v8/src/compiler.h

665 lines
22 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_H_
#define V8_COMPILER_H_
#include "src/allocation.h"
#include "src/ast/ast.h"
#include "src/bailout-reason.h"
#include "src/compilation-dependencies.h"
#include "src/source-position.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
// Forward declarations.
class CompilationInfo;
[turbofan] Reland "Add new JSFrameSpecialization reducer." and "Perform OSR deconstruction early and remove type propagation.". We have to reland these two commits at once, because the first breaks some asm.js benchmarks without the second. The change was reverted because of bogus checks in the verifier, which will not work in the presence of OSR (and where hidden because of the type back propagation hack in OSR so far). Original messages are below: [turbofan] Add new JSFrameSpecialization reducer. The JSFrameSpecialization specializes an OSR graph to the current unoptimized frame on which we will perform the on-stack replacement. This is used for asm.js functions, where we cannot reuse the OSR code object anyway because of context specialization, and so we could as well specialize to the max instead. It works by replacing all OsrValues in the graph with their values in the JavaScriptFrame. The idea is that using this trick we get better performance without doing the unsound backpropagation of types to OsrValues later. This is the first step towards fixing OSR for TurboFan. [turbofan] Perform OSR deconstruction early and remove type propagation. This way we don't have to deal with dead pre-OSR code in the graph and risk optimizing the wrong code, especially we don't make optimistic assumptions in the dead code that leaks into the OSR code (i.e. deopt guards are in dead code, but the types propagate to OSR code via the OsrValue type back propagation). BUG=v8:4273 LOG=n R=jarin@chromium.org Review URL: https://codereview.chromium.org/1226673005 Cr-Commit-Position: refs/heads/master@{#29486}
2015-07-06 11:11:15 +00:00
class JavaScriptFrame;
class OptimizedCompileJob;
class ParseInfo;
class ScriptData;
// The V8 compiler API.
//
// This is the central hub for dispatching to the various compilers within V8.
// Logic for which compiler to choose and how to wire compilation results into
// the object heap should be kept inside this class.
//
// General strategy: Scripts are translated into anonymous functions w/o
// parameters which then can be executed. If the source code contains other
// functions, they might be compiled and allocated as part of the compilation
// of the source code or deferred for lazy compilation at a later point.
class Compiler : public AllStatic {
public:
enum ClearExceptionFlag { KEEP_EXCEPTION, CLEAR_EXCEPTION };
enum ConcurrencyMode { NOT_CONCURRENT, CONCURRENT };
// ===========================================================================
// The following family of methods ensures a given function is compiled. The
// general contract is that failures will be reported by returning {false},
// whereas successful compilation ensures the {is_compiled} predicate on the
// given function holds (except for live-edit, which compiles the world).
static bool Compile(Handle<JSFunction> function, ClearExceptionFlag flag);
static bool CompileOptimized(Handle<JSFunction> function, ConcurrencyMode);
static bool CompileDebugCode(Handle<JSFunction> function);
static bool CompileDebugCode(Handle<SharedFunctionInfo> shared);
static void CompileForLiveEdit(Handle<Script> script);
// Generate and install code from previously queued optimization job.
static void FinalizeOptimizedCompileJob(OptimizedCompileJob* job);
// Give the compiler a chance to perform low-latency initialization tasks of
// the given {function} on its instantiation. Note that only the runtime will
// offer this chance, optimized closure instantiation will not call this.
static void PostInstantiation(Handle<JSFunction> function, PretenureFlag);
// Parser::Parse, then Compiler::Analyze.
static bool ParseAndAnalyze(ParseInfo* info);
// Rewrite, analyze scopes, and renumber.
static bool Analyze(ParseInfo* info);
// Adds deoptimization support, requires ParseAndAnalyze.
static bool EnsureDeoptimizationSupport(CompilationInfo* info);
// ===========================================================================
// The following family of methods instantiates new functions for scripts or
// function literals. The decision whether those functions will be compiled,
// is left to the discretion of the compiler.
//
// Please note this interface returns shared function infos. This means you
// need to call Factory::NewFunctionFromSharedFunctionInfo before you have a
// real function with a context.
// Create a (bound) function for a String source within a context for eval.
MUST_USE_RESULT static MaybeHandle<JSFunction> GetFunctionFromEval(
Handle<String> source, Handle<SharedFunctionInfo> outer_info,
Handle<Context> context, LanguageMode language_mode,
ParseRestriction restriction, int line_offset, int column_offset = 0,
Handle<Object> script_name = Handle<Object>(),
ScriptOriginOptions options = ScriptOriginOptions());
// Create a shared function info object for a String source within a context.
static Handle<SharedFunctionInfo> GetSharedFunctionInfoForScript(
Handle<String> source, Handle<Object> script_name, int line_offset,
int column_offset, ScriptOriginOptions resource_options,
Handle<Object> source_map_url, Handle<Context> context,
v8::Extension* extension, ScriptData** cached_data,
ScriptCompiler::CompileOptions compile_options,
NativesFlag is_natives_code, bool is_module);
// Create a shared function info object for a Script that has already been
// parsed while the script was being loaded from a streamed source.
static Handle<SharedFunctionInfo> GetSharedFunctionInfoForStreamedScript(
Handle<Script> script, ParseInfo* info, int source_length);
// Create a shared function info object (the code may be lazily compiled).
static Handle<SharedFunctionInfo> GetSharedFunctionInfo(
FunctionLiteral* node, Handle<Script> script, CompilationInfo* outer);
// Create a shared function info object for a native function literal.
static Handle<SharedFunctionInfo> GetSharedFunctionInfoForNative(
v8::Extension* extension, Handle<String> name);
// ===========================================================================
// The following family of methods provides support for OSR. Code generated
// for entry via OSR might not be suitable for normal entry, hence will be
// returned directly to the caller.
//
// Please note this interface is the only part dealing with {Code} objects
// directly. Other methods are agnostic to {Code} and can use an interpreter
// instead of generating JIT code for a function at all.
// Generate and return optimized code for OSR, or empty handle on failure.
MUST_USE_RESULT static MaybeHandle<Code> GetOptimizedCodeForOSR(
Handle<JSFunction> function, BailoutId osr_ast_id,
JavaScriptFrame* osr_frame);
};
struct InlinedFunctionInfo {
InlinedFunctionInfo(int parent_id, SourcePosition inline_position,
int script_id, int start_position)
: parent_id(parent_id),
inline_position(inline_position),
script_id(script_id),
start_position(start_position) {}
int parent_id;
SourcePosition inline_position;
int script_id;
int start_position;
std::vector<size_t> deopt_pc_offsets;
static const int kNoParentId = -1;
};
// CompilationInfo encapsulates some information known at compile time. It
// is constructed based on the resources available at compile-time.
class CompilationInfo {
public:
// Various configuration flags for a compilation, as well as some properties
// of the compiled code produced by a compilation.
enum Flag {
kDeferredCalling = 1 << 0,
kNonDeferredCalling = 1 << 1,
kSavesCallerDoubles = 1 << 2,
kRequiresFrame = 1 << 3,
kMustNotHaveEagerFrame = 1 << 4,
kDeoptimizationSupport = 1 << 5,
kDebug = 1 << 6,
kSerializing = 1 << 7,
kFunctionContextSpecializing = 1 << 8,
kFrameSpecializing = 1 << 9,
kNativeContextSpecializing = 1 << 10,
kInliningEnabled = 1 << 11,
kTypingEnabled = 1 << 12,
kDisableFutureOptimization = 1 << 13,
kSplittingEnabled = 1 << 14,
kDeoptimizationEnabled = 1 << 16,
kSourcePositionsEnabled = 1 << 17,
kFirstCompile = 1 << 18,
kBailoutOnUninitialized = 1 << 19,
};
explicit CompilationInfo(ParseInfo* parse_info);
CompilationInfo(const char* debug_name, Isolate* isolate, Zone* zone,
Code::Flags code_flags = Code::ComputeFlags(Code::STUB));
virtual ~CompilationInfo();
ParseInfo* parse_info() const { return parse_info_; }
// -----------------------------------------------------------
// TODO(titzer): inline and delete accessors of ParseInfo
// -----------------------------------------------------------
Handle<Script> script() const;
bool is_eval() const;
bool is_native() const;
bool is_module() const;
LanguageMode language_mode() const;
Handle<JSFunction> closure() const;
FunctionLiteral* literal() const;
Scope* scope() const;
Handle<Context> context() const;
Handle<SharedFunctionInfo> shared_info() const;
bool has_shared_info() const;
bool has_context() const;
bool has_literal() const;
bool has_scope() const;
// -----------------------------------------------------------
Isolate* isolate() const {
return isolate_;
}
Zone* zone() { return zone_; }
bool is_osr() const { return !osr_ast_id_.IsNone(); }
Handle<Code> code() const { return code_; }
Code::Flags code_flags() const { return code_flags_; }
BailoutId osr_ast_id() const { return osr_ast_id_; }
Handle<Code> unoptimized_code() const { return unoptimized_code_; }
int opt_count() const { return opt_count_; }
int num_parameters() const;
int num_parameters_including_this() const;
bool is_this_defined() const;
int num_heap_slots() const;
void set_parameter_count(int parameter_count) {
DCHECK(IsStub());
parameter_count_ = parameter_count;
}
bool has_bytecode_array() const { return !bytecode_array_.is_null(); }
Handle<BytecodeArray> bytecode_array() const { return bytecode_array_; }
Handle<AbstractCode> abstract_code() const {
return has_bytecode_array() ? Handle<AbstractCode>::cast(bytecode_array())
: Handle<AbstractCode>::cast(code());
}
bool is_tracking_positions() const { return track_positions_; }
bool is_calling() const {
return GetFlag(kDeferredCalling) || GetFlag(kNonDeferredCalling);
}
void MarkAsDeferredCalling() { SetFlag(kDeferredCalling); }
bool is_deferred_calling() const { return GetFlag(kDeferredCalling); }
void MarkAsNonDeferredCalling() { SetFlag(kNonDeferredCalling); }
bool is_non_deferred_calling() const { return GetFlag(kNonDeferredCalling); }
void MarkAsSavesCallerDoubles() { SetFlag(kSavesCallerDoubles); }
bool saves_caller_doubles() const { return GetFlag(kSavesCallerDoubles); }
void MarkAsRequiresFrame() { SetFlag(kRequiresFrame); }
bool requires_frame() const { return GetFlag(kRequiresFrame); }
void MarkMustNotHaveEagerFrame() { SetFlag(kMustNotHaveEagerFrame); }
bool GetMustNotHaveEagerFrame() const {
return GetFlag(kMustNotHaveEagerFrame);
}
// Compiles marked as debug produce unoptimized code with debug break slots.
// Inner functions that cannot be compiled w/o context are compiled eagerly.
// Always include deoptimization support to avoid having to recompile again.
void MarkAsDebug() {
SetFlag(kDebug);
SetFlag(kDeoptimizationSupport);
}
bool is_debug() const { return GetFlag(kDebug); }
void PrepareForSerializing() { SetFlag(kSerializing); }
bool will_serialize() const { return GetFlag(kSerializing); }
void MarkAsFunctionContextSpecializing() {
SetFlag(kFunctionContextSpecializing);
}
bool is_function_context_specializing() const {
return GetFlag(kFunctionContextSpecializing);
}
[turbofan] Reland "Add new JSFrameSpecialization reducer." and "Perform OSR deconstruction early and remove type propagation.". We have to reland these two commits at once, because the first breaks some asm.js benchmarks without the second. The change was reverted because of bogus checks in the verifier, which will not work in the presence of OSR (and where hidden because of the type back propagation hack in OSR so far). Original messages are below: [turbofan] Add new JSFrameSpecialization reducer. The JSFrameSpecialization specializes an OSR graph to the current unoptimized frame on which we will perform the on-stack replacement. This is used for asm.js functions, where we cannot reuse the OSR code object anyway because of context specialization, and so we could as well specialize to the max instead. It works by replacing all OsrValues in the graph with their values in the JavaScriptFrame. The idea is that using this trick we get better performance without doing the unsound backpropagation of types to OsrValues later. This is the first step towards fixing OSR for TurboFan. [turbofan] Perform OSR deconstruction early and remove type propagation. This way we don't have to deal with dead pre-OSR code in the graph and risk optimizing the wrong code, especially we don't make optimistic assumptions in the dead code that leaks into the OSR code (i.e. deopt guards are in dead code, but the types propagate to OSR code via the OsrValue type back propagation). BUG=v8:4273 LOG=n R=jarin@chromium.org Review URL: https://codereview.chromium.org/1226673005 Cr-Commit-Position: refs/heads/master@{#29486}
2015-07-06 11:11:15 +00:00
void MarkAsFrameSpecializing() { SetFlag(kFrameSpecializing); }
bool is_frame_specializing() const { return GetFlag(kFrameSpecializing); }
void MarkAsNativeContextSpecializing() {
SetFlag(kNativeContextSpecializing);
}
bool is_native_context_specializing() const {
return GetFlag(kNativeContextSpecializing);
}
void MarkAsDeoptimizationEnabled() { SetFlag(kDeoptimizationEnabled); }
bool is_deoptimization_enabled() const {
return GetFlag(kDeoptimizationEnabled);
}
void MarkAsSourcePositionsEnabled() { SetFlag(kSourcePositionsEnabled); }
bool is_source_positions_enabled() const {
return GetFlag(kSourcePositionsEnabled);
}
void MarkAsInliningEnabled() { SetFlag(kInliningEnabled); }
bool is_inlining_enabled() const { return GetFlag(kInliningEnabled); }
void MarkAsTypingEnabled() { SetFlag(kTypingEnabled); }
bool is_typing_enabled() const { return GetFlag(kTypingEnabled); }
void MarkAsSplittingEnabled() { SetFlag(kSplittingEnabled); }
bool is_splitting_enabled() const { return GetFlag(kSplittingEnabled); }
void MarkAsFirstCompile() { SetFlag(kFirstCompile); }
void MarkAsCompiled() { SetFlag(kFirstCompile, false); }
bool is_first_compile() const { return GetFlag(kFirstCompile); }
void MarkAsBailoutOnUninitialized() { SetFlag(kBailoutOnUninitialized); }
bool is_bailout_on_uninitialized() const {
return GetFlag(kBailoutOnUninitialized);
}
bool GeneratePreagedPrologue() const {
// Generate a pre-aged prologue if we are optimizing for size, which
// will make code flushing more aggressive. Only apply to Code::FUNCTION,
// since StaticMarkingVisitor::IsFlushable only flushes proper functions.
return FLAG_optimize_for_size && FLAG_age_code && !is_debug() &&
output_code_kind() == Code::FUNCTION;
}
Revert of Type Feedback Vector lives in the closure (patchset #2 id:40001 of https://codereview.chromium.org/1668103002/ ) Reason for revert: Must revert for now due to chromium api natives issues. Original issue's description: > Type Feedback Vector lives in the closure > > (RELAND: the problem before was a missing write barrier for adding the code > entry to the new closure. It's been addressed with a new macro instruction > and test. The only change to this CL is the addition of two calls to > __ RecordWriteCodeEntryField() in the platform CompileLazy builtin.) > > We get less "pollution" of type feedback if we have one vector per native > context, rather than one for the whole system. This CL moves the vector > appropriately. > > We rely more heavily on the Optimized Code Map in the SharedFunctionInfo. The > vector actually lives in the first slot of the literals array (indeed there is > great commonality between those arrays, they can be thought of as the same > thing). So we make greater effort to ensure there is a valid literals array > after compilation. > > This meant, for performance reasons, that we needed to extend > FastNewClosureStub to support creating closures with literals. And ultimately, > it drove us to move the optimized code map lookup out of FastNewClosureStub > and into the compile lazy builtin. > > The heap change is trivial so I TBR Hannes for it... > Also, Yang has had a look at the debugger changes already and approved 'em. So he is TBR style too. > And Benedikt reviewed it as well. > > TBR=hpayer@chromium.org, yangguo@chromium.org, bmeurer@chromium.org > > BUG= > > Committed: https://crrev.com/bb31db3ad6de16f86a61f6c7bbfd3274e3d957b5 > Cr-Commit-Position: refs/heads/master@{#33741} TBR=bmeurer@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review URL: https://codereview.chromium.org/1670813005 Cr-Commit-Position: refs/heads/master@{#33766}
2016-02-05 10:48:27 +00:00
void EnsureFeedbackVector();
Handle<TypeFeedbackVector> feedback_vector() const {
return feedback_vector_;
}
void SetCode(Handle<Code> code) { code_ = code; }
void SetBytecodeArray(Handle<BytecodeArray> bytecode_array) {
bytecode_array_ = bytecode_array;
}
bool ShouldTrapOnDeopt() const {
return (FLAG_trap_on_deopt && IsOptimizing()) ||
(FLAG_trap_on_stub_deopt && IsStub());
}
bool has_native_context() const {
return !closure().is_null() && (closure()->native_context() != nullptr);
}
Context* native_context() const {
return has_native_context() ? closure()->native_context() : nullptr;
}
bool has_global_object() const { return has_native_context(); }
JSGlobalObject* global_object() const {
return has_global_object() ? native_context()->global_object() : nullptr;
}
// Accessors for the different compilation modes.
bool IsOptimizing() const { return mode_ == OPTIMIZE; }
bool IsStub() const { return mode_ == STUB; }
void SetOptimizing() {
DCHECK(has_shared_info());
SetMode(OPTIMIZE);
optimization_id_ = isolate()->NextOptimizationId();
code_flags_ =
Code::KindField::update(code_flags_, Code::OPTIMIZED_FUNCTION);
}
void SetOptimizingForOsr(BailoutId osr_ast_id, Handle<Code> unoptimized) {
SetOptimizing();
osr_ast_id_ = osr_ast_id;
unoptimized_code_ = unoptimized;
}
// Deoptimization support.
bool HasDeoptimizationSupport() const {
return GetFlag(kDeoptimizationSupport);
}
void EnableDeoptimizationSupport() {
DCHECK_EQ(BASE, mode_);
SetFlag(kDeoptimizationSupport);
}
bool ShouldEnsureSpaceForLazyDeopt() { return !IsStub(); }
bool ExpectsJSReceiverAsReceiver();
// Determines whether or not to insert a self-optimization header.
bool ShouldSelfOptimize();
void set_deferred_handles(DeferredHandles* deferred_handles) {
DCHECK(deferred_handles_ == NULL);
deferred_handles_ = deferred_handles;
}
void ReopenHandlesInNewHandleScope() {
unoptimized_code_ = Handle<Code>(*unoptimized_code_);
}
void AbortOptimization(BailoutReason reason) {
DCHECK(reason != kNoReason);
if (bailout_reason_ == kNoReason) bailout_reason_ = reason;
SetFlag(kDisableFutureOptimization);
}
void RetryOptimization(BailoutReason reason) {
DCHECK(reason != kNoReason);
if (GetFlag(kDisableFutureOptimization)) return;
bailout_reason_ = reason;
}
BailoutReason bailout_reason() const { return bailout_reason_; }
int prologue_offset() const {
DCHECK_NE(Code::kPrologueOffsetNotSet, prologue_offset_);
return prologue_offset_;
}
void set_prologue_offset(int prologue_offset) {
DCHECK_EQ(Code::kPrologueOffsetNotSet, prologue_offset_);
prologue_offset_ = prologue_offset;
}
int start_position_for(uint32_t inlining_id) {
return inlined_function_infos_.at(inlining_id).start_position;
}
const std::vector<InlinedFunctionInfo>& inlined_function_infos() {
return inlined_function_infos_;
}
void LogDeoptCallPosition(int pc_offset, int inlining_id);
int TraceInlinedFunction(Handle<SharedFunctionInfo> shared,
SourcePosition position, int pareint_id);
CompilationDependencies* dependencies() { return &dependencies_; }
bool HasSameOsrEntry(Handle<JSFunction> function, BailoutId osr_ast_id) {
return osr_ast_id_ == osr_ast_id && function.is_identical_to(closure());
}
int optimization_id() const { return optimization_id_; }
int osr_expr_stack_height() { return osr_expr_stack_height_; }
void set_osr_expr_stack_height(int height) {
DCHECK(height >= 0);
osr_expr_stack_height_ = height;
}
[turbofan] Reland "Add new JSFrameSpecialization reducer." and "Perform OSR deconstruction early and remove type propagation.". We have to reland these two commits at once, because the first breaks some asm.js benchmarks without the second. The change was reverted because of bogus checks in the verifier, which will not work in the presence of OSR (and where hidden because of the type back propagation hack in OSR so far). Original messages are below: [turbofan] Add new JSFrameSpecialization reducer. The JSFrameSpecialization specializes an OSR graph to the current unoptimized frame on which we will perform the on-stack replacement. This is used for asm.js functions, where we cannot reuse the OSR code object anyway because of context specialization, and so we could as well specialize to the max instead. It works by replacing all OsrValues in the graph with their values in the JavaScriptFrame. The idea is that using this trick we get better performance without doing the unsound backpropagation of types to OsrValues later. This is the first step towards fixing OSR for TurboFan. [turbofan] Perform OSR deconstruction early and remove type propagation. This way we don't have to deal with dead pre-OSR code in the graph and risk optimizing the wrong code, especially we don't make optimistic assumptions in the dead code that leaks into the OSR code (i.e. deopt guards are in dead code, but the types propagate to OSR code via the OsrValue type back propagation). BUG=v8:4273 LOG=n R=jarin@chromium.org Review URL: https://codereview.chromium.org/1226673005 Cr-Commit-Position: refs/heads/master@{#29486}
2015-07-06 11:11:15 +00:00
JavaScriptFrame* osr_frame() const { return osr_frame_; }
void set_osr_frame(JavaScriptFrame* osr_frame) { osr_frame_ = osr_frame; }
#if DEBUG
void PrintAstForTesting();
#endif
bool has_simple_parameters();
struct InlinedFunctionHolder {
Handle<SharedFunctionInfo> shared_info;
// Root that holds the unoptimized code of the inlined function alive
// (and out of reach of code flushing) until we finish compilation.
// Do not remove.
Handle<Code> inlined_code_object_root;
explicit InlinedFunctionHolder(
Handle<SharedFunctionInfo> inlined_shared_info)
: shared_info(inlined_shared_info),
inlined_code_object_root(inlined_shared_info->code()) {}
};
typedef std::vector<InlinedFunctionHolder> InlinedFunctionList;
InlinedFunctionList const& inlined_functions() const {
return inlined_functions_;
}
void AddInlinedFunction(Handle<SharedFunctionInfo> inlined_function) {
inlined_functions_.push_back(InlinedFunctionHolder(inlined_function));
}
base::SmartArrayPointer<char> GetDebugName() const;
Code::Kind output_code_kind() const {
return Code::ExtractKindFromFlags(code_flags_);
}
[runtime] Unify and simplify how frames are marked Before this CL, various code stubs used different techniques for marking their frames to enable stack-crawling and other access to data in the frame. All of them were based on a abuse of the "standard" frame representation, e.g. storing the a context pointer immediately below the frame's fp, and a function pointer after that. Although functional, this approach tends to make stubs and builtins do an awkward, unnecessary dance to appear like standard frames, even if they have nothing to do with JavaScript execution. This CL attempts to improve this by: * Ensuring that there are only two fundamentally different types of frames, a "standard" frame and a "typed" frame. Standard frames, as before, contain both a context and function pointer. Typed frames contain only a minimum of a smi marker in the position immediately below the fp where the context is in standard frames. * Only interpreted, full codegen, and optimized Crankshaft and TurboFan JavaScript frames use the "standard" format. All other frames use the type frame format with an explicit marker. * Typed frames can contain one or more values below the type marker. There is new magic macro machinery in frames.h that simplifies defining the offsets of these fields in typed frames. * A new flag in the CallDescriptor enables specifying whether a frame is a standard frame or a typed frame. Secondary register location spilling is now only enabled for standard frames. * A zillion places in the code have been updated to deal with the fact that most code stubs and internal frames use the typed frame format. This includes changes in the deoptimizer, debugger, and liveedit. * StandardFrameConstants::kMarkerOffset is deprecated, (CommonFrameConstants::kContextOrFrameTypeOffset and StandardFrameConstants::kFrameOffset are now used in its stead). LOG=N Review URL: https://codereview.chromium.org/1696043002 Cr-Commit-Position: refs/heads/master@{#34571}
2016-03-08 08:35:44 +00:00
StackFrame::Type GetOutputStackFrameType() const;
protected:
ParseInfo* parse_info_;
void DisableFutureOptimization() {
if (GetFlag(kDisableFutureOptimization) && has_shared_info()) {
// If Crankshaft tried to optimize this function, bailed out, and
// doesn't want to try again, then use TurboFan next time.
if (!shared_info()->dont_crankshaft() &&
bailout_reason() != kOptimizedTooManyTimes) {
shared_info()->set_dont_crankshaft(true);
if (FLAG_trace_opt) {
PrintF("[disabled Crankshaft for ");
shared_info()->ShortPrint();
PrintF(", reason: %s]\n", GetBailoutReason(bailout_reason()));
}
} else {
shared_info()->DisableOptimization(bailout_reason());
}
}
}
private:
// Compilation mode.
// BASE is generated by the full codegen, optionally prepared for bailouts.
// OPTIMIZE is optimized code generated by the Hydrogen-based backend.
enum Mode {
BASE,
OPTIMIZE,
STUB
};
CompilationInfo(ParseInfo* parse_info, const char* debug_name,
Code::Flags code_flags, Mode mode, Isolate* isolate,
Zone* zone);
Isolate* isolate_;
void SetMode(Mode mode) {
mode_ = mode;
}
void SetFlag(Flag flag) { flags_ |= flag; }
void SetFlag(Flag flag, bool value) {
flags_ = value ? flags_ | flag : flags_ & ~flag;
}
bool GetFlag(Flag flag) const { return (flags_ & flag) != 0; }
unsigned flags_;
Code::Flags code_flags_;
// The compiled code.
Handle<Code> code_;
// Used by codegen, ultimately kept rooted by the SharedFunctionInfo.
Revert of Type Feedback Vector lives in the closure (patchset #2 id:40001 of https://codereview.chromium.org/1668103002/ ) Reason for revert: Must revert for now due to chromium api natives issues. Original issue's description: > Type Feedback Vector lives in the closure > > (RELAND: the problem before was a missing write barrier for adding the code > entry to the new closure. It's been addressed with a new macro instruction > and test. The only change to this CL is the addition of two calls to > __ RecordWriteCodeEntryField() in the platform CompileLazy builtin.) > > We get less "pollution" of type feedback if we have one vector per native > context, rather than one for the whole system. This CL moves the vector > appropriately. > > We rely more heavily on the Optimized Code Map in the SharedFunctionInfo. The > vector actually lives in the first slot of the literals array (indeed there is > great commonality between those arrays, they can be thought of as the same > thing). So we make greater effort to ensure there is a valid literals array > after compilation. > > This meant, for performance reasons, that we needed to extend > FastNewClosureStub to support creating closures with literals. And ultimately, > it drove us to move the optimized code map lookup out of FastNewClosureStub > and into the compile lazy builtin. > > The heap change is trivial so I TBR Hannes for it... > Also, Yang has had a look at the debugger changes already and approved 'em. So he is TBR style too. > And Benedikt reviewed it as well. > > TBR=hpayer@chromium.org, yangguo@chromium.org, bmeurer@chromium.org > > BUG= > > Committed: https://crrev.com/bb31db3ad6de16f86a61f6c7bbfd3274e3d957b5 > Cr-Commit-Position: refs/heads/master@{#33741} TBR=bmeurer@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG= Review URL: https://codereview.chromium.org/1670813005 Cr-Commit-Position: refs/heads/master@{#33766}
2016-02-05 10:48:27 +00:00
Handle<TypeFeedbackVector> feedback_vector_;
// Compilation mode flag and whether deoptimization is allowed.
Mode mode_;
BailoutId osr_ast_id_;
// The unoptimized code we patched for OSR may not be the shared code
// afterwards, since we may need to compile it again to include deoptimization
// data. Keep track which code we patched.
Handle<Code> unoptimized_code_;
// Holds the bytecode array generated by the interpreter.
// TODO(rmcilroy/mstarzinger): Temporary work-around until compiler.cc is
// refactored to avoid us needing to carry the BytcodeArray around.
Handle<BytecodeArray> bytecode_array_;
// The zone from which the compilation pipeline working on this
// CompilationInfo allocates.
Zone* zone_;
DeferredHandles* deferred_handles_;
// Dependencies for this compilation, e.g. stable maps.
CompilationDependencies dependencies_;
BailoutReason bailout_reason_;
int prologue_offset_;
std::vector<InlinedFunctionInfo> inlined_function_infos_;
bool track_positions_;
InlinedFunctionList inlined_functions_;
// A copy of shared_info()->opt_count() to avoid handle deref
// during graph optimization.
int opt_count_;
// Number of parameters used for compilation of stubs that require arguments.
int parameter_count_;
int optimization_id_;
int osr_expr_stack_height_;
[turbofan] Reland "Add new JSFrameSpecialization reducer." and "Perform OSR deconstruction early and remove type propagation.". We have to reland these two commits at once, because the first breaks some asm.js benchmarks without the second. The change was reverted because of bogus checks in the verifier, which will not work in the presence of OSR (and where hidden because of the type back propagation hack in OSR so far). Original messages are below: [turbofan] Add new JSFrameSpecialization reducer. The JSFrameSpecialization specializes an OSR graph to the current unoptimized frame on which we will perform the on-stack replacement. This is used for asm.js functions, where we cannot reuse the OSR code object anyway because of context specialization, and so we could as well specialize to the max instead. It works by replacing all OsrValues in the graph with their values in the JavaScriptFrame. The idea is that using this trick we get better performance without doing the unsound backpropagation of types to OsrValues later. This is the first step towards fixing OSR for TurboFan. [turbofan] Perform OSR deconstruction early and remove type propagation. This way we don't have to deal with dead pre-OSR code in the graph and risk optimizing the wrong code, especially we don't make optimistic assumptions in the dead code that leaks into the OSR code (i.e. deopt guards are in dead code, but the types propagate to OSR code via the OsrValue type back propagation). BUG=v8:4273 LOG=n R=jarin@chromium.org Review URL: https://codereview.chromium.org/1226673005 Cr-Commit-Position: refs/heads/master@{#29486}
2015-07-06 11:11:15 +00:00
// The current OSR frame for specialization or {nullptr}.
JavaScriptFrame* osr_frame_ = nullptr;
const char* debug_name_;
DISALLOW_COPY_AND_ASSIGN(CompilationInfo);
};
class HGraph;
class LChunk;
// A helper class that calls the three compilation phases in
// Crankshaft and keeps track of its state. The three phases
// CreateGraph, OptimizeGraph and GenerateAndInstallCode can either
// fail, bail-out to the full code generator or succeed. Apart from
// their return value, the status of the phase last run can be checked
// using last_status().
class OptimizedCompileJob: public ZoneObject {
public:
explicit OptimizedCompileJob(CompilationInfo* info)
: info_(info), graph_(NULL), chunk_(NULL), last_status_(FAILED) {}
enum Status {
FAILED, BAILED_OUT, SUCCEEDED
};
MUST_USE_RESULT Status CreateGraph();
MUST_USE_RESULT Status OptimizeGraph();
MUST_USE_RESULT Status GenerateCode();
Status last_status() const { return last_status_; }
CompilationInfo* info() const { return info_; }
Isolate* isolate() const { return info()->isolate(); }
Status RetryOptimization(BailoutReason reason) {
info_->RetryOptimization(reason);
return SetLastStatus(BAILED_OUT);
}
Status AbortOptimization(BailoutReason reason) {
info_->AbortOptimization(reason);
return SetLastStatus(BAILED_OUT);
}
private:
CompilationInfo* info_;
HGraph* graph_;
LChunk* chunk_;
base::TimeDelta time_taken_to_create_graph_;
base::TimeDelta time_taken_to_optimize_;
base::TimeDelta time_taken_to_codegen_;
Status last_status_;
MUST_USE_RESULT Status SetLastStatus(Status status) {
last_status_ = status;
return last_status_;
}
void RecordOptimizationStats();
struct Timer {
Timer(OptimizedCompileJob* job, base::TimeDelta* location)
: job_(job), location_(location) {
DCHECK(location_ != NULL);
timer_.Start();
}
~Timer() {
*location_ += timer_.Elapsed();
}
OptimizedCompileJob* job_;
base::ElapsedTimer timer_;
base::TimeDelta* location_;
};
};
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_H_