v8/src/x64/assembler-x64-inl.h

196 lines
5.7 KiB
C
Raw Normal View History

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_X64_ASSEMBLER_X64_INL_H_
#define V8_X64_ASSEMBLER_X64_INL_H_
#include "cpu.h"
namespace v8 { namespace internal {
Condition NegateCondition(Condition cc) {
return static_cast<Condition>(cc ^ 1);
}
// The modes possibly affected by apply must be in kApplyMask.
void RelocInfo::apply(int delta) {
if (rmode_ == RUNTIME_ENTRY || IsCodeTarget(rmode_)) {
intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
*p -= delta; // relocate entry
} else if (rmode_ == JS_RETURN && IsCallInstruction()) {
// Special handling of js_return when a break point is set (call
// instruction has been inserted).
intptr_t* p = reinterpret_cast<intptr_t*>(pc_ + 1);
*p -= delta; // relocate entry
} else if (IsInternalReference(rmode_)) {
// absolute code pointer inside code object moves with the code object.
intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
*p += delta; // relocate entry
}
}
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
return Assembler::target_address_at(pc_);
}
Address RelocInfo::target_address_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
return reinterpret_cast<Address>(pc_);
}
void RelocInfo::set_target_address(Address target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
Assembler::set_target_address_at(pc_, target);
}
void Assembler::set_target_address_at(byte* location, byte* value) {
UNIMPLEMENTED();
}
byte* Assembler::target_address_at(byte* location) {
UNIMPLEMENTED();
return NULL;
}
Object* RelocInfo::target_object() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return *reinterpret_cast<Object**>(pc_);
}
Object** RelocInfo::target_object_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return reinterpret_cast<Object**>(pc_);
}
Address* RelocInfo::target_reference_address() {
ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
return reinterpret_cast<Address*>(pc_);
}
void RelocInfo::set_target_object(Object* target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
*reinterpret_cast<Object**>(pc_) = target;
}
bool RelocInfo::IsCallInstruction() {
UNIMPLEMENTED(); // IA32 code below.
return *pc_ == 0xE8;
}
Address RelocInfo::call_address() {
UNIMPLEMENTED(); // IA32 code below.
ASSERT(IsCallInstruction());
return Assembler::target_address_at(pc_ + 1);
}
void RelocInfo::set_call_address(Address target) {
UNIMPLEMENTED(); // IA32 code below.
ASSERT(IsCallInstruction());
Assembler::set_target_address_at(pc_ + 1, target);
}
Object* RelocInfo::call_object() {
UNIMPLEMENTED(); // IA32 code below.
ASSERT(IsCallInstruction());
return *call_object_address();
}
void RelocInfo::set_call_object(Object* target) {
UNIMPLEMENTED(); // IA32 code below.
ASSERT(IsCallInstruction());
*call_object_address() = target;
}
Object** RelocInfo::call_object_address() {
UNIMPLEMENTED(); // IA32 code below.
ASSERT(IsCallInstruction());
return reinterpret_cast<Object**>(pc_ + 1);
}
void Operand::set_modrm(int mod, Register rm) {
ASSERT((mod & -4) == 0);
buf_[0] = mod << 6 | (rm.code() & 0x7);
// Set REX.B to the high bit of rm.code().
rex_ |= (rm.code() >> 3);
len_ = 1;
}
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
ASSERT(len_ == 1);
ASSERT((scale & -4) == 0);
// Use SIB with no index register only for base rsp or r12.
ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
buf_[1] = scale << 6 | (index.code() & 0x7) << 3 | (base.code() & 0x7);
rex_ |= (index.code() >> 3) << 1 | base.code() >> 3;
len_ = 2;
}
void Operand::set_disp32(int32_t disp) {
ASSERT(len_ == 1 || len_ == 2);
int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
*p = disp;
len_ += sizeof(int32_t);
}
void Operand::set_dispr(intptr_t disp, RelocInfo::Mode rmode) {
// This cannot be used in 64-bit mode. A 64-bit displacement
// cannot be encoded, so relocatable 64-bit values must be
// loaded as immediates.
UNIMPLEMENTED();
}
Operand::Operand(Register reg) {
// reg
set_modrm(3, reg);
}
} } // namespace v8::internal
#endif // V8_X64_ASSEMBLER_X64_INL_H_