v8/src/stub-cache.cc

1916 lines
68 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "arguments.h"
#include "ast.h"
#include "code-stubs.h"
#include "cpu-profiler.h"
#include "gdb-jit.h"
#include "ic-inl.h"
#include "stub-cache.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------
// StubCache implementation.
StubCache::StubCache(Isolate* isolate)
: isolate_(isolate) { }
void StubCache::Initialize() {
ASSERT(IsPowerOf2(kPrimaryTableSize));
ASSERT(IsPowerOf2(kSecondaryTableSize));
Clear();
}
Code* StubCache::Set(Name* name, Map* map, Code* code) {
// Get the flags from the code.
Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
// Validate that the name does not move on scavenge, and that we
// can use identity checks instead of structural equality checks.
ASSERT(!heap()->InNewSpace(name));
ASSERT(name->IsUniqueName());
// The state bits are not important to the hash function because
// the stub cache only contains monomorphic stubs. Make sure that
// the bits are the least significant so they will be the ones
// masked out.
ASSERT(Code::ExtractICStateFromFlags(flags) == MONOMORPHIC);
STATIC_ASSERT((Code::ICStateField::kMask & 1) == 1);
// Make sure that the code type is not included in the hash.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Compute the primary entry.
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary = entry(primary_, primary_offset);
Code* old_code = primary->value;
// If the primary entry has useful data in it, we retire it to the
// secondary cache before overwriting it.
if (old_code != isolate_->builtins()->builtin(Builtins::kIllegal)) {
Map* old_map = primary->map;
Code::Flags old_flags = Code::RemoveTypeFromFlags(old_code->flags());
int seed = PrimaryOffset(primary->key, old_flags, old_map);
int secondary_offset = SecondaryOffset(primary->key, old_flags, seed);
Entry* secondary = entry(secondary_, secondary_offset);
*secondary = *primary;
}
// Update primary cache.
primary->key = name;
primary->value = code;
primary->map = map;
isolate()->counters()->megamorphic_stub_cache_updates()->Increment();
return code;
}
Handle<Code> StubCache::FindIC(Handle<Name> name,
Handle<Map> stub_holder,
Code::Kind kind,
ExtraICState extra_state,
InlineCacheHolderFlag cache_holder) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind, extra_state, cache_holder);
Handle<Object> probe(stub_holder->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
return Handle<Code>::null();
}
Handle<Code> StubCache::FindHandler(Handle<Name> name,
Handle<Map> stub_holder,
Code::Kind kind,
InlineCacheHolderFlag cache_holder,
StrictModeFlag strict_mode) {
ExtraICState extra_ic_state = kNoExtraICState;
if (kind == Code::STORE_IC) {
extra_ic_state = StoreIC::ComputeExtraICState(strict_mode);
} else if (kind == Code::KEYED_STORE_IC) {
extra_ic_state = KeyedStoreIC::ComputeExtraICState(strict_mode,
STANDARD_STORE);
}
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::HANDLER, extra_ic_state, cache_holder, Code::NORMAL, kind);
Handle<Object> probe(stub_holder->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
return Handle<Code>::null();
}
Handle<Code> StubCache::ComputeMonomorphicIC(
Handle<Name> name,
Handle<Type> type,
Handle<Code> handler,
ExtraICState extra_ic_state) {
Code::Kind kind = handler->handler_kind();
InlineCacheHolderFlag flag = IC::GetCodeCacheFlag(*type);
Handle<Map> stub_holder;
Handle<Code> ic;
// There are multiple string maps that all use the same prototype. That
// prototype cannot hold multiple handlers, one for each of the string maps,
// for a single name. Hence, turn off caching of the IC.
bool can_be_cached = !type->Is(Type::String());
if (can_be_cached) {
stub_holder = IC::GetCodeCacheHolder(flag, *type, isolate());
ic = FindIC(name, stub_holder, kind, extra_ic_state, flag);
if (!ic.is_null()) return ic;
}
if (kind == Code::LOAD_IC) {
LoadStubCompiler ic_compiler(isolate(), flag);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
} else if (kind == Code::KEYED_LOAD_IC) {
KeyedLoadStubCompiler ic_compiler(isolate(), flag);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
} else if (kind == Code::STORE_IC) {
StrictModeFlag strict_mode = StoreIC::GetStrictMode(extra_ic_state);
StoreStubCompiler ic_compiler(isolate(), strict_mode);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
} else {
ASSERT(kind == Code::KEYED_STORE_IC);
StrictModeFlag strict_mode = StoreIC::GetStrictMode(extra_ic_state);
KeyedStoreStubCompiler ic_compiler(isolate(), strict_mode, STANDARD_STORE);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
}
if (can_be_cached) Map::UpdateCodeCache(stub_holder, name, ic);
return ic;
}
Handle<Code> StubCache::ComputeLoadNonexistent(Handle<Name> name,
Handle<Type> type) {
InlineCacheHolderFlag flag = IC::GetCodeCacheFlag(*type);
Handle<Map> stub_holder = IC::GetCodeCacheHolder(flag, *type, isolate());
// If no dictionary mode objects are present in the prototype chain, the load
// nonexistent IC stub can be shared for all names for a given map and we use
// the empty string for the map cache in that case. If there are dictionary
// mode objects involved, we need to do negative lookups in the stub and
// therefore the stub will be specific to the name.
Handle<Map> current_map = stub_holder;
Handle<Name> cache_name = current_map->is_dictionary_map()
? name : Handle<Name>::cast(isolate()->factory()->empty_string());
Handle<Object> next(current_map->prototype(), isolate());
Handle<JSObject> last = Handle<JSObject>::null();
while (!next->IsNull()) {
last = Handle<JSObject>::cast(next);
next = handle(current_map->prototype(), isolate());
current_map = handle(Handle<HeapObject>::cast(next)->map());
if (current_map->is_dictionary_map()) cache_name = name;
}
// Compile the stub that is either shared for all names or
// name specific if there are global objects involved.
Handle<Code> handler = FindHandler(
cache_name, stub_holder, Code::LOAD_IC, flag);
if (!handler.is_null()) return handler;
LoadStubCompiler compiler(isolate_, flag);
handler = compiler.CompileLoadNonexistent(type, last, cache_name);
Map::UpdateCodeCache(stub_holder, cache_name, handler);
return handler;
}
Handle<Code> StubCache::ComputeKeyedLoadElement(Handle<Map> receiver_map) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC);
Handle<Name> name =
isolate()->factory()->KeyedLoadElementMonomorphic_string();
Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate());
Handle<Code> code = compiler.CompileLoadElement(receiver_map);
Map::UpdateCodeCache(receiver_map, name, code);
return code;
}
Handle<Code> StubCache::ComputeKeyedStoreElement(
Handle<Map> receiver_map,
StrictModeFlag strict_mode,
KeyedAccessStoreMode store_mode) {
ExtraICState extra_state =
KeyedStoreIC::ComputeExtraICState(strict_mode, store_mode);
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::KEYED_STORE_IC, extra_state);
ASSERT(store_mode == STANDARD_STORE ||
store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW);
Handle<String> name =
isolate()->factory()->KeyedStoreElementMonomorphic_string();
Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedStoreStubCompiler compiler(isolate(), strict_mode, store_mode);
Handle<Code> code = compiler.CompileStoreElement(receiver_map);
Map::UpdateCodeCache(receiver_map, name, code);
ASSERT(KeyedStoreIC::GetKeyedAccessStoreMode(code->extra_ic_state())
== store_mode);
return code;
}
#define CALL_LOGGER_TAG(kind, type) \
(kind == Code::CALL_IC ? Logger::type : Logger::KEYED_##type)
Handle<Code> StubCache::ComputeCallConstant(int argc,
Code::Kind kind,
ExtraICState extra_state,
Handle<Name> name,
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSFunction> function) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(*object);
Handle<HeapObject> stub_holder(IC::GetCodeCacheHolder(
isolate_, *object, cache_holder));
// Compute check type based on receiver/holder.
CheckType check = RECEIVER_MAP_CHECK;
if (object->IsString()) {
check = STRING_CHECK;
} else if (object->IsSymbol()) {
check = SYMBOL_CHECK;
} else if (object->IsNumber()) {
check = NUMBER_CHECK;
} else if (object->IsBoolean()) {
check = BOOLEAN_CHECK;
}
if (check != RECEIVER_MAP_CHECK &&
!function->IsBuiltin() &&
function->shared()->is_classic_mode()) {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
return Handle<Code>::null();
}
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind, extra_state, cache_holder, Code::FAST, argc);
Handle<Object> probe(stub_holder->map()->FindInCodeCache(*name, flags),
isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate_, argc, kind, extra_state, cache_holder);
Handle<Code> code =
compiler.CompileCallConstant(object, holder, name, check, function);
code->set_check_type(check);
ASSERT(flags == code->flags());
PROFILE(isolate_,
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
if (CallStubCompiler::CanBeCached(function)) {
HeapObject::UpdateMapCodeCache(stub_holder, name, code);
}
return code;
}
Handle<Code> StubCache::ComputeCallField(int argc,
Code::Kind kind,
ExtraICState extra_state,
Handle<Name> name,
Handle<Object> object,
Handle<JSObject> holder,
PropertyIndex index) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(*object);
Handle<HeapObject> stub_holder(IC::GetCodeCacheHolder(
isolate_, *object, cache_holder));
// TODO(1233596): We cannot do receiver map check for non-JS objects
// because they may be represented as immediates without a
// map. Instead, we check against the map in the holder.
if (object->IsNumber() || object->IsSymbol() ||
object->IsBoolean() || object->IsString()) {
object = holder;
}
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind, extra_state, cache_holder, Code::FAST, argc);
Handle<Object> probe(stub_holder->map()->FindInCodeCache(*name, flags),
isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate_, argc, kind, extra_state, cache_holder);
Handle<Code> code =
compiler.CompileCallField(Handle<JSObject>::cast(object),
holder, index, name);
ASSERT(flags == code->flags());
PROFILE(isolate_,
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
HeapObject::UpdateMapCodeCache(stub_holder, name, code);
return code;
}
Handle<Code> StubCache::ComputeCallInterceptor(int argc,
Code::Kind kind,
ExtraICState extra_state,
Handle<Name> name,
Handle<Object> object,
Handle<JSObject> holder) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(*object);
Handle<HeapObject> stub_holder(IC::GetCodeCacheHolder(
isolate_, *object, cache_holder));
// TODO(1233596): We cannot do receiver map check for non-JS objects
// because they may be represented as immediates without a
// map. Instead, we check against the map in the holder.
if (object->IsNumber() || object->IsSymbol() ||
object->IsBoolean() || object->IsString()) {
object = holder;
}
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind, extra_state, cache_holder, Code::FAST, argc);
Handle<Object> probe(stub_holder->map()->FindInCodeCache(*name, flags),
isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate(), argc, kind, extra_state, cache_holder);
Handle<Code> code =
compiler.CompileCallInterceptor(Handle<JSObject>::cast(object),
holder, name);
ASSERT(flags == code->flags());
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
HeapObject::UpdateMapCodeCache(stub_holder, name, code);
return code;
}
Handle<Code> StubCache::ComputeCallGlobal(int argc,
Code::Kind kind,
ExtraICState extra_state,
Handle<Name> name,
Handle<JSObject> receiver,
Handle<GlobalObject> holder,
Handle<PropertyCell> cell,
Handle<JSFunction> function) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind, extra_state, OWN_MAP, Code::NORMAL, argc);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags),
isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate(), argc, kind, extra_state);
Handle<Code> code =
compiler.CompileCallGlobal(receiver, holder, cell, function, name);
ASSERT(flags == code->flags());
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
if (CallStubCompiler::CanBeCached(function)) {
HeapObject::UpdateMapCodeCache(receiver, name, code);
}
return code;
}
static void FillCache(Isolate* isolate, Handle<Code> code) {
Handle<UnseededNumberDictionary> dictionary =
UnseededNumberDictionary::Set(isolate->factory()->non_monomorphic_cache(),
code->flags(),
code);
isolate->heap()->public_set_non_monomorphic_cache(*dictionary);
}
Code* StubCache::FindCallInitialize(int argc,
RelocInfo::Mode mode,
Code::Kind kind) {
ExtraICState extra_state =
CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) |
CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT
? CONTEXTUAL : NOT_CONTEXTUAL);
Code::Flags flags =
Code::ComputeFlags(kind, UNINITIALIZED, extra_state, Code::NORMAL, argc);
UnseededNumberDictionary* dictionary =
isolate()->heap()->non_monomorphic_cache();
int entry = dictionary->FindEntry(isolate(), flags);
ASSERT(entry != -1);
Object* code = dictionary->ValueAt(entry);
// This might be called during the marking phase of the collector
// hence the unchecked cast.
return reinterpret_cast<Code*>(code);
}
Handle<Code> StubCache::ComputeCallInitialize(int argc,
RelocInfo::Mode mode,
Code::Kind kind) {
ExtraICState extra_state =
CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) |
CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT
? CONTEXTUAL : NOT_CONTEXTUAL);
Code::Flags flags =
Code::ComputeFlags(kind, UNINITIALIZED, extra_state, Code::NORMAL, argc);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallInitialize(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallInitialize(int argc, RelocInfo::Mode mode) {
return ComputeCallInitialize(argc, mode, Code::CALL_IC);
}
Handle<Code> StubCache::ComputeKeyedCallInitialize(int argc) {
return ComputeCallInitialize(argc, RelocInfo::CODE_TARGET,
Code::KEYED_CALL_IC);
}
Handle<Code> StubCache::ComputeCallPreMonomorphic(
int argc,
Code::Kind kind,
ExtraICState extra_state) {
Code::Flags flags =
Code::ComputeFlags(kind, PREMONOMORPHIC, extra_state, Code::NORMAL, argc);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallPreMonomorphic(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallNormal(int argc,
Code::Kind kind,
ExtraICState extra_state) {
Code::Flags flags =
Code::ComputeFlags(kind, MONOMORPHIC, extra_state, Code::NORMAL, argc);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallNormal(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallArguments(int argc) {
Code::Flags flags =
Code::ComputeFlags(Code::KEYED_CALL_IC, MEGAMORPHIC,
kNoExtraICState, Code::NORMAL, argc);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallArguments(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallMegamorphic(
int argc,
Code::Kind kind,
ExtraICState extra_state) {
Code::Flags flags =
Code::ComputeFlags(kind, MEGAMORPHIC, extra_state,
Code::NORMAL, argc);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallMegamorphic(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallMiss(int argc,
Code::Kind kind,
ExtraICState extra_state) {
// MONOMORPHIC_PROTOTYPE_FAILURE state is used to make sure that miss stubs
// and monomorphic stubs are not mixed up together in the stub cache.
Code::Flags flags =
Code::ComputeFlags(kind, MONOMORPHIC_PROTOTYPE_FAILURE, extra_state,
Code::NORMAL, argc, OWN_MAP);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallMiss(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCompareNil(Handle<Map> receiver_map,
CompareNilICStub& stub) {
Handle<String> name(isolate_->heap()->empty_string());
if (!receiver_map->is_shared()) {
Handle<Code> cached_ic = FindIC(name, receiver_map, Code::COMPARE_NIL_IC,
stub.GetExtraICState());
if (!cached_ic.is_null()) return cached_ic;
}
Handle<Code> ic = stub.GetCodeCopyFromTemplate(isolate_);
ic->ReplaceNthObject(1, isolate_->heap()->meta_map(), *receiver_map);
if (!receiver_map->is_shared()) {
Map::UpdateCodeCache(receiver_map, name, ic);
}
return ic;
}
// TODO(verwaest): Change this method so it takes in a TypeHandleList.
Handle<Code> StubCache::ComputeLoadElementPolymorphic(
MapHandleList* receiver_maps) {
Code::Flags flags = Code::ComputeFlags(Code::KEYED_LOAD_IC, POLYMORPHIC);
Handle<PolymorphicCodeCache> cache =
isolate_->factory()->polymorphic_code_cache();
Handle<Object> probe = cache->Lookup(receiver_maps, flags);
if (probe->IsCode()) return Handle<Code>::cast(probe);
TypeHandleList types(receiver_maps->length());
for (int i = 0; i < receiver_maps->length(); i++) {
types.Add(handle(Type::Class(receiver_maps->at(i)), isolate()));
}
CodeHandleList handlers(receiver_maps->length());
KeyedLoadStubCompiler compiler(isolate_);
compiler.CompileElementHandlers(receiver_maps, &handlers);
Handle<Code> code = compiler.CompilePolymorphicIC(
&types, &handlers, factory()->empty_string(), Code::NORMAL, ELEMENT);
isolate()->counters()->keyed_load_polymorphic_stubs()->Increment();
PolymorphicCodeCache::Update(cache, receiver_maps, flags, code);
return code;
}
Handle<Code> StubCache::ComputePolymorphicIC(
TypeHandleList* types,
CodeHandleList* handlers,
int number_of_valid_types,
Handle<Name> name,
ExtraICState extra_ic_state) {
Handle<Code> handler = handlers->at(0);
Code::Kind kind = handler->handler_kind();
Code::StubType type = number_of_valid_types == 1 ? handler->type()
: Code::NORMAL;
if (kind == Code::LOAD_IC) {
LoadStubCompiler ic_compiler(isolate_);
return ic_compiler.CompilePolymorphicIC(
types, handlers, name, type, PROPERTY);
} else {
ASSERT(kind == Code::STORE_IC);
StrictModeFlag strict_mode = StoreIC::GetStrictMode(extra_ic_state);
StoreStubCompiler ic_compiler(isolate_, strict_mode);
return ic_compiler.CompilePolymorphicIC(
types, handlers, name, type, PROPERTY);
}
}
Handle<Code> StubCache::ComputeStoreElementPolymorphic(
MapHandleList* receiver_maps,
KeyedAccessStoreMode store_mode,
StrictModeFlag strict_mode) {
ASSERT(store_mode == STANDARD_STORE ||
store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW);
Handle<PolymorphicCodeCache> cache =
isolate_->factory()->polymorphic_code_cache();
ExtraICState extra_state = KeyedStoreIC::ComputeExtraICState(
strict_mode, store_mode);
Code::Flags flags =
Code::ComputeFlags(Code::KEYED_STORE_IC, POLYMORPHIC, extra_state);
Handle<Object> probe = cache->Lookup(receiver_maps, flags);
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedStoreStubCompiler compiler(isolate_, strict_mode, store_mode);
Handle<Code> code = compiler.CompileStoreElementPolymorphic(receiver_maps);
PolymorphicCodeCache::Update(cache, receiver_maps, flags, code);
return code;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Handle<Code> StubCache::ComputeCallDebugBreak(int argc,
Code::Kind kind) {
// Extra IC state is irrelevant for debug break ICs. They jump to
// the actual call ic to carry out the work.
Code::Flags flags =
Code::ComputeFlags(kind, DEBUG_STUB, DEBUG_BREAK,
Code::NORMAL, argc);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallDebugBreak(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallDebugPrepareStepIn(int argc,
Code::Kind kind) {
// Extra IC state is irrelevant for debug break ICs. They jump to
// the actual call ic to carry out the work.
Code::Flags flags =
Code::ComputeFlags(kind, DEBUG_STUB, DEBUG_PREPARE_STEP_IN,
Code::NORMAL, argc);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallDebugPrepareStepIn(flags);
FillCache(isolate_, code);
return code;
}
#endif
void StubCache::Clear() {
Code* empty = isolate_->builtins()->builtin(Builtins::kIllegal);
for (int i = 0; i < kPrimaryTableSize; i++) {
primary_[i].key = heap()->empty_string();
primary_[i].map = NULL;
primary_[i].value = empty;
}
for (int j = 0; j < kSecondaryTableSize; j++) {
secondary_[j].key = heap()->empty_string();
secondary_[j].map = NULL;
secondary_[j].value = empty;
}
}
void StubCache::CollectMatchingMaps(SmallMapList* types,
Handle<Name> name,
Code::Flags flags,
Handle<Context> native_context,
Zone* zone) {
for (int i = 0; i < kPrimaryTableSize; i++) {
if (primary_[i].key == *name) {
Map* map = primary_[i].map;
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
int offset = PrimaryOffset(*name, flags, map);
if (entry(primary_, offset) == &primary_[i] &&
!TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) {
types->AddMapIfMissing(Handle<Map>(map), zone);
}
}
}
for (int i = 0; i < kSecondaryTableSize; i++) {
if (secondary_[i].key == *name) {
Map* map = secondary_[i].map;
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
// Lookup in primary table and skip duplicates.
int primary_offset = PrimaryOffset(*name, flags, map);
// Lookup in secondary table and add matches.
int offset = SecondaryOffset(*name, flags, primary_offset);
if (entry(secondary_, offset) == &secondary_[i] &&
!TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) {
types->AddMapIfMissing(Handle<Map>(map), zone);
}
}
}
}
// ------------------------------------------------------------------------
// StubCompiler implementation.
RUNTIME_FUNCTION(MaybeObject*, StoreCallbackProperty) {
JSObject* recv = JSObject::cast(args[0]);
ExecutableAccessorInfo* callback = ExecutableAccessorInfo::cast(args[1]);
Address setter_address = v8::ToCData<Address>(callback->setter());
v8::AccessorSetterCallback fun =
FUNCTION_CAST<v8::AccessorSetterCallback>(setter_address);
ASSERT(fun != NULL);
ASSERT(callback->IsCompatibleReceiver(recv));
Handle<Name> name = args.at<Name>(2);
Handle<Object> value = args.at<Object>(3);
HandleScope scope(isolate);
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return *value;
Handle<String> str = Handle<String>::cast(name);
LOG(isolate, ApiNamedPropertyAccess("store", recv, *name));
PropertyCallbackArguments
custom_args(isolate, callback->data(), recv, recv);
custom_args.Call(fun, v8::Utils::ToLocal(str), v8::Utils::ToLocal(value));
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return *value;
}
/**
* Attempts to load a property with an interceptor (which must be present),
* but doesn't search the prototype chain.
*
* Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
* provide any value for the given name.
*/
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorOnly) {
ASSERT(args.length() == StubCache::kInterceptorArgsLength);
Handle<Name> name_handle =
args.at<Name>(StubCache::kInterceptorArgsNameIndex);
Handle<InterceptorInfo> interceptor_info =
args.at<InterceptorInfo>(StubCache::kInterceptorArgsInfoIndex);
// TODO(rossberg): Support symbols in the API.
if (name_handle->IsSymbol())
return isolate->heap()->no_interceptor_result_sentinel();
Handle<String> name = Handle<String>::cast(name_handle);
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetterCallback getter =
FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address);
ASSERT(getter != NULL);
Handle<JSObject> receiver =
args.at<JSObject>(StubCache::kInterceptorArgsThisIndex);
Handle<JSObject> holder =
args.at<JSObject>(StubCache::kInterceptorArgsHolderIndex);
PropertyCallbackArguments callback_args(
isolate, interceptor_info->data(), *receiver, *holder);
{
// Use the interceptor getter.
HandleScope scope(isolate);
v8::Handle<v8::Value> r =
callback_args.Call(getter, v8::Utils::ToLocal(name));
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!r.IsEmpty()) {
Handle<Object> result = v8::Utils::OpenHandle(*r);
result->VerifyApiCallResultType();
return *v8::Utils::OpenHandle(*r);
}
}
return isolate->heap()->no_interceptor_result_sentinel();
}
static MaybeObject* ThrowReferenceError(Isolate* isolate, Name* name) {
// If the load is non-contextual, just return the undefined result.
// Note that both keyed and non-keyed loads may end up here, so we
// can't use either LoadIC or KeyedLoadIC constructors.
HandleScope scope(isolate);
IC ic(IC::NO_EXTRA_FRAME, isolate);
ASSERT(ic.IsLoadStub());
if (!ic.SlowIsUndeclaredGlobal()) return isolate->heap()->undefined_value();
// Throw a reference error.
Handle<Name> name_handle(name);
Handle<Object> error =
isolate->factory()->NewReferenceError("not_defined",
HandleVector(&name_handle, 1));
return isolate->Throw(*error);
}
static Handle<Object> LoadWithInterceptor(Arguments* args,
PropertyAttributes* attrs) {
ASSERT(args->length() == StubCache::kInterceptorArgsLength);
Handle<Name> name_handle =
args->at<Name>(StubCache::kInterceptorArgsNameIndex);
Handle<InterceptorInfo> interceptor_info =
args->at<InterceptorInfo>(StubCache::kInterceptorArgsInfoIndex);
Handle<JSObject> receiver_handle =
args->at<JSObject>(StubCache::kInterceptorArgsThisIndex);
Handle<JSObject> holder_handle =
args->at<JSObject>(StubCache::kInterceptorArgsHolderIndex);
Isolate* isolate = receiver_handle->GetIsolate();
// TODO(rossberg): Support symbols in the API.
if (name_handle->IsSymbol()) {
return JSObject::GetPropertyPostInterceptor(
holder_handle, receiver_handle, name_handle, attrs);
}
Handle<String> name = Handle<String>::cast(name_handle);
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetterCallback getter =
FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address);
ASSERT(getter != NULL);
PropertyCallbackArguments callback_args(isolate,
interceptor_info->data(),
*receiver_handle,
*holder_handle);
{
HandleScope scope(isolate);
// Use the interceptor getter.
v8::Handle<v8::Value> r =
callback_args.Call(getter, v8::Utils::ToLocal(name));
RETURN_HANDLE_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!r.IsEmpty()) {
*attrs = NONE;
Handle<Object> result = v8::Utils::OpenHandle(*r);
result->VerifyApiCallResultType();
return scope.CloseAndEscape(result);
}
}
Handle<Object> result = JSObject::GetPropertyPostInterceptor(
holder_handle, receiver_handle, name_handle, attrs);
return result;
}
/**
* Loads a property with an interceptor performing post interceptor
* lookup if interceptor failed.
*/
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForLoad) {
PropertyAttributes attr = NONE;
HandleScope scope(isolate);
Handle<Object> result = LoadWithInterceptor(&args, &attr);
RETURN_IF_EMPTY_HANDLE(isolate, result);
// If the property is present, return it.
if (attr != ABSENT) return *result;
return ThrowReferenceError(isolate, Name::cast(args[0]));
}
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForCall) {
PropertyAttributes attr;
HandleScope scope(isolate);
Handle<Object> result = LoadWithInterceptor(&args, &attr);
RETURN_IF_EMPTY_HANDLE(isolate, result);
// This is call IC. In this case, we simply return the undefined result which
// will lead to an exception when trying to invoke the result as a
// function.
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, StoreInterceptorProperty) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<JSObject> receiver = args.at<JSObject>(0);
Handle<Name> name = args.at<Name>(1);
Handle<Object> value = args.at<Object>(2);
ASSERT(receiver->HasNamedInterceptor());
PropertyAttributes attr = NONE;
Handle<Object> result = JSObject::SetPropertyWithInterceptor(
receiver, name, value, attr, ic.strict_mode());
RETURN_IF_EMPTY_HANDLE(isolate, result);
return *result;
}
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadPropertyWithInterceptor) {
JSObject* receiver = JSObject::cast(args[0]);
ASSERT(args.smi_at(1) >= 0);
uint32_t index = args.smi_at(1);
return receiver->GetElementWithInterceptor(receiver, index);
}
Handle<Code> StubCompiler::CompileCallInitialize(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateInitialize(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateInitialize(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallInitialize");
isolate()->counters()->call_initialize_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_INITIALIZE_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_INITIALIZE, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallPreMonomorphic(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
// The code of the PreMonomorphic stub is the same as the code
// of the Initialized stub. They just differ on the code object flags.
Code::Kind kind = Code::ExtractKindFromFlags(flags);
ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateInitialize(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateInitialize(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallPreMonomorphic");
isolate()->counters()->call_premonomorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_PRE_MONOMORPHIC_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_PRE_MONOMORPHIC, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallNormal(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
// Call normal is always with a explict receiver.
ASSERT(!CallIC::Contextual::decode(
Code::ExtractExtraICStateFromFlags(flags)));
CallIC::GenerateNormal(masm(), argc);
} else {
KeyedCallIC::GenerateNormal(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallNormal");
isolate()->counters()->call_normal_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_NORMAL_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_NORMAL, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallMegamorphic(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMegamorphic(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateMegamorphic(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallMegamorphic");
isolate()->counters()->call_megamorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MEGAMORPHIC_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallArguments(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
KeyedCallIC::GenerateNonStrictArguments(masm(), argc);
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallArguments");
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(Code::ExtractKindFromFlags(flags),
CALL_MEGAMORPHIC_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallMiss(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMiss(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateMiss(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallMiss");
isolate()->counters()->call_megamorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MISS_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MISS, *code));
return code;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Handle<Code> StubCompiler::CompileCallDebugBreak(Code::Flags flags) {
Debug::GenerateCallICDebugBreak(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallDebugBreak");
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(Code::ExtractKindFromFlags(flags),
CALL_DEBUG_BREAK_TAG),
*code, code->arguments_count()));
return code;
}
Handle<Code> StubCompiler::CompileCallDebugPrepareStepIn(Code::Flags flags) {
// Use the same code for the the step in preparations as we do for the
// miss case.
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
// For the debugger extra ic state is irrelevant.
CallIC::GenerateMiss(masm(), argc, kNoExtraICState);
} else {
KeyedCallIC::GenerateMiss(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallDebugPrepareStepIn");
PROFILE(isolate(),
CodeCreateEvent(
CALL_LOGGER_TAG(kind, CALL_DEBUG_PREPARE_STEP_IN_TAG),
*code,
code->arguments_count()));
return code;
}
#endif // ENABLE_DEBUGGER_SUPPORT
#undef CALL_LOGGER_TAG
Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags,
const char* name) {
// Create code object in the heap.
CodeDesc desc;
masm_.GetCode(&desc);
Handle<Code> code = factory()->NewCode(desc, flags, masm_.CodeObject());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code_stubs) code->Disassemble(name);
#endif
return code;
}
Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags,
Handle<Name> name) {
return (FLAG_print_code_stubs && !name.is_null() && name->IsString())
? GetCodeWithFlags(flags, *Handle<String>::cast(name)->ToCString())
: GetCodeWithFlags(flags, NULL);
}
void StubCompiler::LookupPostInterceptor(Handle<JSObject> holder,
Handle<Name> name,
LookupResult* lookup) {
holder->LocalLookupRealNamedProperty(*name, lookup);
if (lookup->IsFound()) return;
if (holder->GetPrototype()->IsNull()) return;
holder->GetPrototype()->Lookup(*name, lookup);
}
#define __ ACCESS_MASM(masm())
CallKind CallStubCompiler::call_kind() {
return CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
}
void CallStubCompiler::HandlerFrontendFooter(Label* miss) {
__ bind(miss);
GenerateMissBranch();
}
void CallStubCompiler::GenerateJumpFunctionIgnoreReceiver(
Handle<JSFunction> function) {
ParameterCount expected(function);
__ InvokeFunction(function, expected, arguments(),
JUMP_FUNCTION, NullCallWrapper(), call_kind());
}
void CallStubCompiler::GenerateJumpFunction(Handle<Object> object,
Handle<JSFunction> function) {
PatchGlobalProxy(object);
GenerateJumpFunctionIgnoreReceiver(function);
}
void CallStubCompiler::GenerateJumpFunction(Handle<Object> object,
Register actual_closure,
Handle<JSFunction> function) {
PatchGlobalProxy(object);
ParameterCount expected(function);
__ InvokeFunction(actual_closure, expected, arguments(),
JUMP_FUNCTION, NullCallWrapper(), call_kind());
}
Handle<Code> CallStubCompiler::CompileCallConstant(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Name> name,
CheckType check,
Handle<JSFunction> function) {
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder,
Handle<Cell>::null(),
function, Handle<String>::cast(name),
Code::FAST);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
HandlerFrontendHeader(object, holder, name, check, &miss);
GenerateJumpFunction(object, function);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(function);
}
Register LoadStubCompiler::HandlerFrontendHeader(
Handle<Type> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss) {
PrototypeCheckType check_type = CHECK_ALL_MAPS;
int function_index = -1;
if (type->Is(Type::String())) {
function_index = Context::STRING_FUNCTION_INDEX;
} else if (type->Is(Type::Symbol())) {
function_index = Context::SYMBOL_FUNCTION_INDEX;
} else if (type->Is(Type::Number())) {
function_index = Context::NUMBER_FUNCTION_INDEX;
} else if (type->Is(Type::Boolean())) {
// Booleans use the generic oddball map, so an additional check is needed to
// ensure the receiver is really a boolean.
GenerateBooleanCheck(object_reg, miss);
function_index = Context::BOOLEAN_FUNCTION_INDEX;
} else {
check_type = SKIP_RECEIVER;
}
if (check_type == CHECK_ALL_MAPS) {
GenerateDirectLoadGlobalFunctionPrototype(
masm(), function_index, scratch1(), miss);
Object* function = isolate()->native_context()->get(function_index);
Object* prototype = JSFunction::cast(function)->instance_prototype();
type = IC::CurrentTypeOf(handle(prototype, isolate()), isolate());
object_reg = scratch1();
}
// Check that the maps starting from the prototype haven't changed.
return CheckPrototypes(
type, object_reg, holder, scratch1(), scratch2(), scratch3(),
name, miss, check_type);
}
// HandlerFrontend for store uses the name register. It has to be restored
// before a miss.
Register StoreStubCompiler::HandlerFrontendHeader(
Handle<Type> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss) {
return CheckPrototypes(type, object_reg, holder, this->name(),
scratch1(), scratch2(), name, miss, SKIP_RECEIVER);
}
bool BaseLoadStoreStubCompiler::IncludesNumberType(TypeHandleList* types) {
for (int i = 0; i < types->length(); ++i) {
if (types->at(i)->Is(Type::Number())) return true;
}
return false;
}
Register BaseLoadStoreStubCompiler::HandlerFrontend(Handle<Type> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name) {
Label miss;
Register reg = HandlerFrontendHeader(type, object_reg, holder, name, &miss);
HandlerFrontendFooter(name, &miss);
return reg;
}
void LoadStubCompiler::NonexistentHandlerFrontend(Handle<Type> type,
Handle<JSObject> last,
Handle<Name> name) {
Label miss;
Register holder;
Handle<Map> last_map;
if (last.is_null()) {
holder = receiver();
last_map = IC::TypeToMap(*type, isolate());
// If |type| has null as its prototype, |last| is Handle<JSObject>::null().
ASSERT(last_map->prototype() == isolate()->heap()->null_value());
} else {
holder = HandlerFrontendHeader(type, receiver(), last, name, &miss);
last_map = handle(last->map());
}
if (last_map->is_dictionary_map() &&
!last_map->IsJSGlobalObjectMap() &&
!last_map->IsJSGlobalProxyMap()) {
if (!name->IsUniqueName()) {
ASSERT(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
ASSERT(last.is_null() ||
last->property_dictionary()->FindEntry(*name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), &miss, holder, name,
scratch2(), scratch3());
}
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last_map->IsJSGlobalObjectMap()) {
Handle<JSGlobalObject> global = last.is_null()
? Handle<JSGlobalObject>::cast(type->AsConstant())
: Handle<JSGlobalObject>::cast(last);
GenerateCheckPropertyCell(masm(), global, name, scratch2(), &miss);
}
HandlerFrontendFooter(name, &miss);
}
Handle<Code> LoadStubCompiler::CompileLoadField(
Handle<Type> type,
Handle<JSObject> holder,
Handle<Name> name,
PropertyIndex field,
Representation representation) {
Label miss;
Register reg = HandlerFrontendHeader(type, receiver(), holder, name, &miss);
GenerateLoadField(reg, holder, field, representation);
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadConstant(
Handle<Type> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<Object> value) {
HandlerFrontend(type, receiver(), holder, name);
GenerateLoadConstant(value);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<Type> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
Register reg = CallbackHandlerFrontend(
type, receiver(), holder, name, callback);
GenerateLoadCallback(reg, callback);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<Type> type,
Handle<JSObject> holder,
Handle<Name> name,
const CallOptimization& call_optimization) {
ASSERT(call_optimization.is_simple_api_call());
Handle<JSFunction> callback = call_optimization.constant_function();
CallbackHandlerFrontend(type, receiver(), holder, name, callback);
GenerateLoadCallback(call_optimization);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadInterceptor(
Handle<Type> type,
Handle<JSObject> holder,
Handle<Name> name) {
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
Register reg = HandlerFrontend(type, receiver(), holder, name);
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(reg, type, holder, &lookup, name);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
void LoadStubCompiler::GenerateLoadPostInterceptor(
Register interceptor_reg,
Handle<JSObject> interceptor_holder,
Handle<Name> name,
LookupResult* lookup) {
Handle<JSObject> holder(lookup->holder());
if (lookup->IsField()) {
PropertyIndex field = lookup->GetFieldIndex();
if (interceptor_holder.is_identical_to(holder)) {
GenerateLoadField(
interceptor_reg, holder, field, lookup->representation());
} else {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
Register reg = HandlerFrontend(
IC::CurrentTypeOf(interceptor_holder, isolate()),
interceptor_reg, holder, name);
GenerateLoadField(
reg, holder, field, lookup->representation());
}
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
Handle<ExecutableAccessorInfo> callback(
ExecutableAccessorInfo::cast(lookup->GetCallbackObject()));
ASSERT(callback->getter() != NULL);
Register reg = CallbackHandlerFrontend(
IC::CurrentTypeOf(interceptor_holder, isolate()),
interceptor_reg, holder, name, callback);
GenerateLoadCallback(reg, callback);
}
}
Handle<Code> BaseLoadStoreStubCompiler::CompileMonomorphicIC(
Handle<Type> type,
Handle<Code> handler,
Handle<Name> name) {
TypeHandleList types(1);
CodeHandleList handlers(1);
types.Add(type);
handlers.Add(handler);
Code::StubType stub_type = handler->type();
return CompilePolymorphicIC(&types, &handlers, name, stub_type, PROPERTY);
}
Handle<Code> LoadStubCompiler::CompileLoadViaGetter(
Handle<Type> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> getter) {
HandlerFrontend(type, receiver(), holder, name);
GenerateLoadViaGetter(masm(), receiver(), getter);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreTransition(
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name) {
Label miss, slow;
// Ensure no transitions to deprecated maps are followed.
__ CheckMapDeprecated(transition, scratch1(), &miss);
// Check that we are allowed to write this.
if (object->GetPrototype()->IsJSObject()) {
Handle<JSObject> holder;
// holder == object indicates that no property was found.
if (lookup->holder() != *object) {
holder = Handle<JSObject>(lookup->holder());
} else {
// Find the top object.
holder = object;
do {
holder = Handle<JSObject>(JSObject::cast(holder->GetPrototype()));
} while (holder->GetPrototype()->IsJSObject());
}
Register holder_reg = HandlerFrontendHeader(
IC::CurrentTypeOf(object, isolate()), receiver(), holder, name, &miss);
// If no property was found, and the holder (the last object in the
// prototype chain) is in slow mode, we need to do a negative lookup on the
// holder.
if (lookup->holder() == *object) {
GenerateNegativeHolderLookup(masm(), holder, holder_reg, name, &miss);
}
}
GenerateStoreTransition(masm(),
object,
lookup,
transition,
name,
receiver(), this->name(), value(),
scratch1(), scratch2(), scratch3(),
&miss,
&slow);
// Handle store cache miss.
GenerateRestoreName(masm(), &miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
GenerateRestoreName(masm(), &slow, name);
TailCallBuiltin(masm(), SlowBuiltin(kind()));
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name) {
Label miss;
HandlerFrontendHeader(IC::CurrentTypeOf(object, isolate()),
receiver(), object, name, &miss);
// Generate store field code.
GenerateStoreField(masm(),
object,
lookup,
receiver(), this->name(), value(), scratch1(), scratch2(),
&miss);
// Handle store cache miss.
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreViaSetter(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> setter) {
HandlerFrontend(IC::CurrentTypeOf(object, isolate()),
receiver(), holder, name);
GenerateStoreViaSetter(masm(), setter);
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(
Handle<Map> receiver_map) {
ElementsKind elements_kind = receiver_map->elements_kind();
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements()) {
Handle<Code> stub = KeyedLoadFastElementStub(
receiver_map->instance_type() == JS_ARRAY_TYPE,
elements_kind).GetCode(isolate());
__ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK);
} else {
Handle<Code> stub = FLAG_compiled_keyed_dictionary_loads
? KeyedLoadDictionaryElementStub().GetCode(isolate())
: KeyedLoadDictionaryElementPlatformStub().GetCode(isolate());
__ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK);
}
TailCallBuiltin(masm(), Builtins::kKeyedLoadIC_Miss);
// Return the generated code.
return GetICCode(kind(), Code::NORMAL, factory()->empty_string());
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElement(
Handle<Map> receiver_map) {
ElementsKind elements_kind = receiver_map->elements_kind();
bool is_jsarray = receiver_map->instance_type() == JS_ARRAY_TYPE;
Handle<Code> stub;
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements()) {
stub = KeyedStoreFastElementStub(
is_jsarray,
elements_kind,
store_mode_).GetCode(isolate());
} else {
stub = KeyedStoreElementStub(is_jsarray,
elements_kind,
store_mode_).GetCode(isolate());
}
__ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK);
TailCallBuiltin(masm(), Builtins::kKeyedStoreIC_Miss);
// Return the generated code.
return GetICCode(kind(), Code::NORMAL, factory()->empty_string());
}
#undef __
void StubCompiler::TailCallBuiltin(MacroAssembler* masm, Builtins::Name name) {
Handle<Code> code(masm->isolate()->builtins()->builtin(name));
GenerateTailCall(masm, code);
}
void BaseLoadStoreStubCompiler::JitEvent(Handle<Name> name, Handle<Code> code) {
#ifdef ENABLE_GDB_JIT_INTERFACE
GDBJITInterface::CodeTag tag;
if (kind_ == Code::LOAD_IC) {
tag = GDBJITInterface::LOAD_IC;
} else if (kind_ == Code::KEYED_LOAD_IC) {
tag = GDBJITInterface::KEYED_LOAD_IC;
} else if (kind_ == Code::STORE_IC) {
tag = GDBJITInterface::STORE_IC;
} else {
tag = GDBJITInterface::KEYED_STORE_IC;
}
GDBJIT(AddCode(tag, *name, *code));
#endif
}
void BaseLoadStoreStubCompiler::InitializeRegisters() {
if (kind_ == Code::LOAD_IC) {
registers_ = LoadStubCompiler::registers();
} else if (kind_ == Code::KEYED_LOAD_IC) {
registers_ = KeyedLoadStubCompiler::registers();
} else if (kind_ == Code::STORE_IC) {
registers_ = StoreStubCompiler::registers();
} else {
registers_ = KeyedStoreStubCompiler::registers();
}
}
Handle<Code> BaseLoadStoreStubCompiler::GetICCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name,
InlineCacheState state) {
Code::Flags flags = Code::ComputeFlags(kind, state, extra_state(), type);
Handle<Code> code = GetCodeWithFlags(flags, name);
PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, *name));
JitEvent(name, code);
return code;
}
Handle<Code> BaseLoadStoreStubCompiler::GetCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name) {
Code::Flags flags = Code::ComputeFlags(
Code::HANDLER, MONOMORPHIC, extra_state(), type, kind, cache_holder_);
Handle<Code> code = GetCodeWithFlags(flags, name);
PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, *name));
JitEvent(name, code);
return code;
}
void KeyedLoadStubCompiler::CompileElementHandlers(MapHandleList* receiver_maps,
CodeHandleList* handlers) {
for (int i = 0; i < receiver_maps->length(); ++i) {
Handle<Map> receiver_map = receiver_maps->at(i);
Handle<Code> cached_stub;
if ((receiver_map->instance_type() & kNotStringTag) == 0) {
cached_stub = isolate()->builtins()->KeyedLoadIC_String();
} else {
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
ElementsKind elements_kind = receiver_map->elements_kind();
if (IsFastElementsKind(elements_kind) ||
IsExternalArrayElementsKind(elements_kind)) {
cached_stub =
KeyedLoadFastElementStub(is_js_array,
elements_kind).GetCode(isolate());
} else {
ASSERT(elements_kind == DICTIONARY_ELEMENTS);
cached_stub = KeyedLoadDictionaryElementStub().GetCode(isolate());
}
}
handlers->Add(cached_stub);
}
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElementPolymorphic(
MapHandleList* receiver_maps) {
// Collect MONOMORPHIC stubs for all |receiver_maps|.
CodeHandleList handlers(receiver_maps->length());
MapHandleList transitioned_maps(receiver_maps->length());
for (int i = 0; i < receiver_maps->length(); ++i) {
Handle<Map> receiver_map(receiver_maps->at(i));
Handle<Code> cached_stub;
Handle<Map> transitioned_map =
receiver_map->FindTransitionedMap(receiver_maps);
// TODO(mvstanton): The code below is doing pessimistic elements
// transitions. I would like to stop doing that and rely on Allocation Site
// Tracking to do a better job of ensuring the data types are what they need
// to be. Not all the elements are in place yet, pessimistic elements
// transitions are still important for performance.
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
ElementsKind elements_kind = receiver_map->elements_kind();
if (!transitioned_map.is_null()) {
cached_stub = ElementsTransitionAndStoreStub(
elements_kind,
transitioned_map->elements_kind(),
is_js_array,
store_mode_).GetCode(isolate());
} else {
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements()) {
cached_stub = KeyedStoreFastElementStub(
is_js_array,
elements_kind,
store_mode_).GetCode(isolate());
} else {
cached_stub = KeyedStoreElementStub(
is_js_array,
elements_kind,
store_mode_).GetCode(isolate());
}
}
ASSERT(!cached_stub.is_null());
handlers.Add(cached_stub);
transitioned_maps.Add(transitioned_map);
}
Handle<Code> code =
CompileStorePolymorphic(receiver_maps, &handlers, &transitioned_maps);
isolate()->counters()->keyed_store_polymorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(Logger::KEYED_STORE_POLYMORPHIC_IC_TAG, *code, 0));
return code;
}
void KeyedStoreStubCompiler::GenerateStoreDictionaryElement(
MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
CallStubCompiler::CallStubCompiler(Isolate* isolate,
int argc,
Code::Kind kind,
ExtraICState extra_state,
InlineCacheHolderFlag cache_holder)
: StubCompiler(isolate),
arguments_(argc),
kind_(kind),
extra_state_(extra_state),
cache_holder_(cache_holder) {
}
bool CallStubCompiler::HasCustomCallGenerator(Handle<JSFunction> function) {
if (function->shared()->HasBuiltinFunctionId()) {
BuiltinFunctionId id = function->shared()->builtin_function_id();
#define CALL_GENERATOR_CASE(name) if (id == k##name) return true;
CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE)
#undef CALL_GENERATOR_CASE
}
CallOptimization optimization(function);
return optimization.is_simple_api_call();
}
bool CallStubCompiler::CanBeCached(Handle<JSFunction> function) {
if (function->shared()->HasBuiltinFunctionId()) {
BuiltinFunctionId id = function->shared()->builtin_function_id();
#define CALL_GENERATOR_CASE(name) if (id == k##name) return false;
SITE_SPECIFIC_CALL_GENERATORS(CALL_GENERATOR_CASE)
#undef CALL_GENERATOR_CASE
}
return true;
}
Handle<Code> CallStubCompiler::CompileCustomCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> fname,
Code::StubType type) {
ASSERT(HasCustomCallGenerator(function));
if (function->shared()->HasBuiltinFunctionId()) {
BuiltinFunctionId id = function->shared()->builtin_function_id();
#define CALL_GENERATOR_CASE(name) \
if (id == k##name) { \
return CallStubCompiler::Compile##name##Call(object, \
holder, \
cell, \
function, \
fname, \
type); \
}
CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE)
#undef CALL_GENERATOR_CASE
}
CallOptimization optimization(function);
ASSERT(optimization.is_simple_api_call());
return CompileFastApiCall(optimization,
object,
holder,
cell,
function,
fname);
}
Handle<Code> CallStubCompiler::GetCode(Code::StubType type,
Handle<Name> name) {
int argc = arguments_.immediate();
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind_, extra_state_, cache_holder_, type, argc);
return GetCodeWithFlags(flags, name);
}
Handle<Code> CallStubCompiler::GetCode(Handle<JSFunction> function) {
Handle<String> function_name;
if (function->shared()->name()->IsString()) {
function_name = Handle<String>(String::cast(function->shared()->name()));
}
return GetCode(Code::FAST, function_name);
}
CallOptimization::CallOptimization(LookupResult* lookup) {
if (lookup->IsFound() &&
lookup->IsCacheable() &&
lookup->IsConstantFunction()) {
// We only optimize constant function calls.
Initialize(Handle<JSFunction>(lookup->GetConstantFunction()));
} else {
Initialize(Handle<JSFunction>::null());
}
}
CallOptimization::CallOptimization(Handle<JSFunction> function) {
Initialize(function);
}
int CallOptimization::GetPrototypeDepthOfExpectedType(
Handle<JSObject> object,
Handle<JSObject> holder) const {
ASSERT(is_simple_api_call());
if (expected_receiver_type_.is_null()) return 0;
int depth = 0;
while (!object.is_identical_to(holder)) {
if (expected_receiver_type_->IsTemplateFor(object->map())) return depth;
object = Handle<JSObject>(JSObject::cast(object->GetPrototype()));
if (!object->map()->is_hidden_prototype()) return kInvalidProtoDepth;
++depth;
}
if (expected_receiver_type_->IsTemplateFor(holder->map())) return depth;
return kInvalidProtoDepth;
}
void CallOptimization::Initialize(Handle<JSFunction> function) {
constant_function_ = Handle<JSFunction>::null();
is_simple_api_call_ = false;
expected_receiver_type_ = Handle<FunctionTemplateInfo>::null();
api_call_info_ = Handle<CallHandlerInfo>::null();
if (function.is_null() || !function->is_compiled()) return;
constant_function_ = function;
AnalyzePossibleApiFunction(function);
}
void CallOptimization::AnalyzePossibleApiFunction(Handle<JSFunction> function) {
if (!function->shared()->IsApiFunction()) return;
Handle<FunctionTemplateInfo> info(function->shared()->get_api_func_data());
// Require a C++ callback.
if (info->call_code()->IsUndefined()) return;
api_call_info_ =
Handle<CallHandlerInfo>(CallHandlerInfo::cast(info->call_code()));
// Accept signatures that either have no restrictions at all or
// only have restrictions on the receiver.
if (!info->signature()->IsUndefined()) {
Handle<SignatureInfo> signature =
Handle<SignatureInfo>(SignatureInfo::cast(info->signature()));
if (!signature->args()->IsUndefined()) return;
if (!signature->receiver()->IsUndefined()) {
expected_receiver_type_ =
Handle<FunctionTemplateInfo>(
FunctionTemplateInfo::cast(signature->receiver()));
}
}
is_simple_api_call_ = true;
}
} } // namespace v8::internal