v8/test/cctest/test-assembler-mips64.cc

6062 lines
180 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <iostream> // NOLINT(readability/streams)
#include "src/v8.h"
#include "src/base/utils/random-number-generator.h"
#include "src/disassembler.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/mips64/simulator-mips64.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
// Define these function prototypes to match JSEntryFunction in execution.cc.
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
typedef Object* (*F4)(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4);
#define __ assm.
TEST(MIPS0) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// Addition.
__ addu(v0, a0, a1);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
CHECK_EQ(0xabcL, res);
}
TEST(MIPS1) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
__ mov(a1, a0);
__ li(v0, 0);
__ b(&C);
__ nop();
__ bind(&L);
__ addu(v0, v0, a1);
__ addiu(a1, a1, -1);
__ bind(&C);
__ xori(v1, a1, 0);
__ Branch(&L, ne, v1, Operand((int64_t)0));
__ nop();
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F1 f = FUNCTION_CAST<F1>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 50, 0, 0, 0, 0));
CHECK_EQ(1275L, res);
}
TEST(MIPS2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label exit, error;
// ----- Test all instructions.
// Test lui, ori, and addiu, used in the li pseudo-instruction.
// This way we can then safely load registers with chosen values.
__ ori(a4, zero_reg, 0);
__ lui(a4, 0x1234);
__ ori(a4, a4, 0);
__ ori(a4, a4, 0x0f0f);
__ ori(a4, a4, 0xf0f0);
__ addiu(a5, a4, 1);
__ addiu(a6, a5, -0x10);
// Load values in temporary registers.
__ li(a4, 0x00000004);
__ li(a5, 0x00001234);
__ li(a6, 0x12345678);
__ li(a7, 0x7fffffff);
__ li(t0, 0xfffffffc);
__ li(t1, 0xffffedcc);
__ li(t2, 0xedcba988);
__ li(t3, 0x80000000);
// SPECIAL class.
__ srl(v0, a6, 8); // 0x00123456
__ sll(v0, v0, 11); // 0x91a2b000
__ sra(v0, v0, 3); // 0xf2345600
__ srav(v0, v0, a4); // 0xff234560
__ sllv(v0, v0, a4); // 0xf2345600
__ srlv(v0, v0, a4); // 0x0f234560
__ Branch(&error, ne, v0, Operand(0x0f234560));
__ nop();
__ addu(v0, a4, a5); // 0x00001238
__ subu(v0, v0, a4); // 0x00001234
__ Branch(&error, ne, v0, Operand(0x00001234));
__ nop();
__ addu(v1, a7, a4); // 32bit addu result is sign-extended into 64bit reg.
__ Branch(&error, ne, v1, Operand(0xffffffff80000003));
__ nop();
__ subu(v1, t3, a4); // 0x7ffffffc
__ Branch(&error, ne, v1, Operand(0x7ffffffc));
__ nop();
__ and_(v0, a5, a6); // 0x0000000000001230
__ or_(v0, v0, a5); // 0x0000000000001234
__ xor_(v0, v0, a6); // 0x000000001234444c
__ nor(v0, v0, a6); // 0xffffffffedcba987
__ Branch(&error, ne, v0, Operand(0xffffffffedcba983));
__ nop();
// Shift both 32bit number to left, to preserve meaning of next comparison.
__ dsll32(a7, a7, 0);
__ dsll32(t3, t3, 0);
__ slt(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ sltu(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
// Restore original values in registers.
__ dsrl32(a7, a7, 0);
__ dsrl32(t3, t3, 0);
// End of SPECIAL class.
__ addiu(v0, zero_reg, 0x7421); // 0x00007421
__ addiu(v0, v0, -0x1); // 0x00007420
__ addiu(v0, v0, -0x20); // 0x00007400
__ Branch(&error, ne, v0, Operand(0x00007400));
__ nop();
__ addiu(v1, a7, 0x1); // 0x80000000 - result is sign-extended.
__ Branch(&error, ne, v1, Operand(0xffffffff80000000));
__ nop();
__ slti(v0, a5, 0x00002000); // 0x1
__ slti(v0, v0, 0xffff8000); // 0x0
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
__ sltiu(v0, a5, 0x00002000); // 0x1
__ sltiu(v0, v0, 0x00008000); // 0x1
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ andi(v0, a5, 0xf0f0); // 0x00001030
__ ori(v0, v0, 0x8a00); // 0x00009a30
__ xori(v0, v0, 0x83cc); // 0x000019fc
__ Branch(&error, ne, v0, Operand(0x000019fc));
__ nop();
__ lui(v1, 0x8123); // Result is sign-extended into 64bit register.
__ Branch(&error, ne, v1, Operand(0xffffffff81230000));
__ nop();
// Bit twiddling instructions & conditional moves.
// Uses a4-t3 as set above.
__ Clz(v0, a4); // 29
__ Clz(v1, a5); // 19
__ addu(v0, v0, v1); // 48
__ Clz(v1, a6); // 3
__ addu(v0, v0, v1); // 51
__ Clz(v1, t3); // 0
__ addu(v0, v0, v1); // 51
__ Branch(&error, ne, v0, Operand(51));
__ Movn(a0, a7, a4); // Move a0<-a7 (a4 is NOT 0).
__ Ins(a0, a5, 12, 8); // 0x7ff34fff
__ Branch(&error, ne, a0, Operand(0x7ff34fff));
__ Movz(a0, t2, t3); // a0 not updated (t3 is NOT 0).
__ Ext(a1, a0, 8, 12); // 0x34f
__ Branch(&error, ne, a1, Operand(0x34f));
__ Movz(a0, t2, v1); // a0<-t2, v0 is 0, from 8 instr back.
__ Branch(&error, ne, a0, Operand(t2));
// Everything was correctly executed. Load the expected result.
__ li(v0, 0x31415926);
__ b(&exit);
__ nop();
__ bind(&error);
// Got an error. Return a wrong result.
__ li(v0, 666);
__ bind(&exit);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(MIPS3) {
// Test floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
double i;
float fa;
float fb;
float fc;
float fd;
float fe;
float ff;
float fg;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label L, C;
// Double precision floating point instructions.
__ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
__ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
__ add_d(f8, f4, f6);
__ sdc1(f8, MemOperand(a0, offsetof(T, c)) ); // c = a + b.
__ mov_d(f10, f8); // c
__ neg_d(f12, f6); // -b
__ sub_d(f10, f10, f12);
__ sdc1(f10, MemOperand(a0, offsetof(T, d)) ); // d = c - (-b).
__ sdc1(f4, MemOperand(a0, offsetof(T, b)) ); // b = a.
__ li(a4, 120);
__ mtc1(a4, f14);
__ cvt_d_w(f14, f14); // f14 = 120.0.
__ mul_d(f10, f10, f14);
__ sdc1(f10, MemOperand(a0, offsetof(T, e)) ); // e = d * 120 = 1.8066e16.
__ div_d(f12, f10, f4);
__ sdc1(f12, MemOperand(a0, offsetof(T, f)) ); // f = e / a = 120.44.
__ sqrt_d(f14, f12);
__ sdc1(f14, MemOperand(a0, offsetof(T, g)) );
// g = sqrt(f) = 10.97451593465515908537
if (kArchVariant == kMips64r2) {
__ ldc1(f4, MemOperand(a0, offsetof(T, h)) );
__ ldc1(f6, MemOperand(a0, offsetof(T, i)) );
__ madd_d(f14, f6, f4, f6);
__ sdc1(f14, MemOperand(a0, offsetof(T, h)) );
}
// Single precision floating point instructions.
__ lwc1(f4, MemOperand(a0, offsetof(T, fa)) );
__ lwc1(f6, MemOperand(a0, offsetof(T, fb)) );
__ add_s(f8, f4, f6);
__ swc1(f8, MemOperand(a0, offsetof(T, fc)) ); // fc = fa + fb.
__ neg_s(f10, f6); // -fb
__ sub_s(f10, f8, f10);
__ swc1(f10, MemOperand(a0, offsetof(T, fd)) ); // fd = fc - (-fb).
__ swc1(f4, MemOperand(a0, offsetof(T, fb)) ); // fb = fa.
__ li(t0, 120);
__ mtc1(t0, f14);
__ cvt_s_w(f14, f14); // f14 = 120.0.
__ mul_s(f10, f10, f14);
__ swc1(f10, MemOperand(a0, offsetof(T, fe)) ); // fe = fd * 120
__ div_s(f12, f10, f4);
__ swc1(f12, MemOperand(a0, offsetof(T, ff)) ); // ff = fe / fa
__ sqrt_s(f14, f12);
__ swc1(f14, MemOperand(a0, offsetof(T, fg)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
// Double test values.
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 0.0;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.h = 1.5;
t.i = 2.75;
// Single test values.
t.fa = 1.5e6;
t.fb = 2.75e4;
t.fc = 0.0;
t.fd = 0.0;
t.fe = 0.0;
t.ff = 0.0;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
// Expected double results.
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(1.5e14, t.b);
CHECK_EQ(1.50275e14, t.c);
CHECK_EQ(1.50550e14, t.d);
CHECK_EQ(1.8066e16, t.e);
CHECK_EQ(120.44, t.f);
CHECK_EQ(10.97451593465515908537, t.g);
if (kArchVariant == kMips64r2) {
CHECK_EQ(6.875, t.h);
}
// Expected single results.
CHECK_EQ(1.5e6, t.fa);
CHECK_EQ(1.5e6, t.fb);
CHECK_EQ(1.5275e06, t.fc);
CHECK_EQ(1.5550e06, t.fd);
CHECK_EQ(1.866e08, t.fe);
CHECK_EQ(124.40000152587890625, t.ff);
CHECK_EQ(11.1534748077392578125, t.fg);
}
TEST(MIPS4) {
// Test moves between floating point and integer registers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
int64_t high;
int64_t low;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
__ ldc1(f4, MemOperand(a0, offsetof(T, a)));
__ ldc1(f5, MemOperand(a0, offsetof(T, b)));
// Swap f4 and f5, by using 3 integer registers, a4-a6,
// both two 32-bit chunks, and one 64-bit chunk.
// mXhc1 is mips32/64-r2 only, not r1,
// but we will not support r1 in practice.
__ mfc1(a4, f4);
__ mfhc1(a5, f4);
__ dmfc1(a6, f5);
__ mtc1(a4, f5);
__ mthc1(a5, f5);
__ dmtc1(a6, f4);
// Store the swapped f4 and f5 back to memory.
__ sdc1(f4, MemOperand(a0, offsetof(T, a)));
__ sdc1(f5, MemOperand(a0, offsetof(T, c)));
// Test sign extension of move operations from coprocessor.
__ ldc1(f4, MemOperand(a0, offsetof(T, d)));
__ mfhc1(a4, f4);
__ mfc1(a5, f4);
__ sd(a4, MemOperand(a0, offsetof(T, high)));
__ sd(a5, MemOperand(a0, offsetof(T, low)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e22;
t.b = 2.75e11;
t.c = 17.17;
t.d = -2.75e11;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(2.75e11, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1.5e22, t.c);
CHECK_EQ(static_cast<int64_t>(0xffffffffc25001d1L), t.high);
CHECK_EQ(static_cast<int64_t>(0xffffffffbf800000L), t.low);
}
TEST(MIPS5) {
// Test conversions between doubles and integers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
int i;
int j;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Load all structure elements to registers.
__ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
__ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
__ lw(a4, MemOperand(a0, offsetof(T, i)) );
__ lw(a5, MemOperand(a0, offsetof(T, j)) );
// Convert double in f4 to int in element i.
__ cvt_w_d(f8, f4);
__ mfc1(a6, f8);
__ sw(a6, MemOperand(a0, offsetof(T, i)) );
// Convert double in f6 to int in element j.
__ cvt_w_d(f10, f6);
__ mfc1(a7, f10);
__ sw(a7, MemOperand(a0, offsetof(T, j)) );
// Convert int in original i (a4) to double in a.
__ mtc1(a4, f12);
__ cvt_d_w(f0, f12);
__ sdc1(f0, MemOperand(a0, offsetof(T, a)) );
// Convert int in original j (a5) to double in b.
__ mtc1(a5, f14);
__ cvt_d_w(f2, f14);
__ sdc1(f2, MemOperand(a0, offsetof(T, b)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e4;
t.b = 2.75e8;
t.i = 12345678;
t.j = -100000;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(12345678.0, t.a);
CHECK_EQ(-100000.0, t.b);
CHECK_EQ(15000, t.i);
CHECK_EQ(275000000, t.j);
}
TEST(MIPS6) {
// Test simple memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint32_t ui;
int32_t si;
int32_t r1;
int32_t r2;
int32_t r3;
int32_t r4;
int32_t r5;
int32_t r6;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Basic word load/store.
__ lw(a4, MemOperand(a0, offsetof(T, ui)) );
__ sw(a4, MemOperand(a0, offsetof(T, r1)) );
// lh with positive data.
__ lh(a5, MemOperand(a0, offsetof(T, ui)) );
__ sw(a5, MemOperand(a0, offsetof(T, r2)) );
// lh with negative data.
__ lh(a6, MemOperand(a0, offsetof(T, si)) );
__ sw(a6, MemOperand(a0, offsetof(T, r3)) );
// lhu with negative data.
__ lhu(a7, MemOperand(a0, offsetof(T, si)) );
__ sw(a7, MemOperand(a0, offsetof(T, r4)) );
// lb with negative data.
__ lb(t0, MemOperand(a0, offsetof(T, si)) );
__ sw(t0, MemOperand(a0, offsetof(T, r5)) );
// sh writes only 1/2 of word.
__ lui(t1, 0x3333);
__ ori(t1, t1, 0x3333);
__ sw(t1, MemOperand(a0, offsetof(T, r6)) );
__ lhu(t1, MemOperand(a0, offsetof(T, si)) );
__ sh(t1, MemOperand(a0, offsetof(T, r6)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.ui = 0x11223344;
t.si = 0x99aabbcc;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.r1);
if (kArchEndian == kLittle) {
CHECK_EQ(static_cast<int32_t>(0x3344), t.r2);
CHECK_EQ(static_cast<int32_t>(0xffffbbcc), t.r3);
CHECK_EQ(static_cast<int32_t>(0x0000bbcc), t.r4);
CHECK_EQ(static_cast<int32_t>(0xffffffcc), t.r5);
CHECK_EQ(static_cast<int32_t>(0x3333bbcc), t.r6);
} else {
CHECK_EQ(static_cast<int32_t>(0x1122), t.r2);
CHECK_EQ(static_cast<int32_t>(0xffff99aa), t.r3);
CHECK_EQ(static_cast<int32_t>(0x000099aa), t.r4);
CHECK_EQ(static_cast<int32_t>(0xffffff99), t.r5);
CHECK_EQ(static_cast<int32_t>(0x99aa3333), t.r6);
}
}
TEST(MIPS7) {
// Test floating point compare and branch instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
int32_t result;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label neither_is_nan, less_than, outa_here;
__ ldc1(f4, MemOperand(a0, offsetof(T, a)) );
__ ldc1(f6, MemOperand(a0, offsetof(T, b)) );
if (kArchVariant != kMips64r6) {
__ c(UN, D, f4, f6);
__ bc1f(&neither_is_nan);
} else {
__ cmp(UN, L, f2, f4, f6);
__ bc1eqz(&neither_is_nan, f2);
}
__ nop();
__ sw(zero_reg, MemOperand(a0, offsetof(T, result)) );
__ Branch(&outa_here);
__ bind(&neither_is_nan);
if (kArchVariant == kMips64r6) {
__ cmp(OLT, L, f2, f6, f4);
__ bc1nez(&less_than, f2);
} else {
__ c(OLT, D, f6, f4, 2);
__ bc1t(&less_than, 2);
}
__ nop();
__ sw(zero_reg, MemOperand(a0, offsetof(T, result)) );
__ Branch(&outa_here);
__ bind(&less_than);
__ Addu(a4, zero_reg, Operand(1));
__ sw(a4, MemOperand(a0, offsetof(T, result)) ); // Set true.
// This test-case should have additional tests.
__ bind(&outa_here);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 2.0;
t.d = -4.0;
t.e = 0.0;
t.f = 0.0;
t.result = 0;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1, t.result);
}
TEST(MIPS8) {
if (kArchVariant == kMips64r2) {
// Test ROTR and ROTRV instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t input;
int32_t result_rotr_4;
int32_t result_rotr_8;
int32_t result_rotr_12;
int32_t result_rotr_16;
int32_t result_rotr_20;
int32_t result_rotr_24;
int32_t result_rotr_28;
int32_t result_rotrv_4;
int32_t result_rotrv_8;
int32_t result_rotrv_12;
int32_t result_rotrv_16;
int32_t result_rotrv_20;
int32_t result_rotrv_24;
int32_t result_rotrv_28;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
// Basic word load.
__ lw(a4, MemOperand(a0, offsetof(T, input)) );
// ROTR instruction (called through the Ror macro).
__ Ror(a5, a4, 0x0004);
__ Ror(a6, a4, 0x0008);
__ Ror(a7, a4, 0x000c);
__ Ror(t0, a4, 0x0010);
__ Ror(t1, a4, 0x0014);
__ Ror(t2, a4, 0x0018);
__ Ror(t3, a4, 0x001c);
// Basic word store.
__ sw(a5, MemOperand(a0, offsetof(T, result_rotr_4)) );
__ sw(a6, MemOperand(a0, offsetof(T, result_rotr_8)) );
__ sw(a7, MemOperand(a0, offsetof(T, result_rotr_12)) );
__ sw(t0, MemOperand(a0, offsetof(T, result_rotr_16)) );
__ sw(t1, MemOperand(a0, offsetof(T, result_rotr_20)) );
__ sw(t2, MemOperand(a0, offsetof(T, result_rotr_24)) );
__ sw(t3, MemOperand(a0, offsetof(T, result_rotr_28)) );
// ROTRV instruction (called through the Ror macro).
__ li(t3, 0x0004);
__ Ror(a5, a4, t3);
__ li(t3, 0x0008);
__ Ror(a6, a4, t3);
__ li(t3, 0x000C);
__ Ror(a7, a4, t3);
__ li(t3, 0x0010);
__ Ror(t0, a4, t3);
__ li(t3, 0x0014);
__ Ror(t1, a4, t3);
__ li(t3, 0x0018);
__ Ror(t2, a4, t3);
__ li(t3, 0x001C);
__ Ror(t3, a4, t3);
// Basic word store.
__ sw(a5, MemOperand(a0, offsetof(T, result_rotrv_4)) );
__ sw(a6, MemOperand(a0, offsetof(T, result_rotrv_8)) );
__ sw(a7, MemOperand(a0, offsetof(T, result_rotrv_12)) );
__ sw(t0, MemOperand(a0, offsetof(T, result_rotrv_16)) );
__ sw(t1, MemOperand(a0, offsetof(T, result_rotrv_20)) );
__ sw(t2, MemOperand(a0, offsetof(T, result_rotrv_24)) );
__ sw(t3, MemOperand(a0, offsetof(T, result_rotrv_28)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.input = 0x12345678;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0x0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotrv_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotrv_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotrv_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotrv_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotrv_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotrv_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotrv_28);
}
}
TEST(MIPS9) {
// Test BRANCH improvements.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label exit, exit2, exit3;
__ Branch(&exit, ge, a0, Operand(zero_reg));
__ Branch(&exit2, ge, a0, Operand(0x00001FFF));
__ Branch(&exit3, ge, a0, Operand(0x0001FFFF));
__ bind(&exit);
__ bind(&exit2);
__ bind(&exit3);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
}
TEST(MIPS10) {
// Test conversions between doubles and long integers.
// Test hos the long ints map to FP regs pairs.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double a_converted;
double b;
int32_t dbl_mant;
int32_t dbl_exp;
int32_t long_hi;
int32_t long_lo;
int64_t long_as_int64;
int32_t b_long_hi;
int32_t b_long_lo;
int64_t b_long_as_int64;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
if (kArchVariant == kMips64r2) {
// Rewritten for FR=1 FPU mode:
// - 32 FP regs of 64-bits each, no odd/even pairs.
// - Note that cvt_l_d/cvt_d_l ARE legal in FR=1 mode.
// Load all structure elements to registers.
__ ldc1(f0, MemOperand(a0, offsetof(T, a)));
// Save the raw bits of the double.
__ mfc1(a4, f0);
__ mfhc1(a5, f0);
__ sw(a4, MemOperand(a0, offsetof(T, dbl_mant)));
__ sw(a5, MemOperand(a0, offsetof(T, dbl_exp)));
// Convert double in f0 to long, save hi/lo parts.
__ cvt_l_d(f0, f0);
__ mfc1(a4, f0); // f0 LS 32 bits of long.
__ mfhc1(a5, f0); // f0 MS 32 bits of long.
__ sw(a4, MemOperand(a0, offsetof(T, long_lo)));
__ sw(a5, MemOperand(a0, offsetof(T, long_hi)));
// Combine the high/low ints, convert back to double.
__ dsll32(a6, a5, 0); // Move a5 to high bits of a6.
__ or_(a6, a6, a4);
__ dmtc1(a6, f1);
__ cvt_d_l(f1, f1);
__ sdc1(f1, MemOperand(a0, offsetof(T, a_converted)));
// Convert the b long integers to double b.
__ lw(a4, MemOperand(a0, offsetof(T, b_long_lo)));
__ lw(a5, MemOperand(a0, offsetof(T, b_long_hi)));
__ mtc1(a4, f8); // f8 LS 32-bits.
__ mthc1(a5, f8); // f8 MS 32-bits.
__ cvt_d_l(f10, f8);
__ sdc1(f10, MemOperand(a0, offsetof(T, b)));
// Convert double b back to long-int.
__ ldc1(f31, MemOperand(a0, offsetof(T, b)));
__ cvt_l_d(f31, f31);
__ dmfc1(a7, f31);
__ sd(a7, MemOperand(a0, offsetof(T, b_long_as_int64)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 2.147483647e9; // 0x7fffffff -> 0x41DFFFFFFFC00000 as double.
t.b_long_hi = 0x000000ff; // 0xFF00FF00FF -> 0x426FE01FE01FE000 as double.
t.b_long_lo = 0x00ff00ff;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x41DFFFFF), t.dbl_exp);
CHECK_EQ(static_cast<int32_t>(0xFFC00000), t.dbl_mant);
CHECK_EQ(0, t.long_hi);
CHECK_EQ(static_cast<int32_t>(0x7fffffff), t.long_lo);
CHECK_EQ(2.147483647e9, t.a_converted);
// 0xFF00FF00FF -> 1.095233372415e12.
CHECK_EQ(1.095233372415e12, t.b);
CHECK_EQ(static_cast<int64_t>(0xFF00FF00FF), t.b_long_as_int64);
}
}
TEST(MIPS11) {
// Do not run test on MIPS64r6, as these instructions are removed.
if (kArchVariant != kMips64r6) {
// Test LWL, LWR, SWL and SWR instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t reg_init;
int32_t mem_init;
int32_t lwl_0;
int32_t lwl_1;
int32_t lwl_2;
int32_t lwl_3;
int32_t lwr_0;
int32_t lwr_1;
int32_t lwr_2;
int32_t lwr_3;
int32_t swl_0;
int32_t swl_1;
int32_t swl_2;
int32_t swl_3;
int32_t swr_0;
int32_t swr_1;
int32_t swr_2;
int32_t swr_3;
} T;
T t;
Assembler assm(isolate, NULL, 0);
// Test all combinations of LWL and vAddr.
__ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a4, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a4, MemOperand(a0, offsetof(T, lwl_0)));
__ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
__ sw(a5, MemOperand(a0, offsetof(T, lwl_1)));
__ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
__ sw(a6, MemOperand(a0, offsetof(T, lwl_2)));
__ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ lwl(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
__ sw(a7, MemOperand(a0, offsetof(T, lwl_3)));
// Test all combinations of LWR and vAddr.
__ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a4, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a4, MemOperand(a0, offsetof(T, lwr_0)));
__ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a5, MemOperand(a0, offsetof(T, mem_init) + 1));
__ sw(a5, MemOperand(a0, offsetof(T, lwr_1)));
__ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a6, MemOperand(a0, offsetof(T, mem_init) + 2));
__ sw(a6, MemOperand(a0, offsetof(T, lwr_2)) );
__ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ lwr(a7, MemOperand(a0, offsetof(T, mem_init) + 3));
__ sw(a7, MemOperand(a0, offsetof(T, lwr_3)) );
// Test all combinations of SWL and vAddr.
__ lw(a4, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a4, MemOperand(a0, offsetof(T, swl_0)));
__ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a4, MemOperand(a0, offsetof(T, swl_0)));
__ lw(a5, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a5, MemOperand(a0, offsetof(T, swl_1)));
__ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a5, MemOperand(a0, offsetof(T, swl_1) + 1));
__ lw(a6, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a6, MemOperand(a0, offsetof(T, swl_2)));
__ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a6, MemOperand(a0, offsetof(T, swl_2) + 2));
__ lw(a7, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a7, MemOperand(a0, offsetof(T, swl_3)));
__ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ swl(a7, MemOperand(a0, offsetof(T, swl_3) + 3));
// Test all combinations of SWR and vAddr.
__ lw(a4, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a4, MemOperand(a0, offsetof(T, swr_0)));
__ lw(a4, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a4, MemOperand(a0, offsetof(T, swr_0)));
__ lw(a5, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a5, MemOperand(a0, offsetof(T, swr_1)));
__ lw(a5, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a5, MemOperand(a0, offsetof(T, swr_1) + 1));
__ lw(a6, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a6, MemOperand(a0, offsetof(T, swr_2)));
__ lw(a6, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a6, MemOperand(a0, offsetof(T, swr_2) + 2));
__ lw(a7, MemOperand(a0, offsetof(T, mem_init)));
__ sw(a7, MemOperand(a0, offsetof(T, swr_3)));
__ lw(a7, MemOperand(a0, offsetof(T, reg_init)));
__ swr(a7, MemOperand(a0, offsetof(T, swr_3) + 3));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.reg_init = 0xaabbccdd;
t.mem_init = 0x11223344;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
if (kArchEndian == kLittle) {
CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_3);
} else {
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_3);
}
}
}
TEST(MIPS12) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t x;
int32_t y;
int32_t y1;
int32_t y2;
int32_t y3;
int32_t y4;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ mov(t2, fp); // Save frame pointer.
__ mov(fp, a0); // Access struct T by fp.
__ lw(a4, MemOperand(a0, offsetof(T, y)));
__ lw(a7, MemOperand(a0, offsetof(T, y4)));
__ addu(a5, a4, a7);
__ subu(t0, a4, a7);
__ nop();
__ push(a4); // These instructions disappear after opt.
__ Pop();
__ addu(a4, a4, a4);
__ nop();
__ Pop(); // These instructions disappear after opt.
__ push(a7);
__ nop();
__ push(a7); // These instructions disappear after opt.
__ pop(a7);
__ nop();
__ push(a7);
__ pop(t0);
__ nop();
__ sw(a4, MemOperand(fp, offsetof(T, y)));
__ lw(a4, MemOperand(fp, offsetof(T, y)));
__ nop();
__ sw(a4, MemOperand(fp, offsetof(T, y)));
__ lw(a5, MemOperand(fp, offsetof(T, y)));
__ nop();
__ push(a5);
__ lw(a5, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a6);
__ nop();
__ push(a6);
__ lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a5);
__ nop();
__ push(a5);
__ lw(a6, MemOperand(fp, offsetof(T, y)));
__ pop(a7);
__ nop();
__ mov(fp, t2);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.x = 1;
t.y = 2;
t.y1 = 3;
t.y2 = 4;
t.y3 = 0XBABA;
t.y4 = 0xDEDA;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(3, t.y1);
}
TEST(MIPS13) {
// Test Cvt_d_uw and Trunc_uw_d macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double cvt_big_out;
double cvt_small_out;
uint32_t trunc_big_out;
uint32_t trunc_small_out;
uint32_t cvt_big_in;
uint32_t cvt_small_in;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ sw(a4, MemOperand(a0, offsetof(T, cvt_small_in)));
__ Cvt_d_uw(f10, a4);
__ sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out)));
__ Trunc_uw_d(f10, f10, f4);
__ swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out)));
__ sw(a4, MemOperand(a0, offsetof(T, cvt_big_in)));
__ Cvt_d_uw(f8, a4);
__ sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out)));
__ Trunc_uw_d(f8, f8, f4);
__ swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.cvt_big_in = 0xFFFFFFFF;
t.cvt_small_in = 333;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(t.cvt_big_out, static_cast<double>(t.cvt_big_in));
CHECK_EQ(t.cvt_small_out, static_cast<double>(t.cvt_small_in));
CHECK_EQ(static_cast<int>(t.trunc_big_out), static_cast<int>(t.cvt_big_in));
CHECK_EQ(static_cast<int>(t.trunc_small_out),
static_cast<int>(t.cvt_small_in));
}
TEST(MIPS14) {
// Test round, floor, ceil, trunc, cvt.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
#define ROUND_STRUCT_ELEMENT(x) \
uint32_t x##_isNaN2008; \
int32_t x##_up_out; \
int32_t x##_down_out; \
int32_t neg_##x##_up_out; \
int32_t neg_##x##_down_out; \
uint32_t x##_err1_out; \
uint32_t x##_err2_out; \
uint32_t x##_err3_out; \
uint32_t x##_err4_out; \
int32_t x##_invalid_result;
typedef struct {
double round_up_in;
double round_down_in;
double neg_round_up_in;
double neg_round_down_in;
double err1_in;
double err2_in;
double err3_in;
double err4_in;
ROUND_STRUCT_ELEMENT(round)
ROUND_STRUCT_ELEMENT(floor)
ROUND_STRUCT_ELEMENT(ceil)
ROUND_STRUCT_ELEMENT(trunc)
ROUND_STRUCT_ELEMENT(cvt)
} T;
T t;
#undef ROUND_STRUCT_ELEMENT
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
#define RUN_ROUND_TEST(x) \
__ cfc1(t0, FCSR);\
__ sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \
__ ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \
\
__ ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \
\
__ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \
\
__ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \
\
__ ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \
\
__ ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \
\
__ ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \
\
__ ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \
__ swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result)));
RUN_ROUND_TEST(round)
RUN_ROUND_TEST(floor)
RUN_ROUND_TEST(ceil)
RUN_ROUND_TEST(trunc)
RUN_ROUND_TEST(cvt)
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.round_up_in = 123.51;
t.round_down_in = 123.49;
t.neg_round_up_in = -123.5;
t.neg_round_down_in = -123.49;
t.err1_in = 123.51;
t.err2_in = 1;
t.err3_in = static_cast<double>(1) + 0xFFFFFFFF;
t.err4_in = NAN;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
#define GET_FPU_ERR(x) (static_cast<int>(x & kFCSRFlagMask))
#define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask)
#define CHECK_ROUND_RESULT(type) \
CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \
CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \
CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \
CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \
if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips64r6) { \
CHECK_EQ(static_cast<int32_t>(0), t.type##_invalid_result);\
} else { \
CHECK_EQ(static_cast<int32_t>(kFPUInvalidResult), t.type##_invalid_result);\
}
CHECK_ROUND_RESULT(round);
CHECK_ROUND_RESULT(floor);
CHECK_ROUND_RESULT(ceil);
CHECK_ROUND_RESULT(cvt);
}
TEST(MIPS15) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, NULL, 0);
Label target;
__ beq(v0, v1, &target);
__ nop();
__ bne(v0, v1, &target);
__ nop();
__ bind(&target);
__ nop();
}
// ----- mips64 tests -----------------------------------------------
TEST(MIPS16) {
// Test 64-bit memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
int64_t r1;
int64_t r2;
int64_t r3;
int64_t r4;
int64_t r5;
int64_t r6;
int64_t r7;
int64_t r8;
int64_t r9;
int64_t r10;
int64_t r11;
int64_t r12;
uint32_t ui;
int32_t si;
};
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Basic 32-bit word load/store, with un-signed data.
__ lw(a4, MemOperand(a0, offsetof(T, ui)));
__ sw(a4, MemOperand(a0, offsetof(T, r1)));
// Check that the data got zero-extended into 64-bit a4.
__ sd(a4, MemOperand(a0, offsetof(T, r2)));
// Basic 32-bit word load/store, with SIGNED data.
__ lw(a5, MemOperand(a0, offsetof(T, si)));
__ sw(a5, MemOperand(a0, offsetof(T, r3)));
// Check that the data got sign-extended into 64-bit a4.
__ sd(a5, MemOperand(a0, offsetof(T, r4)));
// 32-bit UNSIGNED word load/store, with SIGNED data.
__ lwu(a6, MemOperand(a0, offsetof(T, si)));
__ sw(a6, MemOperand(a0, offsetof(T, r5)));
// Check that the data got zero-extended into 64-bit a4.
__ sd(a6, MemOperand(a0, offsetof(T, r6)));
// lh with positive data.
__ lh(a5, MemOperand(a0, offsetof(T, ui)));
__ sw(a5, MemOperand(a0, offsetof(T, r7)));
// lh with negative data.
__ lh(a6, MemOperand(a0, offsetof(T, si)));
__ sw(a6, MemOperand(a0, offsetof(T, r8)));
// lhu with negative data.
__ lhu(a7, MemOperand(a0, offsetof(T, si)));
__ sw(a7, MemOperand(a0, offsetof(T, r9)));
// lb with negative data.
__ lb(t0, MemOperand(a0, offsetof(T, si)));
__ sw(t0, MemOperand(a0, offsetof(T, r10)));
// sh writes only 1/2 of word.
__ lw(a4, MemOperand(a0, offsetof(T, ui)));
__ sh(a4, MemOperand(a0, offsetof(T, r11)));
__ lw(a4, MemOperand(a0, offsetof(T, si)));
__ sh(a4, MemOperand(a0, offsetof(T, r12)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.ui = 0x44332211;
t.si = 0x99aabbcc;
t.r1 = 0x5555555555555555;
t.r2 = 0x5555555555555555;
t.r3 = 0x5555555555555555;
t.r4 = 0x5555555555555555;
t.r5 = 0x5555555555555555;
t.r6 = 0x5555555555555555;
t.r7 = 0x5555555555555555;
t.r8 = 0x5555555555555555;
t.r9 = 0x5555555555555555;
t.r10 = 0x5555555555555555;
t.r11 = 0x5555555555555555;
t.r12 = 0x5555555555555555;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
if (kArchEndian == kLittle) {
// Unsigned data, 32 & 64
CHECK_EQ(static_cast<int64_t>(0x5555555544332211L), t.r1); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000044332211L), t.r2); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x5555555599aabbccL), t.r3); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0xffffffff99aabbccL), t.r4); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x5555555599aabbccL), t.r5); // lwu, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000099aabbccL), t.r6); // sd.
// lh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x5555555500002211L), t.r7); // lh, sw.
CHECK_EQ(static_cast<int64_t>(0x55555555ffffbbccL), t.r8); // lh, sw.
// lhu with signed data.
CHECK_EQ(static_cast<int64_t>(0x555555550000bbccL), t.r9); // lhu, sw.
// lb with signed data.
CHECK_EQ(static_cast<int64_t>(0x55555555ffffffccL), t.r10); // lb, sw.
// sh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x5555555555552211L), t.r11); // lw, sh.
CHECK_EQ(static_cast<int64_t>(0x555555555555bbccL), t.r12); // lw, sh.
} else {
// Unsigned data, 32 & 64
CHECK_EQ(static_cast<int64_t>(0x4433221155555555L), t.r1); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000044332211L), t.r2); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x99aabbcc55555555L), t.r3); // lw, sw.
CHECK_EQ(static_cast<int64_t>(0xffffffff99aabbccL), t.r4); // sd.
// Signed data, 32 & 64.
CHECK_EQ(static_cast<int64_t>(0x99aabbcc55555555L), t.r5); // lwu, sw.
CHECK_EQ(static_cast<int64_t>(0x0000000099aabbccL), t.r6); // sd.
// lh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x0000443355555555L), t.r7); // lh, sw.
CHECK_EQ(static_cast<int64_t>(0xffff99aa55555555L), t.r8); // lh, sw.
// lhu with signed data.
CHECK_EQ(static_cast<int64_t>(0x000099aa55555555L), t.r9); // lhu, sw.
// lb with signed data.
CHECK_EQ(static_cast<int64_t>(0xffffff9955555555L), t.r10); // lb, sw.
// sh with unsigned and signed data.
CHECK_EQ(static_cast<int64_t>(0x2211555555555555L), t.r11); // lw, sh.
CHECK_EQ(static_cast<int64_t>(0xbbcc555555555555L), t.r12); // lw, sh.
}
}
// ----------------------mips64r6 specific tests----------------------
TEST(seleqz_selnez) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test {
int a;
int b;
int c;
int d;
double e;
double f;
double g;
double h;
float i;
float j;
float k;
float l;
} Test;
Test test;
// Integer part of test.
__ addiu(t1, zero_reg, 1); // t1 = 1
__ seleqz(t3, t1, zero_reg); // t3 = 1
__ sw(t3, MemOperand(a0, offsetof(Test, a))); // a = 1
__ seleqz(t2, t1, t1); // t2 = 0
__ sw(t2, MemOperand(a0, offsetof(Test, b))); // b = 0
__ selnez(t3, t1, zero_reg); // t3 = 1;
__ sw(t3, MemOperand(a0, offsetof(Test, c))); // c = 0
__ selnez(t3, t1, t1); // t3 = 1
__ sw(t3, MemOperand(a0, offsetof(Test, d))); // d = 1
// Floating point part of test.
__ ldc1(f0, MemOperand(a0, offsetof(Test, e)) ); // src
__ ldc1(f2, MemOperand(a0, offsetof(Test, f)) ); // test
__ lwc1(f8, MemOperand(a0, offsetof(Test, i)) ); // src
__ lwc1(f10, MemOperand(a0, offsetof(Test, j)) ); // test
__ seleqz_d(f4, f0, f2);
__ selnez_d(f6, f0, f2);
__ seleqz_s(f12, f8, f10);
__ selnez_s(f14, f8, f10);
__ sdc1(f4, MemOperand(a0, offsetof(Test, g)) ); // src
__ sdc1(f6, MemOperand(a0, offsetof(Test, h)) ); // src
__ swc1(f12, MemOperand(a0, offsetof(Test, k)) ); // src
__ swc1(f14, MemOperand(a0, offsetof(Test, l)) ); // src
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, 1);
CHECK_EQ(test.b, 0);
CHECK_EQ(test.c, 0);
CHECK_EQ(test.d, 1);
const int test_size = 3;
const int input_size = 5;
double inputs_D[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double outputs_D[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
18446744073709551616.0, 18446744073709555712.0};
float inputs_S[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float outputs_S[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
18446744073709551616.0, 18446746272732807168.0};
for (int j=0; j < test_size; j+=2) {
for (int i=0; i < input_size; i++) {
test.e = inputs_D[i];
test.f = tests_D[j];
test.i = inputs_S[i];
test.j = tests_S[j];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.g, outputs_D[i]);
CHECK_EQ(test.h, 0);
CHECK_EQ(test.k, outputs_S[i]);
CHECK_EQ(test.l, 0);
test.f = tests_D[j+1];
test.j = tests_S[j+1];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.g, 0);
CHECK_EQ(test.h, outputs_D[i]);
CHECK_EQ(test.k, 0);
CHECK_EQ(test.l, outputs_S[i]);
}
}
}
}
TEST(min_max) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
};
TestFloat test;
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
const int kTableLength = 13;
double inputsa[kTableLength] = {2.0, 3.0, dnan, 3.0, -0.0, 0.0, dinf,
dnan, 42.0, dinf, dminf, dinf, dnan};
double inputsb[kTableLength] = {3.0, 2.0, 3.0, dnan, 0.0, -0.0, dnan,
dinf, dinf, 42.0, dinf, dminf, dnan};
double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0,
-0.0, dinf, dinf, 42.0, 42.0,
dminf, dminf, dnan};
double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, dinf,
dinf, dinf, dinf, dinf, dinf, dnan};
float inputse[kTableLength] = {2.0, 3.0, fnan, 3.0, -0.0, 0.0, finf,
fnan, 42.0, finf, fminf, finf, fnan};
float inputsf[kTableLength] = {3.0, 2.0, 3.0, fnan, 0.0, -0.0, fnan,
finf, finf, 42.0, finf, fminf, fnan};
float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0,
-0.0, finf, finf, 42.0, 42.0,
fminf, fminf, fnan};
float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, finf,
finf, finf, finf, finf, finf, fnan};
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
__ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
__ min_d(f10, f4, f8);
__ max_d(f12, f4, f8);
__ min_s(f14, f2, f6);
__ max_s(f16, f2, f6);
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
__ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
__ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 4; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
}
TEST(rint_d) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 30;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
double b;
int fcsr;
}TestFloat;
TestFloat test;
double inputs[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
309485009821345068724781056.89,
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RN[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RZ[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RP[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 1,
309485009821345068724781057.0,
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RM[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
__ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) );
__ ctc1(t0, FCSR);
__ rint_d(f8, f4);
__ sdc1(f8, MemOperand(a0, offsetof(TestFloat, b)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
}
TEST(sel) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test {
double dd;
double ds;
double dt;
float fd;
float fs;
float ft;
} Test;
Test test;
__ ldc1(f0, MemOperand(a0, offsetof(Test, dd)) ); // test
__ ldc1(f2, MemOperand(a0, offsetof(Test, ds)) ); // src1
__ ldc1(f4, MemOperand(a0, offsetof(Test, dt)) ); // src2
__ lwc1(f6, MemOperand(a0, offsetof(Test, fd)) ); // test
__ lwc1(f8, MemOperand(a0, offsetof(Test, fs)) ); // src1
__ lwc1(f10, MemOperand(a0, offsetof(Test, ft)) ); // src2
__ sel_d(f0, f2, f4);
__ sel_s(f6, f8, f10);
__ sdc1(f0, MemOperand(a0, offsetof(Test, dd)) );
__ swc1(f6, MemOperand(a0, offsetof(Test, fd)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
const int test_size = 3;
const int input_size = 5;
double inputs_dt[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double inputs_ds[input_size] = {0.1, 69.88, -91.325,
18446744073709551625.0, -18446744073709551625.0};
float inputs_ft[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
float inputs_fs[input_size] = {0.1, 69.88, -91.325,
18446744073709551625.0, -18446744073709551625.0};
double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9,
18446744073709551616.0, 18446744073709555712.0};
float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8,
18446744073709551616.0, 18446746272732807168.0};
for (int j=0; j < test_size; j+=2) {
for (int i=0; i < input_size; i++) {
test.dt = inputs_dt[i];
test.dd = tests_D[j];
test.ds = inputs_ds[i];
test.ft = inputs_ft[i];
test.fd = tests_S[j];
test.fs = inputs_fs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dd, inputs_ds[i]);
CHECK_EQ(test.fd, inputs_fs[i]);
test.dd = tests_D[j+1];
test.fd = tests_S[j+1];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dd, inputs_dt[i]);
CHECK_EQ(test.fd, inputs_ft[i]);
}
}
}
}
TEST(rint_s) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 30;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float b;
int fcsr;
}TestFloat;
TestFloat test;
float inputs[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E+38, 6.27463370218383111104242366943E-37,
309485009821345068724781056.89,
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RN[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RZ[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RP[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 1,
309485009821345068724781057.0,
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
float outputs_RM[kTableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37,
1.7976931348623157E38, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ lwc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
__ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) );
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ rint_s(f8, f4);
__ swc1(f8, MemOperand(a0, offsetof(TestFloat, b)) );
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
}
TEST(mina_maxa) {
if (kArchVariant == kMips64r6) {
const int kTableLength = 23;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
struct TestFloat {
double a;
double b;
double resd;
double resd1;
float c;
float d;
float resf;
float resf1;
};
TestFloat test;
double inputsa[kTableLength] = {
5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8,
dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan};
double inputsb[kTableLength] = {
4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8,
3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan};
double resd[kTableLength] = {
4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8,
3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan};
double resd1[kTableLength] = {
5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8,
3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan};
float inputsc[kTableLength] = {
5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8,
fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan};
float inputsd[kTableLength] = {4.8, 5.3, 6.1, -10.0, -8.9, -9.8,
9.8, 9.8, 9.8, -9.8, -11.2, -9.8,
3.0, fnan, -0.0, 0.0, fnan, finf,
finf, 42.0, finf, fminf, fnan};
float resf[kTableLength] = {
4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8,
3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan};
float resf1[kTableLength] = {
5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8,
3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan};
__ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
__ lwc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
__ lwc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
__ mina_d(f6, f2, f4);
__ mina_s(f12, f8, f10);
__ maxa_d(f14, f2, f4);
__ maxa_s(f16, f8, f10);
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, resf)) );
__ sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd)) );
__ swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1)) );
__ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.c = inputsc[i];
test.d = inputsd[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if (i < kTableLength - 1) {
CHECK_EQ(test.resd, resd[i]);
CHECK_EQ(test.resf, resf[i]);
CHECK_EQ(test.resd1, resd1[i]);
CHECK_EQ(test.resf1, resf1[i]);
} else {
CHECK(std::isnan(test.resd));
CHECK(std::isnan(test.resf));
CHECK(std::isnan(test.resd1));
CHECK(std::isnan(test.resf1));
}
}
}
}
// ----------------------mips64r2 specific tests----------------------
TEST(trunc_l) {
if (kArchVariant == kMips64r2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c; // a trunc result
int64_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ trunc_l_d(f8, f4);
__ trunc_l_s(f10, f6);
__ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
}
TEST(movz_movn) {
if (kArchVariant == kMips64r2) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
int64_t rt;
double a;
double b;
double bold;
double b1;
double bold1;
float c;
float d;
float dold;
float d1;
float dold1;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
double inputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
__ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
__ ld(t0, MemOperand(a0, offsetof(TestFloat, rt)));
__ Move(f12, 0.0);
__ Move(f10, 0.0);
__ Move(f16, 0.0);
__ Move(f14, 0.0);
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold)) );
__ swc1(f10, MemOperand(a0, offsetof(TestFloat, dold)) );
__ sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1)) );
__ swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1)) );
__ movz_s(f10, f6, t0);
__ movz_d(f12, f2, t0);
__ movn_s(f14, f6, t0);
__ movn_d(f16, f2, t0);
__ swc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, b)) );
__ swc1(f14, MemOperand(a0, offsetof(TestFloat, d1)) );
__ sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.c = inputs_S[i];
test.rt = 1;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, test.bold);
CHECK_EQ(test.d, test.dold);
CHECK_EQ(test.b1, outputs_D[i]);
CHECK_EQ(test.d1, outputs_S[i]);
test.rt = 0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs_D[i]);
CHECK_EQ(test.d, outputs_S[i]);
CHECK_EQ(test.b1, test.bold1);
CHECK_EQ(test.d1, test.dold1);
}
}
}
TEST(movt_movd) {
if (kArchVariant == kMips64r2) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
typedef struct test_float {
double srcd;
double dstd;
double dstdold;
double dstd1;
double dstdold1;
float srcf;
float dstf;
float dstfold;
float dstf1;
float dstfold1;
int32_t cc;
int32_t fcsr;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 20.8, -2.9
};
double inputs_S[kTableLength] = {
4.88, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.88, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 20.8, -2.9
};
int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = 0; i < kTableLength; i++) {
test.srcd = inputs_D[i];
test.srcf = inputs_S[i];
for (int j = 0; j< 8; j++) {
test.cc = condition_flags[j];
if (test.cc == 0) {
test.fcsr = 1 << 23;
} else {
test.fcsr = 1 << (24+condition_flags[j]);
}
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
__ ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd)) );
__ lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf)) );
__ lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr)) );
__ cfc1(t0, FCSR);
__ ctc1(t1, FCSR);
__ li(t2, 0x0);
__ mtc1(t2, f12);
__ mtc1(t2, f10);
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold)) );
__ movt_s(f12, f4, test.cc);
__ movt_d(f10, f2, test.cc);
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf)) );
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd)) );
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1)) );
__ movf_s(f12, f4, test.cc);
__ movf_d(f10, f2, test.cc);
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1)) );
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1)) );
__ ctc1(t0, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dstf, outputs_S[i]);
CHECK_EQ(test.dstd, outputs_D[i]);
CHECK_EQ(test.dstf1, test.dstfold1);
CHECK_EQ(test.dstd1, test.dstdold1);
test.fcsr = 0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dstf, test.dstfold);
CHECK_EQ(test.dstd, test.dstdold);
CHECK_EQ(test.dstf1, outputs_S[i]);
CHECK_EQ(test.dstd1, outputs_D[i]);
}
}
}
}
// ----------------------tests for all archs--------------------------
TEST(cvt_w_d) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
int32_t b;
int fcsr;
}Test;
const int kTableLength = 24;
double inputs[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, 2147483653.0
};
double outputs_RN[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RZ[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RP[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RM[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lw(t0, MemOperand(a0, offsetof(Test, fcsr)) );
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ cvt_w_d(f8, f4);
__ swc1(f8, MemOperand(a0, offsetof(Test, b)) );
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < kTableLength; i++) {
test.a = inputs[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
TEST(trunc_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a trunc result
int32_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult,
0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ trunc_w_d(f8, f4);
__ trunc_w_s(f10, f6);
__ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(round_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a trunc result
int32_t d; // b trunc result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
kFPUInvalidResult, 0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ round_w_d(f8, f4);
__ round_w_s(f10, f6);
__ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(round_l) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c;
int64_t d;
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483648.0,
0,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ round_l_d(f8, f4);
__ round_l_s(f10, f6);
__ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(sub) {
const int kTableLength = 12;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float b;
float resultS;
double c;
double d;
double resultD;
}TestFloat;
TestFloat test;
double inputfs_D[kTableLength] = {
5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
5.3, 4.8, 2.9, -5.3, -4.8, -2.9
};
double inputft_D[kTableLength] = {
4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
-4.8, -5.3, -2.9, -4.8, -5.3, -2.9
};
double outputs_D[kTableLength] = {
0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
10.1, 10.1, 5.8, -0.5, 0.5, 0.0
};
float inputfs_S[kTableLength] = {
5.3, 4.8, 2.9, -5.3, -4.8, -2.9,
5.3, 4.8, 2.9, -5.3, -4.8, -2.9
};
float inputft_S[kTableLength] = {
4.8, 5.3, 2.9, 4.8, 5.3, 2.9,
-4.8, -5.3, -2.9, -4.8, -5.3, -2.9
};
float outputs_S[kTableLength] = {
0.5, -0.5, 0.0, -10.1, -10.1, -5.8,
10.1, 10.1, 5.8, -0.5, 0.5, 0.0
};
__ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
__ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
__ ldc1(f10, MemOperand(a0, offsetof(TestFloat, d)) );
__ sub_s(f6, f2, f4);
__ sub_d(f12, f8, f10);
__ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputfs_S[i];
test.b = inputft_S[i];
test.c = inputfs_D[i];
test.d = inputft_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, outputs_S[i]);
CHECK_EQ(test.resultD, outputs_D[i]);
}
}
TEST(sqrt_rsqrt_recip) {
const int kTableLength = 4;
const double deltaDouble = 2E-15;
const float deltaFloat = 2E-7;
const float sqrt2_s = sqrt(2);
const double sqrt2_d = sqrt(2);
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float resultS;
float resultS1;
float resultS2;
double c;
double resultD;
double resultD1;
double resultD2;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
0.0L, 4.0L, 2.0L, 4e-28L
};
double outputs_D[kTableLength] = {
0.0L, 2.0L, sqrt2_d, 2e-14L
};
float inputs_S[kTableLength] = {
0.0, 4.0, 2.0, 4e-28
};
float outputs_S[kTableLength] = {
0.0, 2.0, sqrt2_s, 2e-14
};
__ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
__ sqrt_s(f6, f2);
__ sqrt_d(f12, f8);
__ rsqrt_d(f14, f8);
__ rsqrt_s(f16, f2);
__ recip_d(f18, f8);
__ recip_s(f4, f2);
__ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
__ swc1(f16, MemOperand(a0, offsetof(TestFloat, resultS1)) );
__ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resultD1)) );
__ swc1(f4, MemOperand(a0, offsetof(TestFloat, resultS2)) );
__ sdc1(f18, MemOperand(a0, offsetof(TestFloat, resultD2)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
float f1;
double d1;
test.a = inputs_S[i];
test.c = inputs_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, outputs_S[i]);
CHECK_EQ(test.resultD, outputs_D[i]);
if (i != 0) {
f1 = test.resultS1 - 1.0F/outputs_S[i];
f1 = (f1 < 0) ? f1 : -f1;
CHECK(f1 <= deltaFloat);
d1 = test.resultD1 - 1.0L/outputs_D[i];
d1 = (d1 < 0) ? d1 : -d1;
CHECK(d1 <= deltaDouble);
f1 = test.resultS2 - 1.0F/inputs_S[i];
f1 = (f1 < 0) ? f1 : -f1;
CHECK(f1 <= deltaFloat);
d1 = test.resultD2 - 1.0L/inputs_D[i];
d1 = (d1 < 0) ? d1 : -d1;
CHECK(d1 <= deltaDouble);
} else {
CHECK_EQ(test.resultS1, 1.0F/outputs_S[i]);
CHECK_EQ(test.resultD1, 1.0L/outputs_D[i]);
CHECK_EQ(test.resultS2, 1.0F/inputs_S[i]);
CHECK_EQ(test.resultD2, 1.0L/inputs_D[i]);
}
}
}
TEST(neg) {
const int kTableLength = 2;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float resultS;
double c;
double resultD;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
4.0, -2.0
};
double outputs_D[kTableLength] = {
-4.0, 2.0
};
float inputs_S[kTableLength] = {
4.0, -2.0
};
float outputs_S[kTableLength] = {
-4.0, 2.0
};
__ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) );
__ neg_s(f6, f2);
__ neg_d(f12, f8);
__ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) );
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_S[i];
test.c = inputs_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, outputs_S[i]);
CHECK_EQ(test.resultD, outputs_D[i]);
}
}
TEST(mul) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float a;
float b;
float resultS;
double c;
double d;
double resultD;
}TestFloat;
TestFloat test;
double inputfs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
double inputft_D[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
float inputfs_S[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
float inputft_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
__ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) );
__ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) );
__ ldc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, d)) );
__ mul_s(f10, f2, f4);
__ mul_d(f12, f6, f8);
__ swc1(f10, MemOperand(a0, offsetof(TestFloat, resultS)) );
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputfs_S[i];
test.b = inputft_S[i];
test.c = inputfs_D[i];
test.d = inputft_D[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.resultS, inputfs_S[i]*inputft_S[i]);
CHECK_EQ(test.resultD, inputfs_D[i]*inputft_D[i]);
}
}
TEST(mov) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
double b;
float c;
float d;
}TestFloat;
TestFloat test;
double inputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
double inputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
float outputs_S[kTableLength] = {
4.8, 4.8, -4.8, -0.29
};
double outputs_D[kTableLength] = {
5.3, -5.3, 5.3, -2.9
};
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) );
__ mov_s(f8, f6);
__ mov_d(f10, f4);
__ swc1(f8, MemOperand(a0, offsetof(TestFloat, d)) );
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, b)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.c = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs_D[i]);
CHECK_EQ(test.d, outputs_S[i]);
}
}
TEST(floor_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a floor result
int32_t d; // b floor result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
kFPUInvalidResult,
0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ floor_w_d(f8, f4);
__ floor_w_s(f10, f6);
__ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(floor_l) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c;
int64_t d;
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483648.0,
0,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ floor_l_d(f8, f4);
__ floor_l_s(f10, f6);
__ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(ceil_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int32_t c; // a floor result
int32_t d; // b floor result
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult, kFPUInvalidResult,
kFPUInvalidResult};
double outputsNaN2008[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
kFPUInvalidResult,
0,
kFPUInvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ ceil_w_d(f8, f4);
__ ceil_w_s(f10, f6);
__ swc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ swc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(ceil_l) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
const double dFPU64InvalidResult = static_cast<double>(kFPU64InvalidResult);
typedef struct test_float {
uint32_t isNaN2008;
double a;
float b;
int64_t c;
int64_t d;
}Test;
const int kTableLength = 15;
double inputs_D[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<double>::quiet_NaN(),
std::numeric_limits<double>::infinity()
};
float inputs_S[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483648.0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::infinity()
};
double outputs[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0, dFPU64InvalidResult,
dFPU64InvalidResult};
double outputsNaN2008[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483648.0,
0,
dFPU64InvalidResult};
__ cfc1(t1, FCSR);
__ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008)));
__ ldc1(f4, MemOperand(a0, offsetof(Test, a)) );
__ lwc1(f6, MemOperand(a0, offsetof(Test, b)) );
__ ceil_l_d(f8, f4);
__ ceil_l_s(f10, f6);
__ sdc1(f8, MemOperand(a0, offsetof(Test, c)) );
__ sdc1(f10, MemOperand(a0, offsetof(Test, d)) );
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.b = inputs_S[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
if ((test.isNaN2008 & kFCSRNaN2008FlagMask) &&
kArchVariant == kMips64r6) {
CHECK_EQ(test.c, outputsNaN2008[i]);
} else {
CHECK_EQ(test.c, outputs[i]);
}
CHECK_EQ(test.d, test.c);
}
}
TEST(jump_tables1) {
// Test jump tables with forward jumps.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
__ daddiu(sp, sp, -8);
__ sd(ra, MemOperand(sp));
__ Align(8);
Label done;
{
__ BlockTrampolinePoolFor(kNumCases * 2 + 6);
PredictableCodeSizeScope predictable(
&assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ dsll(at, a0, 3); // In delay slot.
__ bind(&here);
__ daddu(at, at, ra);
__ ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ b(&done);
__ nop();
}
__ bind(&done);
__ ld(ra, MemOperand(sp));
__ daddiu(sp, sp, 8);
__ jr(ra);
__ nop();
CHECK_EQ(assm.UnboundLabelsCount(), 0);
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], static_cast<int>(res));
}
}
TEST(jump_tables2) {
// Test jump tables with backward jumps.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
__ daddiu(sp, sp, -8);
__ sd(ra, MemOperand(sp));
Label done, dispatch;
__ b(&dispatch);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ b(&done);
__ nop();
}
__ Align(8);
__ bind(&dispatch);
{
__ BlockTrampolinePoolFor(kNumCases * 2 + 6);
PredictableCodeSizeScope predictable(
&assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ dsll(at, a0, 3); // In delay slot.
__ bind(&here);
__ daddu(at, at, ra);
__ ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
__ bind(&done);
__ ld(ra, MemOperand(sp));
__ daddiu(sp, sp, 8);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables3) {
// Test jump tables with backward jumps and embedded heap objects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
const int kNumCases = 512;
Handle<Object> values[kNumCases];
for (int i = 0; i < kNumCases; ++i) {
double value = isolate->random_number_generator()->NextDouble();
values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED);
}
Label labels[kNumCases];
Object* obj;
int64_t imm64;
__ daddiu(sp, sp, -8);
__ sd(ra, MemOperand(sp));
Label done, dispatch;
__ b(&dispatch);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
obj = *values[i];
imm64 = reinterpret_cast<intptr_t>(obj);
__ lui(v0, (imm64 >> 32) & kImm16Mask);
__ ori(v0, v0, (imm64 >> 16) & kImm16Mask);
__ dsll(v0, v0, 16);
__ ori(v0, v0, imm64 & kImm16Mask);
__ b(&done);
__ nop();
}
__ Align(8);
__ bind(&dispatch);
{
__ BlockTrampolinePoolFor(kNumCases * 2 + 6);
PredictableCodeSizeScope predictable(
&assm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ dsll(at, a0, 3); // In delay slot.
__ bind(&here);
__ daddu(at, at, ra);
__ ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
__ bind(&done);
__ ld(ra, MemOperand(sp));
__ daddiu(sp, sp, 8);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
Handle<Object> result(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0), isolate);
#ifdef OBJECT_PRINT
::printf("f(%d) = ", i);
result->Print(std::cout);
::printf("\n");
#endif
CHECK(values[i].is_identical_to(result));
}
}
TEST(BITSWAP) {
// Test BITSWAP
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int64_t r1;
int64_t r2;
int64_t r3;
int64_t r4;
int64_t r5;
int64_t r6;
} T;
T t;
Assembler assm(isolate, NULL, 0);
__ ld(a4, MemOperand(a0, offsetof(T, r1)));
__ nop();
__ bitswap(a6, a4);
__ sd(a6, MemOperand(a0, offsetof(T, r1)));
__ ld(a4, MemOperand(a0, offsetof(T, r2)));
__ nop();
__ bitswap(a6, a4);
__ sd(a6, MemOperand(a0, offsetof(T, r2)));
__ ld(a4, MemOperand(a0, offsetof(T, r3)));
__ nop();
__ bitswap(a6, a4);
__ sd(a6, MemOperand(a0, offsetof(T, r3)));
__ ld(a4, MemOperand(a0, offsetof(T, r4)));
__ nop();
__ bitswap(a6, a4);
__ sd(a6, MemOperand(a0, offsetof(T, r4)));
__ ld(a4, MemOperand(a0, offsetof(T, r5)));
__ nop();
__ dbitswap(a6, a4);
__ sd(a6, MemOperand(a0, offsetof(T, r5)));
__ ld(a4, MemOperand(a0, offsetof(T, r6)));
__ nop();
__ dbitswap(a6, a4);
__ sd(a6, MemOperand(a0, offsetof(T, r6)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.r1 = 0x00102100781A15C3;
t.r2 = 0x001021008B71FCDE;
t.r3 = 0xFF8017FF781A15C3;
t.r4 = 0xFF8017FF8B71FCDE;
t.r5 = 0x10C021098B71FCDE;
t.r6 = 0xFB8017FF781A15C3;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int64_t>(0x000000001E58A8C3L), t.r1);
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFD18E3F7BL), t.r2);
CHECK_EQ(static_cast<int64_t>(0x000000001E58A8C3L), t.r3);
CHECK_EQ(static_cast<int64_t>(0xFFFFFFFFD18E3F7BL), t.r4);
CHECK_EQ(static_cast<int64_t>(0x08038490D18E3F7BL), t.r5);
CHECK_EQ(static_cast<int64_t>(0xDF01E8FF1E58A8C3L), t.r6);
}
}
TEST(class_fmt) {
if (kArchVariant == kMips64r6) {
// Test CLASS.fmt instruction.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double dSignalingNan;
double dQuietNan;
double dNegInf;
double dNegNorm;
double dNegSubnorm;
double dNegZero;
double dPosInf;
double dPosNorm;
double dPosSubnorm;
double dPosZero;
float fSignalingNan;
float fQuietNan;
float fNegInf;
float fNegNorm;
float fNegSubnorm;
float fNegZero;
float fPosInf;
float fPosNorm;
float fPosSubnorm;
float fPosZero; } T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
__ ldc1(f4, MemOperand(a0, offsetof(T, dSignalingNan)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dSignalingNan)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dQuietNan)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dQuietNan)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dNegInf)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dNegInf)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dNegNorm)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dNegNorm)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dNegSubnorm)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dNegSubnorm)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dNegZero)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dNegZero)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dPosInf)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dPosInf)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dPosNorm)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dPosNorm)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dPosSubnorm)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dPosSubnorm)));
__ ldc1(f4, MemOperand(a0, offsetof(T, dPosZero)));
__ class_d(f6, f4);
__ sdc1(f6, MemOperand(a0, offsetof(T, dPosZero)));
// Testing instruction CLASS.S
__ lwc1(f4, MemOperand(a0, offsetof(T, fSignalingNan)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fSignalingNan)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fQuietNan)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fQuietNan)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fNegInf)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fNegInf)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fNegNorm)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fNegNorm)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fNegSubnorm)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fNegSubnorm)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fNegZero)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fNegZero)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fPosInf)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fPosInf)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fPosNorm)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fPosNorm)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fPosSubnorm)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fPosSubnorm)));
__ lwc1(f4, MemOperand(a0, offsetof(T, fPosZero)));
__ class_s(f6, f4);
__ swc1(f6, MemOperand(a0, offsetof(T, fPosZero)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
// Double test values.
t.dSignalingNan = std::numeric_limits<double>::signaling_NaN();
t.dQuietNan = std::numeric_limits<double>::quiet_NaN();
t.dNegInf = -1.0 / 0.0;
t.dNegNorm = -5.0;
t.dNegSubnorm = -DBL_MIN / 2.0;
t.dNegZero = -0.0;
t.dPosInf = 2.0 / 0.0;
t.dPosNorm = 275.35;
t.dPosSubnorm = DBL_MIN / 2.0;
t.dPosZero = +0.0;
// Float test values
t.fSignalingNan = std::numeric_limits<float>::signaling_NaN();
t.fQuietNan = std::numeric_limits<float>::quiet_NaN();
t.fNegInf = -0.5/0.0;
t.fNegNorm = -FLT_MIN;
t.fNegSubnorm = -FLT_MIN / 1.5;
t.fNegZero = -0.0;
t.fPosInf = 100000.0 / 0.0;
t.fPosNorm = FLT_MAX;
t.fPosSubnorm = FLT_MIN / 20.0;
t.fPosZero = +0.0;
Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
USE(dummy);
// Expected double results.
CHECK_EQ(bit_cast<int64_t>(t.dSignalingNan), 0x001);
CHECK_EQ(bit_cast<int64_t>(t.dQuietNan), 0x002);
CHECK_EQ(bit_cast<int64_t>(t.dNegInf), 0x004);
CHECK_EQ(bit_cast<int64_t>(t.dNegNorm), 0x008);
CHECK_EQ(bit_cast<int64_t>(t.dNegSubnorm), 0x010);
CHECK_EQ(bit_cast<int64_t>(t.dNegZero), 0x020);
CHECK_EQ(bit_cast<int64_t>(t.dPosInf), 0x040);
CHECK_EQ(bit_cast<int64_t>(t.dPosNorm), 0x080);
CHECK_EQ(bit_cast<int64_t>(t.dPosSubnorm), 0x100);
CHECK_EQ(bit_cast<int64_t>(t.dPosZero), 0x200);
// Expected float results.
CHECK_EQ(bit_cast<int32_t>(t.fSignalingNan), 0x001);
CHECK_EQ(bit_cast<int32_t>(t.fQuietNan), 0x002);
CHECK_EQ(bit_cast<int32_t>(t.fNegInf), 0x004);
CHECK_EQ(bit_cast<int32_t>(t.fNegNorm), 0x008);
CHECK_EQ(bit_cast<int32_t>(t.fNegSubnorm), 0x010);
CHECK_EQ(bit_cast<int32_t>(t.fNegZero), 0x020);
CHECK_EQ(bit_cast<int32_t>(t.fPosInf), 0x040);
CHECK_EQ(bit_cast<int32_t>(t.fPosNorm), 0x080);
CHECK_EQ(bit_cast<int32_t>(t.fPosSubnorm), 0x100);
CHECK_EQ(bit_cast<int32_t>(t.fPosZero), 0x200);
}
}
TEST(ABS) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
int64_t fir;
double a;
float b;
double fcsr;
} TestFloat;
TestFloat test;
// Save FIR.
__ cfc1(a1, FCSR);
__ sd(a1, MemOperand(a0, offsetof(TestFloat, fcsr)));
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ abs_d(f10, f4);
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, a)));
__ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)));
__ abs_s(f10, f4);
__ swc1(f10, MemOperand(a0, offsetof(TestFloat, b)));
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.a = -2.0;
test.b = -2.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, 2.0);
CHECK_EQ(test.b, 2.0);
test.a = 2.0;
test.b = 2.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, 2.0);
CHECK_EQ(test.b, 2.0);
// Testing biggest positive number
test.a = std::numeric_limits<double>::max();
test.b = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::max());
CHECK_EQ(test.b, std::numeric_limits<float>::max());
// Testing smallest negative number
test.a = -std::numeric_limits<double>::max(); // lowest()
test.b = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::max());
CHECK_EQ(test.b, std::numeric_limits<float>::max());
// Testing smallest positive number
test.a = -std::numeric_limits<double>::min();
test.b = -std::numeric_limits<float>::min();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::min());
CHECK_EQ(test.b, std::numeric_limits<float>::min());
// Testing infinity
test.a = -std::numeric_limits<double>::max()
/ std::numeric_limits<double>::min();
test.b = -std::numeric_limits<float>::max()
/ std::numeric_limits<float>::min();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, std::numeric_limits<double>::max()
/ std::numeric_limits<double>::min());
CHECK_EQ(test.b, std::numeric_limits<float>::max()
/ std::numeric_limits<float>::min());
test.a = std::numeric_limits<double>::quiet_NaN();
test.b = std::numeric_limits<float>::quiet_NaN();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(std::isnan(test.a), true);
CHECK_EQ(std::isnan(test.b), true);
test.a = std::numeric_limits<double>::signaling_NaN();
test.b = std::numeric_limits<float>::signaling_NaN();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(std::isnan(test.a), true);
CHECK_EQ(std::isnan(test.b), true);
}
TEST(ADD_FMT) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double a;
double b;
double c;
float fa;
float fb;
float fc;
} TestFloat;
TestFloat test;
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ add_d(f10, f8, f4);
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
__ lwc1(f4, MemOperand(a0, offsetof(TestFloat, fa)));
__ lwc1(f8, MemOperand(a0, offsetof(TestFloat, fb)));
__ add_s(f10, f8, f4);
__ swc1(f10, MemOperand(a0, offsetof(TestFloat, fc)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.a = 2.0;
test.b = 3.0;
test.fa = 2.0;
test.fb = 3.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 5.0);
CHECK_EQ(test.fc, 5.0);
test.a = std::numeric_limits<double>::max();
test.b = -std::numeric_limits<double>::max(); // lowest()
test.fa = std::numeric_limits<float>::max();
test.fb = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 0.0);
CHECK_EQ(test.fc, 0.0);
test.a = std::numeric_limits<double>::max();
test.b = std::numeric_limits<double>::max();
test.fa = std::numeric_limits<float>::max();
test.fb = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(std::isfinite(test.c), false);
CHECK_EQ(std::isfinite(test.fc), false);
test.a = 5.0;
test.b = std::numeric_limits<double>::signaling_NaN();
test.fa = 5.0;
test.fb = std::numeric_limits<float>::signaling_NaN();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(std::isnan(test.c), true);
CHECK_EQ(std::isnan(test.fc), true);
}
TEST(C_COND_FMT) {
if (kArchVariant == kMips64r2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double dOp1;
double dOp2;
uint32_t dF;
uint32_t dUn;
uint32_t dEq;
uint32_t dUeq;
uint32_t dOlt;
uint32_t dUlt;
uint32_t dOle;
uint32_t dUle;
float fOp1;
float fOp2;
uint32_t fF;
uint32_t fUn;
uint32_t fEq;
uint32_t fUeq;
uint32_t fOlt;
uint32_t fUlt;
uint32_t fOle;
uint32_t fUle;
} TestFloat;
TestFloat test;
__ li(t1, 1);
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
__ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));
__ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
__ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(F, f4, f6, 0);
__ c_s(F, f14, f16, 2);
__ movt(t2, t1, 0);
__ movt(t3, t1, 2);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dF)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fF)) );
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(UN, f4, f6, 2);
__ c_s(UN, f14, f16, 4);
__ movt(t2, t1, 2);
__ movt(t3, t1, 4);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dUn)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fUn)) );
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(EQ, f4, f6, 4);
__ c_s(EQ, f14, f16, 6);
__ movt(t2, t1, 4);
__ movt(t3, t1, 6);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dEq)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fEq)) );
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(UEQ, f4, f6, 6);
__ c_s(UEQ, f14, f16, 0);
__ movt(t2, t1, 6);
__ movt(t3, t1, 0);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dUeq)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fUeq)) );
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(OLT, f4, f6, 0);
__ c_s(OLT, f14, f16, 2);
__ movt(t2, t1, 0);
__ movt(t3, t1, 2);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dOlt)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fOlt)) );
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(ULT, f4, f6, 2);
__ c_s(ULT, f14, f16, 4);
__ movt(t2, t1, 2);
__ movt(t3, t1, 4);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dUlt)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fUlt)) );
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(OLE, f4, f6, 4);
__ c_s(OLE, f14, f16, 6);
__ movt(t2, t1, 4);
__ movt(t3, t1, 6);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dOle)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fOle)) );
__ mov(t2, zero_reg);
__ mov(t3, zero_reg);
__ c_d(ULE, f4, f6, 6);
__ c_s(ULE, f14, f16, 0);
__ movt(t2, t1, 6);
__ movt(t3, t1, 0);
__ sw(t2, MemOperand(a0, offsetof(TestFloat, dUle)) );
__ sw(t3, MemOperand(a0, offsetof(TestFloat, fUle)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.dOp1 = 2.0;
test.dOp2 = 3.0;
test.fOp1 = 2.0;
test.fOp2 = 3.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 0U);
CHECK_EQ(test.dEq, 0U);
CHECK_EQ(test.dUeq, 0U);
CHECK_EQ(test.dOlt, 1U);
CHECK_EQ(test.dUlt, 1U);
CHECK_EQ(test.dOle, 1U);
CHECK_EQ(test.dUle, 1U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 0U);
CHECK_EQ(test.fEq, 0U);
CHECK_EQ(test.fUeq, 0U);
CHECK_EQ(test.fOlt, 1U);
CHECK_EQ(test.fUlt, 1U);
CHECK_EQ(test.fOle, 1U);
CHECK_EQ(test.fUle, 1U);
test.dOp1 = std::numeric_limits<double>::max();
test.dOp2 = std::numeric_limits<double>::min();
test.fOp1 = std::numeric_limits<float>::min();
test.fOp2 = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 0U);
CHECK_EQ(test.dEq, 0U);
CHECK_EQ(test.dUeq, 0U);
CHECK_EQ(test.dOlt, 0U);
CHECK_EQ(test.dUlt, 0U);
CHECK_EQ(test.dOle, 0U);
CHECK_EQ(test.dUle, 0U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 0U);
CHECK_EQ(test.fEq, 0U);
CHECK_EQ(test.fUeq, 0U);
CHECK_EQ(test.fOlt, 0U);
CHECK_EQ(test.fUlt, 0U);
CHECK_EQ(test.fOle, 0U);
CHECK_EQ(test.fUle, 0U);
test.dOp1 = -std::numeric_limits<double>::max(); // lowest()
test.dOp2 = -std::numeric_limits<double>::max(); // lowest()
test.fOp1 = std::numeric_limits<float>::max();
test.fOp2 = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 0U);
CHECK_EQ(test.dEq, 1U);
CHECK_EQ(test.dUeq, 1U);
CHECK_EQ(test.dOlt, 0U);
CHECK_EQ(test.dUlt, 0U);
CHECK_EQ(test.dOle, 1U);
CHECK_EQ(test.dUle, 1U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 0U);
CHECK_EQ(test.fEq, 1U);
CHECK_EQ(test.fUeq, 1U);
CHECK_EQ(test.fOlt, 0U);
CHECK_EQ(test.fUlt, 0U);
CHECK_EQ(test.fOle, 1U);
CHECK_EQ(test.fUle, 1U);
test.dOp1 = std::numeric_limits<double>::quiet_NaN();
test.dOp2 = 0.0;
test.fOp1 = std::numeric_limits<float>::quiet_NaN();
test.fOp2 = 0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dF, 0U);
CHECK_EQ(test.dUn, 1U);
CHECK_EQ(test.dEq, 0U);
CHECK_EQ(test.dUeq, 1U);
CHECK_EQ(test.dOlt, 0U);
CHECK_EQ(test.dUlt, 1U);
CHECK_EQ(test.dOle, 0U);
CHECK_EQ(test.dUle, 1U);
CHECK_EQ(test.fF, 0U);
CHECK_EQ(test.fUn, 1U);
CHECK_EQ(test.fEq, 0U);
CHECK_EQ(test.fUeq, 1U);
CHECK_EQ(test.fOlt, 0U);
CHECK_EQ(test.fUlt, 1U);
CHECK_EQ(test.fOle, 0U);
CHECK_EQ(test.fUle, 1U);
}
}
TEST(CMP_COND_FMT) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
double dOp1;
double dOp2;
double dF;
double dUn;
double dEq;
double dUeq;
double dOlt;
double dUlt;
double dOle;
double dUle;
double dOr;
double dUne;
double dNe;
float fOp1;
float fOp2;
float fF;
float fUn;
float fEq;
float fUeq;
float fOlt;
float fUlt;
float fOle;
float fUle;
float fOr;
float fUne;
float fNe;
} TestFloat;
TestFloat test;
__ li(t1, 1);
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1)));
__ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2)));
__ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1)));
__ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2)));
__ cmp_d(F, f2, f4, f6);
__ cmp_s(F, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dF)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fF)) );
__ cmp_d(UN, f2, f4, f6);
__ cmp_s(UN, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUn)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUn)) );
__ cmp_d(EQ, f2, f4, f6);
__ cmp_s(EQ, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dEq)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fEq)) );
__ cmp_d(UEQ, f2, f4, f6);
__ cmp_s(UEQ, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUeq)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUeq)) );
__ cmp_d(LT, f2, f4, f6);
__ cmp_s(LT, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOlt)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOlt)) );
__ cmp_d(ULT, f2, f4, f6);
__ cmp_s(ULT, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUlt)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUlt)) );
__ cmp_d(LE, f2, f4, f6);
__ cmp_s(LE, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOle)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOle)) );
__ cmp_d(ULE, f2, f4, f6);
__ cmp_s(ULE, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUle)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUle)) );
__ cmp_d(ORD, f2, f4, f6);
__ cmp_s(ORD, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOr)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOr)) );
__ cmp_d(UNE, f2, f4, f6);
__ cmp_s(UNE, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUne)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUne)) );
__ cmp_d(NE, f2, f4, f6);
__ cmp_s(NE, f12, f14, f16);
__ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dNe)) );
__ swc1(f12, MemOperand(a0, offsetof(TestFloat, fNe)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
uint64_t dTrue = 0xFFFFFFFFFFFFFFFF;
uint64_t dFalse = 0x0000000000000000;
uint32_t fTrue = 0xFFFFFFFF;
uint32_t fFalse = 0x00000000;
test.dOp1 = 2.0;
test.dOp2 = 3.0;
test.fOp1 = 2.0;
test.fOp2 = 3.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
test.dOp1 = std::numeric_limits<double>::max();
test.dOp2 = std::numeric_limits<double>::min();
test.fOp1 = std::numeric_limits<float>::min();
test.fOp2 = -std::numeric_limits<float>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fFalse);
test.dOp1 = -std::numeric_limits<double>::max(); // lowest()
test.dOp2 = -std::numeric_limits<double>::max(); // lowest()
test.fOp1 = std::numeric_limits<float>::max();
test.fOp2 = std::numeric_limits<float>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
test.dOp1 = std::numeric_limits<double>::quiet_NaN();
test.dOp2 = 0.0;
test.fOp1 = std::numeric_limits<float>::quiet_NaN();
test.fOp2 = 0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(bit_cast<uint64_t>(test.dF), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUn), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dEq), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUeq), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOlt), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUlt), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOle), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUle), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dOr), dFalse);
CHECK_EQ(bit_cast<uint64_t>(test.dUne), dTrue);
CHECK_EQ(bit_cast<uint64_t>(test.dNe), dFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fF), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUn), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fEq), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUeq), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOlt), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUlt), fTrue);
CHECK_EQ(bit_cast<uint32_t>(test.fOle), fFalse);
CHECK_EQ(bit_cast<uint32_t>(test.fUle), fTrue);
}
}
TEST(CVT) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test_float {
float cvt_d_s_in;
double cvt_d_s_out;
int32_t cvt_d_w_in;
double cvt_d_w_out;
int64_t cvt_d_l_in;
double cvt_d_l_out;
float cvt_l_s_in;
int64_t cvt_l_s_out;
double cvt_l_d_in;
int64_t cvt_l_d_out;
double cvt_s_d_in;
float cvt_s_d_out;
int32_t cvt_s_w_in;
float cvt_s_w_out;
int64_t cvt_s_l_in;
float cvt_s_l_out;
float cvt_w_s_in;
int32_t cvt_w_s_out;
double cvt_w_d_in;
int32_t cvt_w_d_out;
} TestFloat;
TestFloat test;
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
#define GENERATE_CVT_TEST(x, y, z) \
__ y##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_in))); \
__ x(f0, f0); \
__ nop(); \
__ z##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_out)));
GENERATE_CVT_TEST(cvt_d_s, lw, sd)
GENERATE_CVT_TEST(cvt_d_w, lw, sd)
GENERATE_CVT_TEST(cvt_d_l, ld, sd)
GENERATE_CVT_TEST(cvt_l_s, lw, sd)
GENERATE_CVT_TEST(cvt_l_d, ld, sd)
GENERATE_CVT_TEST(cvt_s_d, ld, sw)
GENERATE_CVT_TEST(cvt_s_w, lw, sw)
GENERATE_CVT_TEST(cvt_s_l, ld, sw)
GENERATE_CVT_TEST(cvt_w_s, lw, sw)
GENERATE_CVT_TEST(cvt_w_d, ld, sw)
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.cvt_d_s_in = -0.51;
test.cvt_d_w_in = -1;
test.cvt_d_l_in = -1;
test.cvt_l_s_in = -0.51;
test.cvt_l_d_in = -0.51;
test.cvt_s_d_in = -0.51;
test.cvt_s_w_in = -1;
test.cvt_s_l_in = -1;
test.cvt_w_s_in = -0.51;
test.cvt_w_d_in = -0.51;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(test.cvt_l_s_out, -1);
CHECK_EQ(test.cvt_l_d_out, -1);
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(test.cvt_w_s_out, -1);
CHECK_EQ(test.cvt_w_d_out, -1);
test.cvt_d_s_in = 0.49;
test.cvt_d_w_in = 1;
test.cvt_d_l_in = 1;
test.cvt_l_s_in = 0.49;
test.cvt_l_d_in = 0.49;
test.cvt_s_d_in = 0.49;
test.cvt_s_w_in = 1;
test.cvt_s_l_in = 1;
test.cvt_w_s_in = 0.49;
test.cvt_w_d_in = 0.49;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(test.cvt_l_s_out, 0);
CHECK_EQ(test.cvt_l_d_out, 0);
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(test.cvt_w_s_out, 0);
CHECK_EQ(test.cvt_w_d_out, 0);
test.cvt_d_s_in = std::numeric_limits<float>::max();
test.cvt_d_w_in = std::numeric_limits<int32_t>::max();
test.cvt_d_l_in = std::numeric_limits<int64_t>::max();
test.cvt_l_s_in = std::numeric_limits<float>::max();
test.cvt_l_d_in = std::numeric_limits<double>::max();
test.cvt_s_d_in = std::numeric_limits<double>::max();
test.cvt_s_w_in = std::numeric_limits<int32_t>::max();
test.cvt_s_l_in = std::numeric_limits<int64_t>::max();
test.cvt_w_s_in = std::numeric_limits<float>::max();
test.cvt_w_d_in = std::numeric_limits<double>::max();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(test.cvt_l_s_out, std::numeric_limits<int64_t>::max());
CHECK_EQ(test.cvt_l_d_out, std::numeric_limits<int64_t>::max());
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(test.cvt_w_s_out, std::numeric_limits<int32_t>::max());
CHECK_EQ(test.cvt_w_d_out, std::numeric_limits<int32_t>::max());
test.cvt_d_s_in = -std::numeric_limits<float>::max(); // lowest()
test.cvt_d_w_in = std::numeric_limits<int32_t>::min(); // lowest()
test.cvt_d_l_in = std::numeric_limits<int64_t>::min(); // lowest()
test.cvt_l_s_in = -std::numeric_limits<float>::max(); // lowest()
test.cvt_l_d_in = -std::numeric_limits<double>::max(); // lowest()
test.cvt_s_d_in = -std::numeric_limits<double>::max(); // lowest()
test.cvt_s_w_in = std::numeric_limits<int32_t>::min(); // lowest()
test.cvt_s_l_in = std::numeric_limits<int64_t>::min(); // lowest()
test.cvt_w_s_in = -std::numeric_limits<float>::max(); // lowest()
test.cvt_w_d_in = -std::numeric_limits<double>::max(); // lowest()
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
// The returned value when converting from fixed-point to float-point
// is not consistent between board, simulator and specification
// in this test case, therefore modifying the test
CHECK(test.cvt_l_s_out == std::numeric_limits<int64_t>::min() ||
test.cvt_l_s_out == std::numeric_limits<int64_t>::max());
CHECK(test.cvt_l_d_out == std::numeric_limits<int64_t>::min() ||
test.cvt_l_d_out == std::numeric_limits<int64_t>::max());
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK(test.cvt_w_s_out == std::numeric_limits<int32_t>::min() ||
test.cvt_w_s_out == std::numeric_limits<int32_t>::max());
CHECK(test.cvt_w_d_out == std::numeric_limits<int32_t>::min() ||
test.cvt_w_d_out == std::numeric_limits<int32_t>::max());
test.cvt_d_s_in = std::numeric_limits<float>::min();
test.cvt_d_w_in = std::numeric_limits<int32_t>::min();
test.cvt_d_l_in = std::numeric_limits<int64_t>::min();
test.cvt_l_s_in = std::numeric_limits<float>::min();
test.cvt_l_d_in = std::numeric_limits<double>::min();
test.cvt_s_d_in = std::numeric_limits<double>::min();
test.cvt_s_w_in = std::numeric_limits<int32_t>::min();
test.cvt_s_l_in = std::numeric_limits<int64_t>::min();
test.cvt_w_s_in = std::numeric_limits<float>::min();
test.cvt_w_d_in = std::numeric_limits<double>::min();
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.cvt_d_s_out, static_cast<double>(test.cvt_d_s_in));
CHECK_EQ(test.cvt_d_w_out, static_cast<double>(test.cvt_d_w_in));
CHECK_EQ(test.cvt_d_l_out, static_cast<double>(test.cvt_d_l_in));
CHECK_EQ(test.cvt_l_s_out, 0);
CHECK_EQ(test.cvt_l_d_out, 0);
CHECK_EQ(test.cvt_s_d_out, static_cast<float>(test.cvt_s_d_in));
CHECK_EQ(test.cvt_s_w_out, static_cast<float>(test.cvt_s_w_in));
CHECK_EQ(test.cvt_s_l_out, static_cast<float>(test.cvt_s_l_in));
CHECK_EQ(test.cvt_w_s_out, 0);
CHECK_EQ(test.cvt_w_d_out, 0);
}
TEST(DIV_FMT) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
typedef struct test {
double dOp1;
double dOp2;
double dRes;
float fOp1;
float fOp2;
float fRes;
} Test;
Test test;
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ ldc1(f4, MemOperand(a0, offsetof(Test, dOp1)) );
__ ldc1(f2, MemOperand(a0, offsetof(Test, dOp2)) );
__ nop();
__ div_d(f6, f4, f2);
__ sdc1(f6, MemOperand(a0, offsetof(Test, dRes)) );
__ lwc1(f4, MemOperand(a0, offsetof(Test, fOp1)) );
__ lwc1(f2, MemOperand(a0, offsetof(Test, fOp2)) );
__ nop();
__ div_s(f6, f4, f2);
__ swc1(f6, MemOperand(a0, offsetof(Test, fRes)) );
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
const int test_size = 3;
double dOp1[test_size] = {
5.0,
DBL_MAX,
DBL_MAX,
};
double dOp2[test_size] = {
2.0,
2.0,
-DBL_MAX,
};
double dRes[test_size] = {
2.5,
DBL_MAX / 2.0,
-1.0,
};
float fOp1[test_size] = {
5.0,
FLT_MAX,
FLT_MAX,
};
float fOp2[test_size] = {
2.0,
2.0,
-FLT_MAX,
};
float fRes[test_size] = {
2.5,
FLT_MAX / 2.0,
-1.0,
};
for (int i = 0; i < test_size; i++) {
test.dOp1 = dOp1[i];
test.dOp2 = dOp2[i];
test.fOp1 = fOp1[i];
test.fOp2 = fOp2[i];
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(test.dRes, dRes[i]);
CHECK_EQ(test.fRes, fRes[i]);
}
test.dOp1 = DBL_MAX;
test.dOp2 = -0.0;
test.fOp1 = FLT_MAX;
test.fOp2 = -0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(false, std::isfinite(test.dRes));
CHECK_EQ(false, std::isfinite(test.fRes));
test.dOp1 = 0.0;
test.dOp2 = -0.0;
test.fOp1 = 0.0;
test.fOp2 = -0.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(true, std::isnan(test.dRes));
CHECK_EQ(true, std::isnan(test.fRes));
test.dOp1 = std::numeric_limits<double>::quiet_NaN();
test.dOp2 = -5.0;
test.fOp1 = std::numeric_limits<float>::quiet_NaN();
test.fOp2 = -5.0;
(CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0));
CHECK_EQ(true, std::isnan(test.dRes));
CHECK_EQ(true, std::isnan(test.fRes));
}
uint64_t run_align(uint64_t rs_value, uint64_t rt_value, uint8_t bp) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ align(v0, a0, a1, bp);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F4 f = FUNCTION_CAST<F4>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0));
return res;
}
TEST(r6_align) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAlign {
uint64_t rs_value;
uint64_t rt_value;
uint8_t bp;
uint64_t expected_res;
};
struct TestCaseAlign tc[] = {
// rs_value, rt_value, bp, expected_res
{ 0x11223344, 0xaabbccdd, 0, 0xffffffffaabbccdd },
{ 0x11223344, 0xaabbccdd, 1, 0xffffffffbbccdd11 },
{ 0x11223344, 0xaabbccdd, 2, 0xffffffffccdd1122 },
{ 0x11223344, 0xaabbccdd, 3, 0xffffffffdd112233 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlign);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_align(tc[i].rs_value,
tc[i].rt_value,
tc[i].bp));
}
}
}
uint64_t run_dalign(uint64_t rs_value, uint64_t rt_value, uint8_t bp) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ dalign(v0, a0, a1, bp);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F4 f = FUNCTION_CAST<F4>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0));
return res;
}
TEST(r6_dalign) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseDalign {
uint64_t rs_value;
uint64_t rt_value;
uint8_t bp;
uint64_t expected_res;
};
struct TestCaseDalign tc[] = {
// rs_value, rt_value, bp, expected_res
{ 0x1122334455667700, 0xaabbccddeeff8899, 0, 0xaabbccddeeff8899 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 1, 0xbbccddeeff889911 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 2, 0xccddeeff88991122 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 3, 0xddeeff8899112233 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 4, 0xeeff889911223344 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 5, 0xff88991122334455 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 6, 0x8899112233445566 },
{ 0x1122334455667700, 0xaabbccddeeff8899, 7, 0x9911223344556677 }
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDalign);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_dalign(tc[i].rs_value,
tc[i].rt_value,
tc[i].bp));
}
}
}
uint64_t PC; // The program counter.
uint64_t run_aluipc(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ aluipc(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
PC = (uint64_t) f; // Set the program counter.
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_aluipc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAluipc {
int16_t offset;
};
struct TestCaseAluipc tc[] = {
// offset
{ -32768 }, // 0x8000
{ -1 }, // 0xFFFF
{ 0 },
{ 1 },
{ 32767 }, // 0x7FFF
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAluipc);
for (size_t i = 0; i < nr_test_cases; ++i) {
PC = 0;
uint64_t res = run_aluipc(tc[i].offset);
// Now, the program_counter (PC) is set.
uint64_t expected_res = ~0x0FFFF & (PC + (tc[i].offset << 16));
CHECK_EQ(expected_res, res);
}
}
}
uint64_t run_auipc(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ auipc(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
PC = (uint64_t) f; // Set the program counter.
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_auipc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAuipc {
int16_t offset;
};
struct TestCaseAuipc tc[] = {
// offset
{ -32768 }, // 0x8000
{ -1 }, // 0xFFFF
{ 0 },
{ 1 },
{ 32767 }, // 0x7FFF
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAuipc);
for (size_t i = 0; i < nr_test_cases; ++i) {
PC = 0;
uint64_t res = run_auipc(tc[i].offset);
// Now, the program_counter (PC) is set.
uint64_t expected_res = PC + (tc[i].offset << 16);
CHECK_EQ(expected_res, res);
}
}
}
uint64_t run_aui(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(t0, rs);
__ aui(v0, t0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
uint64_t run_daui(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(t0, rs);
__ daui(v0, t0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
uint64_t run_dahi(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(v0, rs);
__ dahi(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
uint64_t run_dati(uint64_t rs, uint16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(v0, rs);
__ dati(v0, offset);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res =
reinterpret_cast<uint64_t>
(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_aui_family) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAui {
uint64_t rs;
uint16_t offset;
uint64_t ref_res;
};
// AUI test cases.
struct TestCaseAui aui_tc[] = {
{0xfffeffff, 0x1, 0xffffffffffffffff},
{0xffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffffffffffff0000},
{0x0008ffff, 0xfff7, 0xffffffffffffffff},
{32767, 32767, 0x000000007fff7fff},
{0x00000000ffffffff, 0x1, 0x000000000000ffff},
{0xffffffff, 0xffff, 0xfffffffffffeffff},
};
size_t nr_test_cases = sizeof(aui_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_aui(aui_tc[i].rs, aui_tc[i].offset);
CHECK_EQ(aui_tc[i].ref_res, res);
}
// DAUI test cases.
struct TestCaseAui daui_tc[] = {
{0xfffffffffffeffff, 0x1, 0xffffffffffffffff},
{0xffffffffffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffffffffffff0000},
{0x0008ffff, 0xfff7, 0xffffffffffffffff},
{32767, 32767, 0x000000007fff7fff},
{0x00000000ffffffff, 0x1, 0x000000010000ffff},
{0xffffffff, 0xffff, 0x00000000fffeffff},
};
nr_test_cases = sizeof(daui_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_daui(daui_tc[i].rs, daui_tc[i].offset);
CHECK_EQ(daui_tc[i].ref_res, res);
}
// DATI test cases.
struct TestCaseAui dati_tc[] = {
{0xfffffffffffeffff, 0x1, 0x0000fffffffeffff},
{0xffffffffffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffff000000000000},
{0x0008ffff, 0xfff7, 0xfff700000008ffff},
{32767, 32767, 0x7fff000000007fff},
{0x00000000ffffffff, 0x1, 0x00010000ffffffff},
{0xffffffffffff, 0xffff, 0xffffffffffffffff},
};
nr_test_cases = sizeof(dati_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_dati(dati_tc[i].rs, dati_tc[i].offset);
CHECK_EQ(dati_tc[i].ref_res, res);
}
// DAHI test cases.
struct TestCaseAui dahi_tc[] = {
{0xfffffffeffffffff, 0x1, 0xffffffffffffffff},
{0xffffffffffffffff, 0x0, 0xffffffffffffffff},
{0, 0xffff, 0xffffffff00000000},
};
nr_test_cases = sizeof(dahi_tc) / sizeof(TestCaseAui);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_dahi(dahi_tc[i].rs, dahi_tc[i].offset);
CHECK_EQ(dahi_tc[i].ref_res, res);
}
}
}
uint64_t run_li_macro(uint64_t rs, LiFlags mode) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ li(a0, rs, mode);
__ mov(v0, a0);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(li_macro) {
CcTest::InitializeVM();
uint64_t inputs[] = {
0x0000000000000000, 0x000000000000ffff, 0x00000000ffffffff,
0x0000ffffffffffff, 0xffffffffffffffff, 0xffff000000000000,
0xffffffff00000000, 0xffffffffffff0000, 0xffff0000ffff0000,
0x0000ffffffff0000, 0x0000ffff0000ffff, 0x00007fffffffffff,
0x7fffffffffffffff, 0x000000007fffffff, 0x00007fff7fffffff,
};
size_t nr_test_cases = sizeof(inputs) / sizeof(inputs[0]);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_li_macro(inputs[i], OPTIMIZE_SIZE);
CHECK_EQ(inputs[i], res);
res = run_li_macro(inputs[i], CONSTANT_SIZE);
CHECK_EQ(inputs[i], res);
if (is_int48(inputs[i])) {
res = run_li_macro(inputs[i], ADDRESS_LOAD);
CHECK_EQ(inputs[i], res);
}
}
}
uint64_t run_lwpc(int offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// 256k instructions; 2^8k
// addiu t3, a4, 0xffff; (0x250fffff)
// ...
// addiu t0, a4, 0x0000; (0x250c0000)
uint32_t addiu_start_1 = 0x25000000;
for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
uint32_t addiu_new = addiu_start_1 + i;
__ dd(addiu_new);
}
__ lwpc(t8, offset); // offset 0; 0xef080000 (t8 register)
__ mov(v0, t8);
// 256k instructions; 2^8k
// addiu a4, a4, 0x0000; (0x25080000)
// ...
// addiu a7, a4, 0xffff; (0x250bffff)
uint32_t addiu_start_2 = 0x25000000;
for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
uint32_t addiu_new = addiu_start_2 + i;
__ dd(addiu_new);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_lwpc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseLwpc {
int offset;
uint64_t expected_res;
};
struct TestCaseLwpc tc[] = {
// offset, expected_res
{ -262144, 0x250fffff }, // offset 0x40000
{ -4, 0x250c0003 },
{ -1, 0x250c0000 },
{ 0, 0xffffffffef080000 },
{ 1, 0x03001025 }, // mov(v0, t8)
{ 2, 0x25080000 },
{ 4, 0x25080002 },
{ 262143, 0x250bfffd }, // offset 0x3ffff
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwpc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_lwpc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_lwupc(int offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// 256k instructions; 2^8k
// addiu t3, a4, 0xffff; (0x250fffff)
// ...
// addiu t0, a4, 0x0000; (0x250c0000)
uint32_t addiu_start_1 = 0x25000000;
for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
uint32_t addiu_new = addiu_start_1 + i;
__ dd(addiu_new);
}
__ lwupc(t8, offset); // offset 0; 0xef080000 (t8 register)
__ mov(v0, t8);
// 256k instructions; 2^8k
// addiu a4, a4, 0x0000; (0x25080000)
// ...
// addiu a7, a4, 0xffff; (0x250bffff)
uint32_t addiu_start_2 = 0x25000000;
for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
uint32_t addiu_new = addiu_start_2 + i;
__ dd(addiu_new);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_lwupc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseLwupc {
int offset;
uint64_t expected_res;
};
struct TestCaseLwupc tc[] = {
// offset, expected_res
{ -262144, 0x250fffff }, // offset 0x40000
{ -4, 0x250c0003 },
{ -1, 0x250c0000 },
{ 0, 0xef100000 },
{ 1, 0x03001025 }, // mov(v0, t8)
{ 2, 0x25080000 },
{ 4, 0x25080002 },
{ 262143, 0x250bfffd }, // offset 0x3ffff
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwupc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_lwupc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_jic(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label get_program_counter, stop_execution;
__ push(ra);
__ li(v0, 0);
__ li(t1, 0x66);
__ addiu(v0, v0, 0x1); // <-- offset = -32
__ addiu(v0, v0, 0x2);
__ addiu(v0, v0, 0x10);
__ addiu(v0, v0, 0x20);
__ beq(v0, t1, &stop_execution);
__ nop();
__ bal(&get_program_counter); // t0 <- program counter
__ nop();
__ jic(t0, offset);
__ addiu(v0, v0, 0x100);
__ addiu(v0, v0, 0x200);
__ addiu(v0, v0, 0x1000);
__ addiu(v0, v0, 0x2000); // <--- offset = 16
__ pop(ra);
__ jr(ra);
__ nop();
__ bind(&get_program_counter);
__ mov(t0, ra);
__ jr(ra);
__ nop();
__ bind(&stop_execution);
__ pop(ra);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_jic) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseJic {
// As rt will be used t0 register which will have value of
// the program counter for the jic instruction.
int16_t offset;
uint32_t expected_res;
};
struct TestCaseJic tc[] = {
// offset, expected_result
{ 16, 0x2033 },
{ 4, 0x3333 },
{ -32, 0x66 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJic);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_jic(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_beqzc(int32_t value, int32_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label stop_execution;
__ li(v0, 0);
__ li(t1, 0x66);
__ addiu(v0, v0, 0x1); // <-- offset = -8
__ addiu(v0, v0, 0x2);
__ addiu(v0, v0, 0x10);
__ addiu(v0, v0, 0x20);
__ beq(v0, t1, &stop_execution);
__ nop();
__ beqzc(a0, offset);
__ addiu(v0, v0, 0x1);
__ addiu(v0, v0, 0x100);
__ addiu(v0, v0, 0x200);
__ addiu(v0, v0, 0x1000);
__ addiu(v0, v0, 0x2000); // <--- offset = 4
__ jr(ra);
__ nop();
__ bind(&stop_execution);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, value, 0, 0, 0, 0));
return res;
}
TEST(r6_beqzc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseBeqzc {
uint32_t value;
int32_t offset;
uint32_t expected_res;
};
struct TestCaseBeqzc tc[] = {
// value, offset, expected_res
{ 0x0, -8, 0x66 },
{ 0x0, 0, 0x3334 },
{ 0x0, 1, 0x3333 },
{ 0xabc, 1, 0x3334 },
{ 0x0, 4, 0x2033 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqzc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_beqzc(tc[i].value, tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_jialc(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label main_block, get_program_counter;
__ push(ra);
__ li(v0, 0);
__ beq(v0, v0, &main_block);
__ nop();
// Block 1
__ addiu(v0, v0, 0x1); // <-- offset = -40
__ addiu(v0, v0, 0x2);
__ jr(ra);
__ nop();
// Block 2
__ addiu(v0, v0, 0x10); // <-- offset = -24
__ addiu(v0, v0, 0x20);
__ jr(ra);
__ nop();
// Block 3 (Main)
__ bind(&main_block);
__ bal(&get_program_counter); // t0 <- program counter
__ nop();
__ jialc(t0, offset);
__ addiu(v0, v0, 0x4);
__ pop(ra);
__ jr(ra);
__ nop();
// Block 4
__ addiu(v0, v0, 0x100); // <-- offset = 20
__ addiu(v0, v0, 0x200);
__ jr(ra);
__ nop();
// Block 5
__ addiu(v0, v0, 0x1000); // <--- offset = 36
__ addiu(v0, v0, 0x2000);
__ jr(ra);
__ nop();
__ bind(&get_program_counter);
__ mov(t0, ra);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_jialc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseJialc {
// As rt will be used t0 register which will have value of
// the program counter for the jialc instruction.
int16_t offset;
uint32_t expected_res;
};
struct TestCaseJialc tc[] = {
// offset, expected_res
{ -40, 0x7 },
{ -24, 0x34 },
{ 20, 0x304 },
{ 36, 0x3004 }
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJialc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_jialc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_addiupc(int32_t imm19) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ addiupc(v0, imm19);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
PC = (uint64_t) f; // Set the program counter.
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_addiupc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseAddiupc {
int32_t imm19;
};
struct TestCaseAddiupc tc[] = {
// imm19
{ -262144 }, // 0x40000
{ -1 }, // 0x7FFFF
{ 0 },
{ 1 }, // 0x00001
{ 262143 } // 0x3FFFF
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAddiupc);
for (size_t i = 0; i < nr_test_cases; ++i) {
PC = 0;
uint64_t res = run_addiupc(tc[i].imm19);
// Now, the program_counter (PC) is set.
uint64_t expected_res = PC + (tc[i].imm19 << 2);
CHECK_EQ(expected_res, res);
}
}
}
uint64_t run_ldpc(int offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
// 256k instructions; 2 * 2^7k = 2^8k
// addiu t3, a4, 0xffff; (0x250fffff)
// ...
// addiu t0, a4, 0x0000; (0x250c0000)
uint32_t addiu_start_1 = 0x25000000;
for (int32_t i = 0xfffff; i >= 0xc0000; --i) {
uint32_t addiu_new = addiu_start_1 + i;
__ dd(addiu_new);
}
__ ldpc(t8, offset); // offset 0; 0xef080000 (t8 register)
__ mov(v0, t8);
// 256k instructions; 2 * 2^7k = 2^8k
// addiu a4, a4, 0x0000; (0x25080000)
// ...
// addiu a7, a4, 0xffff; (0x250bffff)
uint32_t addiu_start_2 = 0x25000000;
for (int32_t i = 0x80000; i <= 0xbffff; ++i) {
uint32_t addiu_new = addiu_start_2 + i;
__ dd(addiu_new);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_ldpc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseLdpc {
int offset;
uint64_t expected_res;
};
auto doubleword = [](uint32_t word2, uint32_t word1) {
if (kArchEndian == kLittle)
return (static_cast<uint64_t>(word2) << 32) + word1;
else
return (static_cast<uint64_t>(word1) << 32) + word2;
};
TestCaseLdpc tc[] = {
// offset, expected_res
{-131072, doubleword(0x250ffffe, 0x250fffff)},
{-4, doubleword(0x250c0006, 0x250c0007)},
{-1, doubleword(0x250c0000, 0x250c0001)},
{0, doubleword(0x03001025, 0xef180000)},
{1, doubleword(0x25080001, 0x25080000)},
{4, doubleword(0x25080007, 0x25080006)},
{131071, doubleword(0x250bfffd, 0x250bfffc)},
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLdpc);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_ldpc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
int64_t run_bc(int32_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label continue_1, stop_execution;
__ push(ra);
__ li(v0, 0);
__ li(t8, 0);
__ li(t9, 2); // Condition for the stopping execution.
for (int32_t i = -100; i <= -11; ++i) {
__ addiu(v0, v0, 1);
}
__ addiu(t8, t8, 1); // -10
__ beq(t8, t9, &stop_execution); // -9
__ nop(); // -8
__ beq(t8, t8, &continue_1); // -7
__ nop(); // -6
__ bind(&stop_execution);
__ pop(ra); // -5, -4
__ jr(ra); // -3
__ nop(); // -2
__ bind(&continue_1);
__ bc(offset); // -1
for (int32_t i = 0; i <= 99; ++i) {
__ addiu(v0, v0, 1);
}
__ pop(ra);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_bc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseBc {
int32_t offset;
int64_t expected_res;
};
struct TestCaseBc tc[] = {
// offset, expected_result
{ -100, (abs(-100) - 10) * 2 },
{ -11, (abs(-100) - 10 + 1) },
{ 0, (abs(-100) - 10 + 1 + 99) },
{ 1, (abs(-100) - 10 + 99) },
{ 99, (abs(-100) - 10 + 1) },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBc);
for (size_t i = 0; i < nr_test_cases; ++i) {
int64_t res = run_bc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
int64_t run_balc(int32_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
Label continue_1, stop_execution;
__ push(ra);
__ li(v0, 0);
__ li(t8, 0);
__ li(t9, 2); // Condition for stopping execution.
__ beq(t8, t8, &continue_1);
__ nop();
uint32_t instruction_addiu = 0x24420001; // addiu v0, v0, 1
for (int32_t i = -117; i <= -57; ++i) {
__ dd(instruction_addiu);
}
__ jr(ra); // -56
__ nop(); // -55
for (int32_t i = -54; i <= -4; ++i) {
__ dd(instruction_addiu);
}
__ jr(ra); // -3
__ nop(); // -2
__ bind(&continue_1);
__ balc(offset); // -1
__ pop(ra); // 0, 1
__ jr(ra); // 2
__ nop(); // 3
for (int32_t i = 4; i <= 44; ++i) {
__ dd(instruction_addiu);
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(r6_balc) {
if (kArchVariant == kMips64r6) {
CcTest::InitializeVM();
struct TestCaseBalc {
int32_t offset;
int64_t expected_res;
};
struct TestCaseBalc tc[] = {
// offset, expected_result
{ -117, 61 },
{ -54, 51 },
{ 0, 0 },
{ 4, 41 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBalc);
for (size_t i = 0; i < nr_test_cases; ++i) {
int64_t res = run_balc(tc[i].offset);
CHECK_EQ(tc[i].expected_res, res);
}
}
}
uint64_t run_dsll(uint64_t rt_value, uint16_t sa_value) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ dsll(v0, a0, sa_value);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F4 f = FUNCTION_CAST<F4>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, rt_value, 0, 0, 0, 0));
return res;
}
TEST(dsll) {
CcTest::InitializeVM();
struct TestCaseDsll {
uint64_t rt_value;
uint16_t sa_value;
uint64_t expected_res;
};
struct TestCaseDsll tc[] = {
// rt_value, sa_value, expected_res
{ 0xffffffffffffffff, 0, 0xffffffffffffffff },
{ 0xffffffffffffffff, 16, 0xffffffffffff0000 },
{ 0xffffffffffffffff, 31, 0xffffffff80000000 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsll);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res,
run_dsll(tc[i].rt_value, tc[i].sa_value));
}
}
uint64_t run_bal(int16_t offset) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
__ mov(t0, ra);
__ bal(offset); // Equivalent for "BGEZAL zero_reg, offset".
__ nop();
__ mov(ra, t0);
__ jr(ra);
__ nop();
__ li(v0, 1);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
uint64_t res = reinterpret_cast<uint64_t>(
CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
return res;
}
TEST(bal) {
CcTest::InitializeVM();
struct TestCaseBal {
int16_t offset;
uint64_t expected_res;
};
struct TestCaseBal tc[] = {
// offset, expected_res
{ 4, 1 },
};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBal);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_bal(tc[i].offset));
}
}
TEST(Trampoline) {
// Private member of Assembler class.
static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
Label done;
size_t nr_calls = kMaxBranchOffset / (2 * Instruction::kInstrSize) + 2;
for (size_t i = 0; i < nr_calls; ++i) {
__ BranchShort(&done, eq, a0, Operand(a1));
}
__ bind(&done);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, zero_reg);
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res = reinterpret_cast<int64_t>(
CALL_GENERATED_CODE(isolate, f, 42, 42, 0, 0, 0));
CHECK_EQ(res, 0);
}
template <class T>
struct TestCaseMaddMsub {
T fr, fs, ft, fd_add, fd_sub;
};
template <typename T, typename F>
void helper_madd_msub_maddf_msubf(F func) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes);
T x = std::sqrt(static_cast<T>(2.0));
T y = std::sqrt(static_cast<T>(3.0));
T z = std::sqrt(static_cast<T>(5.0));
T x2 = 11.11, y2 = 22.22, z2 = 33.33;
TestCaseMaddMsub<T> test_cases[] = {
{x, y, z, 0.0, 0.0},
{x, y, -z, 0.0, 0.0},
{x, -y, z, 0.0, 0.0},
{x, -y, -z, 0.0, 0.0},
{-x, y, z, 0.0, 0.0},
{-x, y, -z, 0.0, 0.0},
{-x, -y, z, 0.0, 0.0},
{-x, -y, -z, 0.0, 0.0},
{-3.14, 0.2345, -123.000056, 0.0, 0.0},
{7.3, -23.257, -357.1357, 0.0, 0.0},
{x2, y2, z2, 0.0, 0.0},
{x2, y2, -z2, 0.0, 0.0},
{x2, -y2, z2, 0.0, 0.0},
{x2, -y2, -z2, 0.0, 0.0},
{-x2, y2, z2, 0.0, 0.0},
{-x2, y2, -z2, 0.0, 0.0},
{-x2, -y2, z2, 0.0, 0.0},
{-x2, -y2, -z2, 0.0, 0.0},
};
if (std::is_same<T, float>::value) {
__ lwc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
__ lwc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fs)));
__ lwc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, ft)));
__ lwc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
} else if (std::is_same<T, double>::value) {
__ ldc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
__ ldc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fs)));
__ ldc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, ft)));
__ ldc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<T>, fr)));
} else {
UNREACHABLE();
}
func(assm);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
const size_t kTableLength = sizeof(test_cases) / sizeof(TestCaseMaddMsub<T>);
TestCaseMaddMsub<T> tc;
for (size_t i = 0; i < kTableLength; i++) {
tc.fr = test_cases[i].fr;
tc.fs = test_cases[i].fs;
tc.ft = test_cases[i].ft;
(CALL_GENERATED_CODE(isolate, f, &tc, 0, 0, 0, 0));
T res_add = tc.fr + (tc.fs * tc.ft);
T res_sub;
if (kArchVariant != kMips64r6) {
res_sub = (tc.fs * tc.ft) - tc.fr;
} else {
res_sub = tc.fr - (tc.fs * tc.ft);
}
CHECK_EQ(tc.fd_add, res_add);
CHECK_EQ(tc.fd_sub, res_sub);
}
}
TEST(madd_msub_s) {
if (kArchVariant == kMips64r6) return;
helper_madd_msub_maddf_msubf<float>([](MacroAssembler& assm) {
__ madd_s(f10, f4, f6, f8);
__ swc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_add)));
__ msub_s(f16, f4, f6, f8);
__ swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_sub)));
});
}
TEST(madd_msub_d) {
if (kArchVariant == kMips64r6) return;
helper_madd_msub_maddf_msubf<double>([](MacroAssembler& assm) {
__ madd_d(f10, f4, f6, f8);
__ sdc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_add)));
__ msub_d(f16, f4, f6, f8);
__ sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_sub)));
});
}
TEST(maddf_msubf_s) {
if (kArchVariant != kMips64r6) return;
helper_madd_msub_maddf_msubf<float>([](MacroAssembler& assm) {
__ maddf_s(f4, f6, f8);
__ swc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_add)));
__ msubf_s(f16, f6, f8);
__ swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<float>, fd_sub)));
});
}
TEST(maddf_msubf_d) {
if (kArchVariant != kMips64r6) return;
helper_madd_msub_maddf_msubf<double>([](MacroAssembler& assm) {
__ maddf_d(f4, f6, f8);
__ sdc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_add)));
__ msubf_d(f16, f6, f8);
__ sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub<double>, fd_sub)));
});
}
#undef __