptr) continue;
VariableProxy* to = NewUnresolved(name);
VariableProxy* from = factory()->NewVariableProxy(parameter);
Expression* assignment =
factory()->NewAssignment(Token::ASSIGN, to, from, kNoSourcePosition);
Statement* statement =
factory()->NewExpressionStatement(assignment, kNoSourcePosition);
inner_block->statements()->InsertAt(0, statement, zone());
}
}
void Parser::InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope) {
// For the outermost eval scope, we cannot hoist during parsing: let
// declarations in the surrounding scope may prevent hoisting, but the
// information is unaccessible during parsing. In this case, we hoist later in
// DeclarationScope::Analyze.
if (scope->is_eval_scope() && scope->outer_scope() == original_scope_) {
return;
}
scope->HoistSloppyBlockFunctions(factory());
}
// ----------------------------------------------------------------------------
// Parser support
bool Parser::TargetStackContainsLabel(const AstRawString* label) {
for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
if (ContainsLabel(t->statement()->labels(), label)) return true;
}
return false;
}
BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label,
bool* ok) {
bool anonymous = label == nullptr;
for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
BreakableStatement* stat = t->statement();
if ((anonymous && stat->is_target_for_anonymous()) ||
(!anonymous && ContainsLabel(stat->labels(), label))) {
return stat;
}
}
return nullptr;
}
IterationStatement* Parser::LookupContinueTarget(const AstRawString* label,
bool* ok) {
bool anonymous = label == nullptr;
for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
IterationStatement* stat = t->statement()->AsIterationStatement();
if (stat == nullptr) continue;
DCHECK(stat->is_target_for_anonymous());
if (anonymous || ContainsLabel(stat->labels(), label)) {
return stat;
}
}
return nullptr;
}
void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) {
Handle<String> source_url = scanner_.SourceUrl(isolate);
if (!source_url.is_null()) {
script->set_source_url(*source_url);
}
Handle<String> source_mapping_url = scanner_.SourceMappingUrl(isolate);
if (!source_mapping_url.is_null()) {
script->set_source_mapping_url(*source_mapping_url);
}
}
void Parser::UpdateStatistics(Isolate* isolate, Handle<Script> script) {
// Move statistics to Isolate.
for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
++feature) {
if (use_counts_[feature] > 0) {
isolate->CountUsage(v8::Isolate::UseCounterFeature(feature));
}
}
if (scanner_.FoundHtmlComment()) {
isolate->CountUsage(v8::Isolate::kHtmlComment);
if (script->line_offset() == 0 && script->column_offset() == 0) {
isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript);
}
}
isolate->counters()->total_preparse_skipped()->Increment(
total_preparse_skipped_);
}
void Parser::ParseOnBackground(ParseInfo* info) {
RuntimeCallTimerScope runtimeTimer(
runtime_call_stats_, RuntimeCallCounterId::kParseBackgroundProgram);
parsing_on_main_thread_ = false;
if (!info->script().is_null()) {
set_script_id(info->script()->id());
}
DCHECK_NULL(info->literal());
FunctionLiteral* result = nullptr;
ParserLogger logger;
if (produce_cached_parse_data()) {
if (allow_lazy_) {
log_ = &logger;
} else {
compile_options_ = ScriptCompiler::kNoCompileOptions;
}
}
scanner_.Initialize(info->character_stream(), info->is_module());
DCHECK(info->maybe_outer_scope_info().is_null());
DCHECK(original_scope_);
// When streaming, we don't know the length of the source until we have parsed
// it. The raw data can be UTF-8, so we wouldn't know the source length until
// we have decoded it anyway even if we knew the raw data length (which we
// don't). We work around this by storing all the scopes which need their end
// position set at the end of the script (the top scope and possible eval
// scopes) and set their end position after we know the script length.
if (info->is_toplevel()) {
fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
result = DoParseProgram(info);
} else {
result = DoParseFunction(info, info->function_name());
}
MaybeResetCharacterStream(info, result);
info->set_literal(result);
// We cannot internalize on a background thread; a foreground task will take
// care of calling AstValueFactory::Internalize just before compilation.
if (produce_cached_parse_data()) {
if (result != nullptr) *info->cached_data() = logger.GetScriptData();
log_ = nullptr;
}
}
Parser::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) {
return new (zone()) TemplateLiteral(zone(), pos);
}
void Parser::AddTemplateSpan(TemplateLiteralState* state, bool should_cook,
bool tail) {
int end = scanner()->location().end_pos - (tail ? 1 : 2);
const AstRawString* raw = scanner()->CurrentRawSymbol(ast_value_factory());
if (should_cook) {
const AstRawString* cooked = scanner()->CurrentSymbol(ast_value_factory());
(*state)->AddTemplateSpan(cooked, raw, end, zone());
} else {
(*state)->AddTemplateSpan(nullptr, raw, end, zone());
}
}
void Parser::AddTemplateExpression(TemplateLiteralState* state,
Expression* expression) {
(*state)->AddExpression(expression, zone());
}
Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start,
Expression* tag) {
TemplateLiteral* lit = *state;
int pos = lit->position();
const ZoneList<const AstRawString*>* cooked_strings = lit->cooked();
const ZoneList<const AstRawString*>* raw_strings = lit->raw();
const ZoneList<Expression*>* expressions = lit->expressions();
DCHECK_EQ(cooked_strings->length(), raw_strings->length());
DCHECK_EQ(cooked_strings->length(), expressions->length() + 1);
if (!tag) {
Expression* first_string =
factory()->NewStringLiteral(cooked_strings->at(0), kNoSourcePosition);
if (expressions->length() == 0) return first_string;
// Build N-ary addition op to simplify code-generation.
// TODO(leszeks): Could we just store this expression in the
// TemplateLiteralState and build it as we go?
NaryOperation* expr = factory()->NewNaryOperation(
Token::ADD, first_string, 2 * expressions->length());
int i = 0;
while (i < expressions->length()) {
Expression* sub = expressions->at(i++);
const AstRawString* cooked_str = cooked_strings->at(i);
DCHECK_NOT_NULL(cooked_str);
// Let middle be ToString(sub).
ZoneList<Expression*>* args =
new (zone()) ZoneList<Expression*>(1, zone());
args->Add(sub, zone());
Expression* sub_to_string = factory()->NewCallRuntime(
Runtime::kInlineToString, args, sub->position());
expr->AddSubsequent(sub_to_string, sub->position());
expr->AddSubsequent(
factory()->NewStringLiteral(cooked_str, kNoSourcePosition),
sub->position());
}
return expr;
} else {
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
// GetTemplateObject
const int32_t hash = ComputeTemplateLiteralHash(lit);
Expression* template_object =
factory()->NewGetTemplateObject(cooked_strings, raw_strings, hash, pos);
// Call TagFn
ZoneList<Expression*>* call_args =
new (zone()) ZoneList<Expression*>(expressions->length() + 1, zone());
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
call_args->Add(template_object, zone());
call_args->AddAll(*expressions, zone());
return factory()->NewTaggedTemplate(tag, call_args, pos);
}
}
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
namespace {
// http://burtleburtle.net/bob/hash/integer.html
uint32_t HalfAvalance(uint32_t a) {
a = (a + 0x479AB41D) + (a << 8);
a = (a ^ 0xE4AA10CE) ^ (a >> 5);
a = (a + 0x9942F0A6) - (a << 14);
a = (a ^ 0x5AEDD67D) ^ (a >> 3);
a = (a + 0x17BEA992) + (a << 7);
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
return a;
}
} // namespace
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
int32_t Parser::ComputeTemplateLiteralHash(const TemplateLiteral* lit) {
const ZoneList<const AstRawString*>* raw_strings = lit->raw();
int total = raw_strings->length();
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
DCHECK_GT(total, 0);
uint32_t running_hash = 0;
for (int index = 0; index < total; ++index) {
if (index) {
running_hash = StringHasher::ComputeRunningHashOneByte(
running_hash, "${}", 3);
}
const AstRawString* raw_string = raw_strings->at(index);
if (raw_string->is_one_byte()) {
const char* data = reinterpret_cast<const char*>(raw_string->raw_data());
running_hash = StringHasher::ComputeRunningHashOneByte(
running_hash, data, raw_string->length());
} else {
const uc16* data = reinterpret_cast<const uc16*>(raw_string->raw_data());
running_hash = StringHasher::ComputeRunningHash(running_hash, data,
raw_string->length());
}
}
[es2015] Introduce dedicated GetTemplateObject bytecode. Tagged templates were previously desugared during parsing using some combination of runtime support written in JavaScript and C++, which prevented some optimizations from happening, namely the constant folding of the template object in TurboFan optimized code. This CL adds a new bytecode GetTemplateObject (with a corresponding GetTemplateObject AST node), which represents the abstract operation in the ES6 specification and allows TurboFan to simply constant-fold template objects at compile time (which is explicitly supported by the specification). This also pays down some technical debt by removing the template.js runtime support and therefore should reduce the size of the native context (snapshot) a bit. With this change in-place the ES6 version microbenchmark in the referenced tracking bug is now faster than the transpiled Babel code, it goes from templateStringTagES5: 4552 ms. templateStringTagES6: 14185 ms. templateStringTagBabel: 7626 ms. to templateStringTagES5: 4515 ms. templateStringTagES6: 7491 ms. templateStringTagBabel: 7639 ms. which corresponds to a solid 45% reduction in execution time. With some further optimizations the ES6 version should be able to outperform the ES5 version. This micro-benchmark should be fairly representative of the six-speed-templatestringtag-es6 benchmark, and as such that benchmark should also improve by around 50%. Bug: v8:6819,v8:6820 Tbr: mlippautz@chromium.org Change-Id: I821085e3794717fc7f52b5c306fcb93ba03345dc Reviewed-on: https://chromium-review.googlesource.com/677462 Reviewed-by: Mythri Alle <mythria@chromium.org> Reviewed-by: Caitlin Potter <caitp@igalia.com> Reviewed-by: Adam Klein <adamk@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Commit-Queue: Benedikt Meurer <bmeurer@chromium.org> Cr-Commit-Position: refs/heads/master@{#48126}
2017-09-22 09:57:29 +00:00
// Pass {running_hash} throught a decent 'half avalance' hash function
// and take the most significant bits (in Smi range).
return static_cast<int32_t>(HalfAvalance(running_hash)) >>
(sizeof(int32_t) * CHAR_BIT - kSmiValueSize);
}
namespace {
bool OnlyLastArgIsSpread(ZoneList<Expression*>* args) {
for (int i = 0; i < args->length() - 1; i++) {
if (args->at(i)->IsSpread()) {
return false;
}
}
return args->at(args->length() - 1)->IsSpread();
}
} // namespace
ZoneList<Expression*>* Parser::PrepareSpreadArguments(
ZoneList<Expression*>* list) {
ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone());
if (list->length() == 1) {
// Spread-call with single spread argument produces an InternalArray
// containing the values from the array.
//
// Function is called or constructed with the produced array of arguments
//
// EG: Apply(Func, Spread(spread0))
ZoneList<Expression*>* spread_list =
new (zone()) ZoneList<Expression*>(0, zone());
spread_list->Add(list->at(0)->AsSpread()->expression(), zone());
args->Add(factory()->NewCallRuntime(Runtime::kSpreadIterablePrepare,
spread_list, kNoSourcePosition),
zone());
return args;
} else {
// Spread-call with multiple arguments produces array literals for each
// sequences of unspread arguments, and converts each spread iterable to
// an Internal array. Finally, all of these produced arrays are flattened
// into a single InternalArray, containing the arguments for the call.
//
// EG: Apply(Func, Flatten([unspread0, unspread1], Spread(spread0),
// Spread(spread1), [unspread2, unspread3]))
int i = 0;
int n = list->length();
while (i < n) {
if (!list->at(i)->IsSpread()) {
ZoneList<Expression*>* unspread =
new (zone()) ZoneList<Expression*>(1, zone());
// Push array of unspread parameters
while (i < n && !list->at(i)->IsSpread()) {
unspread->Add(list->at(i++), zone());
}
args->Add(factory()->NewArrayLiteral(unspread, kNoSourcePosition),
zone());
if (i == n) break;
}
// Push eagerly spread argument
ZoneList<Expression*>* spread_list =
new (zone()) ZoneList<Expression*>(1, zone());
spread_list->Add(list->at(i++)->AsSpread()->expression(), zone());
args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX,
spread_list, kNoSourcePosition),
zone());
}
list = new (zone()) ZoneList<Expression*>(1, zone());
list->Add(factory()->NewCallRuntime(Context::SPREAD_ARGUMENTS_INDEX, args,
kNoSourcePosition),
zone());
return list;
}
UNREACHABLE();
}
Expression* Parser::SpreadCall(Expression* function,
ZoneList<Expression*>* args, int pos,
Call::PossiblyEval is_possibly_eval) {
// Handle this case in BytecodeGenerator.
if (OnlyLastArgIsSpread(args)) {
return factory()->NewCall(function, args, pos);
}
if (function->IsSuperCallReference()) {
// Super calls
// $super_constructor = %_GetSuperConstructor(<this-function>)
// %reflect_construct($super_constructor, args, new.target)
args = PrepareSpreadArguments(args);
ZoneList<Expression*>* tmp = new (zone()) ZoneList<Expression*>(1, zone());
tmp->Add(function->AsSuperCallReference()->this_function_var(), zone());
Expression* super_constructor = factory()->NewCallRuntime(
Runtime::kInlineGetSuperConstructor, tmp, pos);
args->InsertAt(0, super_constructor, zone());
args->Add(function->AsSuperCallReference()->new_target_var(), zone());
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args,
pos);
} else {
args = PrepareSpreadArguments(args);
if (function->IsProperty()) {
// Method calls
if (function->AsProperty()->IsSuperAccess()) {
Expression* home = ThisExpression(kNoSourcePosition);
args->InsertAt(0, function, zone());
args->InsertAt(1, home, zone());
} else {
Variable* temp = NewTemporary(ast_value_factory()->empty_string());
VariableProxy* obj = factory()->NewVariableProxy(temp);
Assignment* assign_obj = factory()->NewAssignment(
Token::ASSIGN, obj, function->AsProperty()->obj(),
kNoSourcePosition);
function = factory()->NewProperty(
assign_obj, function->AsProperty()->key(), kNoSourcePosition);
args->InsertAt(0, function, zone());
obj = factory()->NewVariableProxy(temp);
args->InsertAt(1, obj, zone());
}
} else {
// Non-method calls
args->InsertAt(0, function, zone());
args->InsertAt(1, factory()->NewUndefinedLiteral(kNoSourcePosition),
zone());
}
return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos);
}
}
Expression* Parser::SpreadCallNew(Expression* function,
ZoneList<Expression*>* args, int pos) {
if (OnlyLastArgIsSpread(args)) {
// Handle in BytecodeGenerator.
return factory()->NewCallNew(function, args, pos);
}
args = PrepareSpreadArguments(args);
args->InsertAt(0, function, zone());
return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos);
}
void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) {
v8::Isolate::UseCounterFeature feature;
if (is_sloppy(mode))
feature = v8::Isolate::kSloppyMode;
else if (is_strict(mode))
feature = v8::Isolate::kStrictMode;
else
UNREACHABLE();
++use_counts_[feature];
scope->SetLanguageMode(mode);
}
void Parser::SetAsmModule() {
// Store the usage count; The actual use counter on the isolate is
// incremented after parsing is done.
++use_counts_[v8::Isolate::kUseAsm];
DCHECK(scope()->is_declaration_scope());
scope()->AsDeclarationScope()->set_asm_module();
}
Expression* Parser::ExpressionListToExpression(ZoneList<Expression*>* args) {
Expression* expr = args->at(0);
for (int i = 1; i < args->length(); ++i) {
expr = factory()->NewBinaryOperation(Token::COMMA, expr, args->at(i),
expr->position());
}
return expr;
}
// This method completes the desugaring of the body of async_function.
void Parser::RewriteAsyncFunctionBody(ZoneList<Statement*>* body, Block* block,
Expression* return_value, bool* ok) {
// function async_function() {
// .generator_object = %CreateJSGeneratorObject();
// BuildRejectPromiseOnException({
// ... block ...
// return %ResolvePromise(.promise, expr), .promise;
// })
// }
return_value = BuildResolvePromise(return_value, return_value->position());
block->statements()->Add(
factory()->NewReturnStatement(return_value, return_value->position()),
zone());
block = BuildRejectPromiseOnException(block);
body->Add(block, zone());
}
void Parser::RewriteDestructuringAssignments() {
const auto& assignments =
function_state_->destructuring_assignments_to_rewrite();
for (int i = assignments.length() - 1; i >= 0; --i) {
// Rewrite list in reverse, so that nested assignment patterns are rewritten
// correctly.
RewritableExpression* to_rewrite = assignments[i];
DCHECK_NOT_NULL(to_rewrite);
if (!to_rewrite->is_rewritten()) {
// Since this function is called at the end of parsing the program,
// pair.scope may already have been removed by FinalizeBlockScope in the
// meantime.
Scope* scope = to_rewrite->scope()->GetUnremovedScope();
BlockState block_state(&scope_, scope);
RewriteDestructuringAssignment(to_rewrite);
}
}
}
void Parser::QueueDestructuringAssignmentForRewriting(
RewritableExpression* expr) {
function_state_->AddDestructuringAssignment(expr);
}
void Parser::SetFunctionNameFromPropertyName(LiteralProperty* property,
const AstRawString* name,
const AstRawString* prefix) {
// Ensure that the function we are going to create has shared name iff
// we are not going to set it later.
if (property->NeedsSetFunctionName()) {
name = nullptr;
prefix = nullptr;
} else {
// If the property value is an anonymous function or an anonymous class or
// a concise method or an accessor function which doesn't require the name
// to be set then the shared name must be provided.
DCHECK_IMPLIES(property->value()->IsAnonymousFunctionDefinition() ||
property->value()->IsConciseMethodDefinition() ||
property->value()->IsAccessorFunctionDefinition(),
name != nullptr);
}
Expression* value = property->value();
SetFunctionName(value, name, prefix);
}
void Parser::SetFunctionNameFromPropertyName(ObjectLiteralProperty* property,
const AstRawString* name,
const AstRawString* prefix) {
// Ignore "__proto__" as a name when it's being used to set the [[Prototype]]
// of an object literal.
// See ES #sec-__proto__-property-names-in-object-initializers.
if (property->IsPrototype()) return;
DCHECK(!property->value()->IsAnonymousFunctionDefinition() ||
property->kind() == ObjectLiteralProperty::COMPUTED);
SetFunctionNameFromPropertyName(static_cast<LiteralProperty*>(property), name,
prefix);
}
void Parser::SetFunctionNameFromIdentifierRef(Expression* value,
Expression* identifier) {
if (!identifier->IsVariableProxy()) return;
SetFunctionName(value, identifier->AsVariableProxy()->raw_name());
}
void Parser::SetFunctionName(Expression* value, const AstRawString* name,
const AstRawString* prefix) {
if (!value->IsAnonymousFunctionDefinition() &&
!value->IsConciseMethodDefinition() &&
!value->IsAccessorFunctionDefinition()) {
return;
}
auto function = value->AsFunctionLiteral();
if (value->IsClassLiteral()) {
function = value->AsClassLiteral()->constructor();
}
if (function != nullptr) {
AstConsString* cons_name = nullptr;
if (name != nullptr) {
if (prefix != nullptr) {
cons_name = ast_value_factory()->NewConsString(prefix, name);
} else {
cons_name = ast_value_factory()->NewConsString(name);
}
} else {
DCHECK_NULL(prefix);
}
function->set_raw_name(cons_name);
}
}
Statement* Parser::CheckCallable(Variable* var, Expression* error, int pos) {
const int nopos = kNoSourcePosition;
Statement* validate_var;
{
Expression* type_of = factory()->NewUnaryOperation(
Token::TYPEOF, factory()->NewVariableProxy(var), nopos);
Expression* function_literal = factory()->NewStringLiteral(
ast_value_factory()->function_string(), nopos);
Expression* condition = factory()->NewCompareOperation(
Token::EQ_STRICT, type_of, function_literal, nopos);
Statement* throw_call = factory()->NewExpressionStatement(error, pos);
validate_var = factory()->NewIfStatement(
condition, factory()->NewEmptyStatement(nopos), throw_call, nopos);
}
return validate_var;
}
void Parser::BuildIteratorClose(ZoneList<Statement*>* statements,
Variable* iterator, Variable* input,
Variable* var_output, IteratorType type) {
//
// This function adds four statements to [statements], corresponding to the
// following code:
//
// let iteratorReturn = iterator.return;
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
// return {value: input, done: true};
// }
// output = %_Call(iteratorReturn, iterator, input);
// if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
//
const int nopos = kNoSourcePosition;
// let iteratorReturn = iterator.return;
Variable* var_return = var_output; // Reusing the output variable.
Statement* get_return;
{
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
Expression* literal = factory()->NewStringLiteral(
ast_value_factory()->return_string(), nopos);
Expression* property =
factory()->NewProperty(iterator_proxy, literal, nopos);
Expression* return_proxy = factory()->NewVariableProxy(var_return);
Expression* assignment =
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
get_return = factory()->NewExpressionStatement(assignment, nopos);
}
// if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
// return {value: input, done: true};
// }
Statement* check_return;
{
Expression* condition = factory()->NewCompareOperation(
Token::EQ, factory()->NewVariableProxy(var_return),
factory()->NewNullLiteral(nopos), nopos);
Expression* value = factory()->NewVariableProxy(input);
Statement* return_input = BuildReturnStatement(value, nopos);
check_return = factory()->NewIfStatement(
condition, return_input, factory()->NewEmptyStatement(nopos), nopos);
}
// output = %_Call(iteratorReturn, iterator, input);
Statement* call_return;
{
auto args = new (zone()) ZoneList<Expression*>(3, zone());
args->Add(factory()->NewVariableProxy(var_return), zone());
args->Add(factory()->NewVariableProxy(iterator), zone());
args->Add(factory()->NewVariableProxy(input), zone());
Expression* call =
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
if (type == IteratorType::kAsync) {
[generators] remove SuspendFlags enum and related code SuspendFlags was originally used by the suspend operation to determine which field to record the bytecode offset of a suspended generator, and the value the generator was resumed with. For async generators, await operations would use a separate field, in order to preserve the previous yield input value. This was important to ensure `function.sent` continued to function correctly. As function.sent is being retired, this allows the removal of support for that. Given that this was the only real need for SuspendFlags in the first place (with other uses tacked on as a hack), this involves several other changes as well: - Modification of MacroAssembler AssertGeneratorObject. No longer accepts a SuspendFlags parameter to determine which type of check to perform. - Removal of `flags` operand from SuspendGenerator bytecode, and the GeneratorStore js-operator. - Removal of `flags` parameter from ResumeGeneratorTrampoline builtins. - Removal of Runtime functions, interpreter intrinsics and AccessBuilders associated with the [[await_input_or_debug_pos]] field in JSAsyncGeneratorObject, as this field no longer exists. - Addition of a new `Yield` AST node (subclass of Suspend) in order to prevent the need for the other SuspendFlag values. BUG=v8:5855 TBR=bmeurer@chromium.org Change-Id: Iff2881e4742497fe5b774915e988c3d9d8fbe487 Reviewed-on: https://chromium-review.googlesource.com/570485 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#46683}
2017-07-14 15:20:23 +00:00
call = factory()->NewAwait(call, nopos);
}
Expression* output_proxy = factory()->NewVariableProxy(var_output);
Expression* assignment =
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
call_return = factory()->NewExpressionStatement(assignment, nopos);
}
// if (!IS_RECEIVER(output)) %ThrowIteratorResultNotAnObject(output);
Statement* validate_output;
{
Expression* is_receiver_call;
{
auto args = new (zone()) ZoneList<Expression*>(1, zone());
args->Add(factory()->NewVariableProxy(var_output), zone());
is_receiver_call =
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
}
Statement* throw_call;
{
auto args = new (zone()) ZoneList<Expression*>(1, zone());
args->Add(factory()->NewVariableProxy(var_output), zone());
Expression* call = factory()->NewCallRuntime(
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
throw_call = factory()->NewExpressionStatement(call, nopos);
}
validate_output = factory()->NewIfStatement(
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
nopos);
}
statements->Add(get_return, zone());
statements->Add(check_return, zone());
statements->Add(call_return, zone());
statements->Add(validate_output, zone());
}
void Parser::FinalizeIteratorUse(Variable* completion, Expression* condition,
Variable* iter, Block* iterator_use,
Block* target, IteratorType type) {
//
// This function adds two statements to [target], corresponding to the
// following code:
//
// completion = kNormalCompletion;
// try {
// try {
// iterator_use
// } catch(e) {
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
// %ReThrow(e);
// }
// } finally {
// if (condition) {
// #BuildIteratorCloseForCompletion(iter, completion)
// }
// }
//
const int nopos = kNoSourcePosition;
// completion = kNormalCompletion;
Statement* initialize_completion;
{
Expression* proxy = factory()->NewVariableProxy(completion);
Expression* assignment = factory()->NewAssignment(
Token::ASSIGN, proxy,
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
initialize_completion =
factory()->NewExpressionStatement(assignment, nopos);
}
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
Statement* set_completion_throw;
{
Expression* condition = factory()->NewCompareOperation(
Token::EQ_STRICT, factory()->NewVariableProxy(completion),
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
Expression* proxy = factory()->NewVariableProxy(completion);
Expression* assignment = factory()->NewAssignment(
Token::ASSIGN, proxy,
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
Statement* statement = factory()->NewExpressionStatement(assignment, nopos);
set_completion_throw = factory()->NewIfStatement(
condition, statement, factory()->NewEmptyStatement(nopos), nopos);
}
// if (condition) {
// #BuildIteratorCloseForCompletion(iter, completion)
// }
Block* maybe_close;
{
Block* block = factory()->NewBlock(2, true);
Expression* proxy = factory()->NewVariableProxy(completion);
BuildIteratorCloseForCompletion(block->statements(), iter, proxy, type);
DCHECK_EQ(block->statements()->length(), 2);
maybe_close = IgnoreCompletion(factory()->NewIfStatement(
condition, block, factory()->NewEmptyStatement(nopos), nopos));
}
// try { #try_block }
// catch(e) {
// #set_completion_throw;
// %ReThrow(e);
// }
Statement* try_catch;
{
Scope* catch_scope = NewHiddenCatchScope();
Statement* rethrow;
// We use %ReThrow rather than the ordinary throw because we want to
// preserve the original exception message. This is also why we create a
// TryCatchStatementForReThrow below (which does not clear the pending
// message), rather than a TryCatchStatement.
{
auto args = new (zone()) ZoneList<Expression*>(1, zone());
args->Add(factory()->NewVariableProxy(catch_scope->catch_variable()),
zone());
rethrow = factory()->NewExpressionStatement(
factory()->NewCallRuntime(Runtime::kReThrow, args, nopos), nopos);
}
Block* catch_block = factory()->NewBlock(2, false);
catch_block->statements()->Add(set_completion_throw, zone());
catch_block->statements()->Add(rethrow, zone());
try_catch = factory()->NewTryCatchStatementForReThrow(
iterator_use, catch_scope, catch_block, nopos);
}
// try { #try_catch } finally { #maybe_close }
Statement* try_finally;
{
Block* try_block = factory()->NewBlock(1, false);
try_block->statements()->Add(try_catch, zone());
try_finally =
factory()->NewTryFinallyStatement(try_block, maybe_close, nopos);
}
target->statements()->Add(initialize_completion, zone());
target->statements()->Add(try_finally, zone());
}
void Parser::BuildIteratorCloseForCompletion(ZoneList<Statement*>* statements,
Variable* iterator,
Expression* completion,
IteratorType type) {
//
// This function adds two statements to [statements], corresponding to the
// following code:
//
// let iteratorReturn = iterator.return;
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
// if (completion === kThrowCompletion) {
// if (!IS_CALLABLE(iteratorReturn)) {
// throw MakeTypeError(kReturnMethodNotCallable);
// }
// [if (IteratorType == kAsync)]
// try { Await(%_Call(iteratorReturn, iterator) } catch (_) { }
// [else]
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
// [endif]
// } else {
// [if (IteratorType == kAsync)]
// let output = Await(%_Call(iteratorReturn, iterator));
// [else]
// let output = %_Call(iteratorReturn, iterator);
// [endif]
// if (!IS_RECEIVER(output)) {
// %ThrowIterResultNotAnObject(output);
// }
// }
// }
//
const int nopos = kNoSourcePosition;
// let iteratorReturn = iterator.return;
Variable* var_return = NewTemporary(ast_value_factory()->empty_string());
Statement* get_return;
{
Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
Expression* literal = factory()->NewStringLiteral(
ast_value_factory()->return_string(), nopos);
Expression* property =
factory()->NewProperty(iterator_proxy, literal, nopos);
Expression* return_proxy = factory()->NewVariableProxy(var_return);
Expression* assignment =
factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
get_return = factory()->NewExpressionStatement(assignment, nopos);
}
// if (!IS_CALLABLE(iteratorReturn)) {
// throw MakeTypeError(kReturnMethodNotCallable);
// }
Statement* check_return_callable;
{
Expression* throw_expr =
NewThrowTypeError(MessageTemplate::kReturnMethodNotCallable,
ast_value_factory()->empty_string(), nopos);
check_return_callable = CheckCallable(var_return, throw_expr, nopos);
}
// try { %_Call(iteratorReturn, iterator) } catch (_) { }
Statement* try_call_return;
{
auto args = new (zone()) ZoneList<Expression*>(2, zone());
args->Add(factory()->NewVariableProxy(var_return), zone());
args->Add(factory()->NewVariableProxy(iterator), zone());
Expression* call =
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
if (type == IteratorType::kAsync) {
[generators] remove SuspendFlags enum and related code SuspendFlags was originally used by the suspend operation to determine which field to record the bytecode offset of a suspended generator, and the value the generator was resumed with. For async generators, await operations would use a separate field, in order to preserve the previous yield input value. This was important to ensure `function.sent` continued to function correctly. As function.sent is being retired, this allows the removal of support for that. Given that this was the only real need for SuspendFlags in the first place (with other uses tacked on as a hack), this involves several other changes as well: - Modification of MacroAssembler AssertGeneratorObject. No longer accepts a SuspendFlags parameter to determine which type of check to perform. - Removal of `flags` operand from SuspendGenerator bytecode, and the GeneratorStore js-operator. - Removal of `flags` parameter from ResumeGeneratorTrampoline builtins. - Removal of Runtime functions, interpreter intrinsics and AccessBuilders associated with the [[await_input_or_debug_pos]] field in JSAsyncGeneratorObject, as this field no longer exists. - Addition of a new `Yield` AST node (subclass of Suspend) in order to prevent the need for the other SuspendFlag values. BUG=v8:5855 TBR=bmeurer@chromium.org Change-Id: Iff2881e4742497fe5b774915e988c3d9d8fbe487 Reviewed-on: https://chromium-review.googlesource.com/570485 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#46683}
2017-07-14 15:20:23 +00:00
call = factory()->NewAwait(call, nopos);
}
Block* try_block = factory()->NewBlock(1, false);
try_block->statements()->Add(factory()->NewExpressionStatement(call, nopos),
zone());
Block* catch_block = factory()->NewBlock(0, false);
Revert "[language] Implement optional catch binding proposal" This reverts commit d0651bd108e0ee70ae822eda9bad7049cb2f3df4. Reason for revert: Breaks gc stress with embedded snapshot: https://build.chromium.org/p/client.v8/builders/V8%20Linux64%20GC%20Stress%20-%20custom%20snapshot/builds/15355 Original change's description: > [language] Implement optional catch binding proposal > > This allows the syntax `try {} catch {}` (with no binding after the > `catch`). > > See https://github.com/michaelficarra/optional-catch-binding-proposal/ > > Currently behind --harmony-optional-catch-binding. > > As part of the implementation, this allows TryCatchStatements to not > have an associated catch scope; various paths which assumed they > would have been updated to handle this case. > > Cq-Include-Trybots: master.tryserver.v8:v8_linux_noi18n_rel_ng > Change-Id: Ic525b45199eef025eb05da562e10fbd4f3d7465f > Reviewed-on: https://chromium-review.googlesource.com/571453 > Reviewed-by: Marja Hölttä <marja@chromium.org> > Reviewed-by: Adam Klein <adamk@chromium.org> > Reviewed-by: Sathya Gunasekaran <gsathya@chromium.org> > Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> > Commit-Queue: Kevin Gibbons <bakkot@gmail.com> > Cr-Commit-Position: refs/heads/master@{#48300} TBR=rmcilroy@chromium.org,adamk@chromium.org,marja@chromium.org,gsathya@chromium.org,bakkot@gmail.com Change-Id: I63d68160ec75b87e28d3dcdddca2d8b7d0503b46 No-Presubmit: true No-Tree-Checks: true No-Try: true Cq-Include-Trybots: master.tryserver.v8:v8_linux_noi18n_rel_ng Reviewed-on: https://chromium-review.googlesource.com/702334 Reviewed-by: Michael Achenbach <machenbach@chromium.org> Commit-Queue: Michael Achenbach <machenbach@chromium.org> Cr-Commit-Position: refs/heads/master@{#48303}
2017-10-05 08:30:58 +00:00
Scope* catch_scope = NewHiddenCatchScope();
try_call_return = factory()->NewTryCatchStatement(try_block, catch_scope,
catch_block, nopos);
}
// let output = %_Call(iteratorReturn, iterator);
// if (!IS_RECEIVER(output)) {
// %ThrowIteratorResultNotAnObject(output);
// }
Block* validate_return;
{
Variable* var_output = NewTemporary(ast_value_factory()->empty_string());
Statement* call_return;
{
auto args = new (zone()) ZoneList<Expression*>(2, zone());
args->Add(factory()->NewVariableProxy(var_return), zone());
args->Add(factory()->NewVariableProxy(iterator), zone());
Expression* call =
factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
if (type == IteratorType::kAsync) {
[generators] remove SuspendFlags enum and related code SuspendFlags was originally used by the suspend operation to determine which field to record the bytecode offset of a suspended generator, and the value the generator was resumed with. For async generators, await operations would use a separate field, in order to preserve the previous yield input value. This was important to ensure `function.sent` continued to function correctly. As function.sent is being retired, this allows the removal of support for that. Given that this was the only real need for SuspendFlags in the first place (with other uses tacked on as a hack), this involves several other changes as well: - Modification of MacroAssembler AssertGeneratorObject. No longer accepts a SuspendFlags parameter to determine which type of check to perform. - Removal of `flags` operand from SuspendGenerator bytecode, and the GeneratorStore js-operator. - Removal of `flags` parameter from ResumeGeneratorTrampoline builtins. - Removal of Runtime functions, interpreter intrinsics and AccessBuilders associated with the [[await_input_or_debug_pos]] field in JSAsyncGeneratorObject, as this field no longer exists. - Addition of a new `Yield` AST node (subclass of Suspend) in order to prevent the need for the other SuspendFlag values. BUG=v8:5855 TBR=bmeurer@chromium.org Change-Id: Iff2881e4742497fe5b774915e988c3d9d8fbe487 Reviewed-on: https://chromium-review.googlesource.com/570485 Commit-Queue: Caitlin Potter <caitp@igalia.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#46683}
2017-07-14 15:20:23 +00:00
call = factory()->NewAwait(call, nopos);
}
Expression* output_proxy = factory()->NewVariableProxy(var_output);
Expression* assignment =
factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
call_return = factory()->NewExpressionStatement(assignment, nopos);
}
Expression* is_receiver_call;
{
auto args = new (zone()) ZoneList<Expression*>(1, zone());
args->Add(factory()->NewVariableProxy(var_output), zone());
is_receiver_call =
factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
}
Statement* throw_call;
{
auto args = new (zone()) ZoneList<Expression*>(1, zone());
args->Add(factory()->NewVariableProxy(var_output), zone());
Expression* call = factory()->NewCallRuntime(
Runtime::kThrowIteratorResultNotAnObject, args, nopos);
throw_call = factory()->NewExpressionStatement(call, nopos);
}
Statement* check_return = factory()->NewIfStatement(
is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
nopos);
validate_return = factory()->NewBlock(2, false);
validate_return->statements()->Add(call_return, zone());
validate_return->statements()->Add(check_return, zone());
}
// if (completion === kThrowCompletion) {
// #check_return_callable;
// #try_call_return;
// } else {
// #validate_return;
// }
Statement* call_return_carefully;
{
Expression* condition = factory()->NewCompareOperation(
Token::EQ_STRICT, completion,
factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
Block* then_block = factory()->NewBlock(2, false);
then_block->statements()->Add(check_return_callable, zone());
then_block->statements()->Add(try_call_return, zone());
call_return_carefully = factory()->NewIfStatement(condition, then_block,
validate_return, nopos);
}
// if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { ... }
Statement* maybe_call_return;
{
Expression* condition = factory()->NewCompareOperation(
Token::EQ, factory()->NewVariableProxy(var_return),
factory()->NewNullLiteral(nopos), nopos);
maybe_call_return = factory()->NewIfStatement(
condition, factory()->NewEmptyStatement(nopos), call_return_carefully,
nopos);
}
statements->Add(get_return, zone());
statements->Add(maybe_call_return, zone());
}
Statement* Parser::FinalizeForOfStatement(ForOfStatement* loop,
Variable* var_completion,
IteratorType type, int pos) {
//
// This function replaces the loop with the following wrapping:
//
// completion = kNormalCompletion;
// try {
// try {
// #loop;
// } catch(e) {
// if (completion === kAbruptCompletion) completion = kThrowCompletion;
// %ReThrow(e);
// }
// } finally {
// if (!(completion === kNormalCompletion)) {
// #BuildIteratorCloseForCompletion(#iterator, completion)
// }
// }
//
// Note that the loop's body and its assign_each already contain appropriate
// assignments to completion (see InitializeForOfStatement).
//
const int nopos = kNoSourcePosition;
// !(completion === kNormalCompletion)
Expression* closing_condition;
{
Expression* cmp = factory()->NewCompareOperation(
Token::EQ_STRICT, factory()->NewVariableProxy(var_completion),
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
closing_condition = factory()->NewUnaryOperation(Token::NOT, cmp, nopos);
}
Block* final_loop = factory()->NewBlock(2, false);
{
Block* try_block = factory()->NewBlock(1, false);
try_block->statements()->Add(loop, zone());
FinalizeIteratorUse(var_completion, closing_condition, loop->iterator(),
try_block, final_loop, type);
}
return final_loop;
}
#undef CHECK_OK
#undef CHECK_OK_VOID
#undef CHECK_FAILED
} // namespace internal
} // namespace v8