v8/src/arm/codegen-arm.h

566 lines
20 KiB
C
Raw Normal View History

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_CODEGEN_ARM_H_
#define V8_ARM_CODEGEN_ARM_H_
namespace v8 {
namespace internal {
// Forward declarations
class CompilationInfo;
class DeferredCode;
class RegisterAllocator;
class RegisterFile;
enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
// -------------------------------------------------------------------------
// Reference support
// A reference is a C++ stack-allocated object that puts a
// reference on the virtual frame. The reference may be consumed
// by GetValue, TakeValue, SetValue, and Codegen::UnloadReference.
// When the lifetime (scope) of a valid reference ends, it must have
// been consumed, and be in state UNLOADED.
class Reference BASE_EMBEDDED {
public:
// The values of the types is important, see size().
enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get = false);
~Reference();
Expression* expression() const { return expression_; }
Type type() const { return type_; }
void set_type(Type value) {
ASSERT_EQ(ILLEGAL, type_);
type_ = value;
}
void set_unloaded() {
ASSERT_NE(ILLEGAL, type_);
ASSERT_NE(UNLOADED, type_);
type_ = UNLOADED;
}
// The size the reference takes up on the stack.
int size() const {
return (type_ < SLOT) ? 0 : type_;
}
bool is_illegal() const { return type_ == ILLEGAL; }
bool is_slot() const { return type_ == SLOT; }
bool is_property() const { return type_ == NAMED || type_ == KEYED; }
bool is_unloaded() const { return type_ == UNLOADED; }
// Return the name. Only valid for named property references.
Handle<String> GetName();
// Generate code to push the value of the reference on top of the
// expression stack. The reference is expected to be already on top of
// the expression stack, and it is consumed by the call unless the
// reference is for a compound assignment.
// If the reference is not consumed, it is left in place under its value.
void GetValue();
// Generate code to pop a reference, push the value of the reference,
// and then spill the stack frame.
inline void GetValueAndSpill();
// Generate code to store the value on top of the expression stack in the
// reference. The reference is expected to be immediately below the value
// on the expression stack. The value is stored in the location specified
// by the reference, and is left on top of the stack, after the reference
// is popped from beneath it (unloaded).
void SetValue(InitState init_state);
private:
CodeGenerator* cgen_;
Expression* expression_;
Type type_;
// Keep the reference on the stack after get, so it can be used by set later.
bool persist_after_get_;
};
// -------------------------------------------------------------------------
// Code generation state
// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the label pair). It is threaded through the
// call stack. Constructing a state implicitly pushes it on the owning code
// generator's stack of states, and destroying one implicitly pops it.
class CodeGenState BASE_EMBEDDED {
public:
// Create an initial code generator state. Destroying the initial state
// leaves the code generator with a NULL state.
explicit CodeGenState(CodeGenerator* owner);
// Create a code generator state based on a code generator's current
// state. The new state has its own pair of branch labels.
CodeGenState(CodeGenerator* owner,
JumpTarget* true_target,
JumpTarget* false_target);
// Destroy a code generator state and restore the owning code generator's
// previous state.
~CodeGenState();
JumpTarget* true_target() const { return true_target_; }
JumpTarget* false_target() const { return false_target_; }
private:
CodeGenerator* owner_;
JumpTarget* true_target_;
JumpTarget* false_target_;
CodeGenState* previous_;
};
// -------------------------------------------------------------------------
// CodeGenerator
class CodeGenerator: public AstVisitor {
public:
// Compilation mode. Either the compiler is used as the primary
// compiler and needs to setup everything or the compiler is used as
// the secondary compiler for split compilation and has to handle
// bailouts.
enum Mode {
PRIMARY,
SECONDARY
};
// Takes a function literal, generates code for it. This function should only
// be called by compiler.cc.
static Handle<Code> MakeCode(FunctionLiteral* fun,
Handle<Script> script,
bool is_eval,
CompilationInfo* info);
Initial infrastructure for fast compilation of top-level code. The fast code generator is optimized for compilation time and code size. Currently it is only implemented on IA32. It is potentially triggered for any code in the global scope (including code eval'd in the global scope). It performs a syntactic check and chooses to compile in fast mode if the AST contains only supported constructs and matches some other constraints. Initially supported constructs are * ExpressionStatement, * ReturnStatement, * VariableProxy (variable references) to parameters and stack-allocated locals, * Assignment with lhs a parameter or stack-allocated local, and * Literal This allows compilation of literals at the top level and not much else. All intermediate values are allocated to temporaries and the stack is used for all temporaries. The extra memory traffic is a known issue. The code generated for 'true' is: 0 push ebp 1 mov ebp,esp 3 push esi 4 push edi 5 push 0xf5cca135 ;; object: 0xf5cca135 <undefined> 10 cmp esp,[0x8277efc] 16 jnc 27 (0xf5cbbb1b) 22 call 0xf5cac960 ;; code: STUB, StackCheck, minor: 0 27 push 0xf5cca161 ;; object: 0xf5cca161 <true> 32 mov eax,[esp] 35 mov [ebp+0xf4],eax 38 pop eax 39 mov eax,[ebp+0xf4] 42 mov esp,ebp ;; js return 44 pop ebp 45 ret 0x4 48 mov eax,0xf5cca135 ;; object: 0xf5cca135 <undefined> 53 mov esp,ebp ;; js return 55 pop ebp 56 ret 0x4 Review URL: http://codereview.chromium.org/273050 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3067 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-10-14 19:30:50 +00:00
// Printing of AST, etc. as requested by flags.
static void MakeCodePrologue(FunctionLiteral* fun);
// Allocate and install the code.
static Handle<Code> MakeCodeEpilogue(FunctionLiteral* fun,
MacroAssembler* masm,
Code::Flags flags,
Handle<Script> script);
#ifdef ENABLE_LOGGING_AND_PROFILING
static bool ShouldGenerateLog(Expression* type);
#endif
static void SetFunctionInfo(Handle<JSFunction> fun,
FunctionLiteral* lit,
bool is_toplevel,
Handle<Script> script);
static void RecordPositions(MacroAssembler* masm, int pos);
// Accessors
MacroAssembler* masm() { return masm_; }
VirtualFrame* frame() const { return frame_; }
Handle<Script> script() { return script_; }
bool has_valid_frame() const { return frame_ != NULL; }
// Set the virtual frame to be new_frame, with non-frame register
// reference counts given by non_frame_registers. The non-frame
// register reference counts of the old frame are returned in
// non_frame_registers.
void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
void DeleteFrame();
RegisterAllocator* allocator() const { return allocator_; }
CodeGenState* state() { return state_; }
void set_state(CodeGenState* state) { state_ = state; }
void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
static const int kUnknownIntValue = -1;
private:
// Construction/Destruction
CodeGenerator(MacroAssembler* masm, Handle<Script> script, bool is_eval);
// Accessors
Scope* scope() const { return scope_; }
// Generating deferred code.
void ProcessDeferred();
bool is_eval() { return is_eval_; }
// State
bool has_cc() const { return cc_reg_ != al; }
JumpTarget* true_target() const { return state_->true_target(); }
JumpTarget* false_target() const { return state_->false_target(); }
// We don't track loop nesting level on ARM yet.
int loop_nesting() const { return 0; }
// Node visitors.
void VisitStatements(ZoneList<Statement*>* statements);
#define DEF_VISIT(type) \
void Visit##type(type* node);
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Visit a statement and then spill the virtual frame if control flow can
// reach the end of the statement (ie, it does not exit via break,
// continue, return, or throw). This function is used temporarily while
// the code generator is being transformed.
inline void VisitAndSpill(Statement* statement);
// Visit a list of statements and then spill the virtual frame if control
// flow can reach the end of the list.
inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
// Main code generation function
void Generate(FunctionLiteral* fun, Mode mode, CompilationInfo* info);
// The following are used by class Reference.
void LoadReference(Reference* ref);
void UnloadReference(Reference* ref);
static MemOperand ContextOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
MemOperand SlotOperand(Slot* slot, Register tmp);
MemOperand ContextSlotOperandCheckExtensions(Slot* slot,
Register tmp,
Register tmp2,
JumpTarget* slow);
// Expressions
static MemOperand GlobalObject() {
return ContextOperand(cp, Context::GLOBAL_INDEX);
}
void LoadCondition(Expression* x,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_cc);
void Load(Expression* expr);
void LoadGlobal();
void LoadGlobalReceiver(Register scratch);
// Generate code to push the value of an expression on top of the frame
// and then spill the frame fully to memory. This function is used
// temporarily while the code generator is being transformed.
inline void LoadAndSpill(Expression* expression);
// Call LoadCondition and then spill the virtual frame unless control flow
// cannot reach the end of the expression (ie, by emitting only
// unconditional jumps to the control targets).
inline void LoadConditionAndSpill(Expression* expression,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_control);
// Read a value from a slot and leave it on top of the expression stack.
void LoadFromSlot(Slot* slot, TypeofState typeof_state);
// Store the value on top of the stack to a slot.
void StoreToSlot(Slot* slot, InitState init_state);
// Load a keyed property, leaving it in r0. The receiver and key are
// passed on the stack, and remain there.
void EmitKeyedLoad(bool is_global);
void LoadFromGlobalSlotCheckExtensions(Slot* slot,
TypeofState typeof_state,
Register tmp,
Register tmp2,
JumpTarget* slow);
// Special code for typeof expressions: Unfortunately, we must
// be careful when loading the expression in 'typeof'
// expressions. We are not allowed to throw reference errors for
// non-existing properties of the global object, so we must make it
// look like an explicit property access, instead of an access
// through the context chain.
void LoadTypeofExpression(Expression* x);
void ToBoolean(JumpTarget* true_target, JumpTarget* false_target);
void GenericBinaryOperation(Token::Value op,
OverwriteMode overwrite_mode,
int known_rhs = kUnknownIntValue);
void Comparison(Condition cc,
Expression* left,
Expression* right,
bool strict = false);
void SmiOperation(Token::Value op,
Handle<Object> value,
bool reversed,
OverwriteMode mode);
void CallWithArguments(ZoneList<Expression*>* arguments,
CallFunctionFlags flags,
int position);
// Control flow
void Branch(bool if_true, JumpTarget* target);
void CheckStack();
struct InlineRuntimeLUT {
void (CodeGenerator::*method)(ZoneList<Expression*>*);
const char* name;
};
static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
bool CheckForInlineRuntimeCall(CallRuntime* node);
static bool PatchInlineRuntimeEntry(Handle<String> name,
const InlineRuntimeLUT& new_entry,
InlineRuntimeLUT* old_entry);
static Handle<Code> ComputeLazyCompile(int argc);
void ProcessDeclarations(ZoneList<Declaration*>* declarations);
static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
// Declare global variables and functions in the given array of
// name/value pairs.
void DeclareGlobals(Handle<FixedArray> pairs);
// Instantiate the function boilerplate.
void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
// Support for type checks.
void GenerateIsSmi(ZoneList<Expression*>* args);
void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
void GenerateIsArray(ZoneList<Expression*>* args);
void GenerateIsObject(ZoneList<Expression*>* args);
void GenerateIsFunction(ZoneList<Expression*>* args);
void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
// Support for construct call checks.
void GenerateIsConstructCall(ZoneList<Expression*>* args);
// Support for arguments.length and arguments[?].
void GenerateArgumentsLength(ZoneList<Expression*>* args);
void GenerateArgumentsAccess(ZoneList<Expression*>* args);
// Support for accessing the class and value fields of an object.
void GenerateClassOf(ZoneList<Expression*>* args);
void GenerateValueOf(ZoneList<Expression*>* args);
void GenerateSetValueOf(ZoneList<Expression*>* args);
// Fast support for charCodeAt(n).
void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
// Fast support for object equality testing.
void GenerateObjectEquals(ZoneList<Expression*>* args);
void GenerateLog(ZoneList<Expression*>* args);
// Fast support for Math.random().
void GenerateRandomPositiveSmi(ZoneList<Expression*>* args);
// Fast support for StringAdd.
void GenerateStringAdd(ZoneList<Expression*>* args);
// Fast support for SubString.
void GenerateSubString(ZoneList<Expression*>* args);
// Fast support for StringCompare.
void GenerateStringCompare(ZoneList<Expression*>* args);
// Support for direct calls from JavaScript to native RegExp code.
void GenerateRegExpExec(ZoneList<Expression*>* args);
// Simple condition analysis.
enum ConditionAnalysis {
ALWAYS_TRUE,
ALWAYS_FALSE,
DONT_KNOW
};
ConditionAnalysis AnalyzeCondition(Expression* cond);
// Methods used to indicate which source code is generated for. Source
// positions are collected by the assembler and emitted with the relocation
// information.
void CodeForFunctionPosition(FunctionLiteral* fun);
void CodeForReturnPosition(FunctionLiteral* fun);
void CodeForStatementPosition(Statement* node);
void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
void CodeForSourcePosition(int pos);
#ifdef DEBUG
// True if the registers are valid for entry to a block.
bool HasValidEntryRegisters();
#endif
bool is_eval_; // Tells whether code is generated for eval.
Handle<Script> script_;
List<DeferredCode*> deferred_;
// Assembler
MacroAssembler* masm_; // to generate code
// Code generation state
Scope* scope_;
VirtualFrame* frame_;
RegisterAllocator* allocator_;
Condition cc_reg_;
CodeGenState* state_;
// Jump targets
BreakTarget function_return_;
// True if the function return is shadowed (ie, jumping to the target
// function_return_ does not jump to the true function return, but rather
// to some unlinking code).
bool function_return_is_shadowed_;
static InlineRuntimeLUT kInlineRuntimeLUT[];
friend class VirtualFrame;
friend class JumpTarget;
friend class Reference;
friend class FastCodeGenerator;
friend class FullCodeGenerator;
friend class FullCodeGenSyntaxChecker;
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};
class GenericBinaryOpStub : public CodeStub {
public:
GenericBinaryOpStub(Token::Value op,
OverwriteMode mode,
int constant_rhs = CodeGenerator::kUnknownIntValue)
: op_(op),
mode_(mode),
constant_rhs_(constant_rhs),
specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)),
name_(NULL) { }
private:
Token::Value op_;
OverwriteMode mode_;
int constant_rhs_;
bool specialized_on_rhs_;
char* name_;
static const int kMaxKnownRhs = 0x40000000;
// Minor key encoding in 16 bits.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 6> {};
class KnownIntBits: public BitField<int, 8, 8> {};
Major MajorKey() { return GenericBinaryOp; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return OpBits::encode(op_)
| ModeBits::encode(mode_)
| KnownIntBits::encode(MinorKeyForKnownInt());
}
void Generate(MacroAssembler* masm);
void HandleNonSmiBitwiseOp(MacroAssembler* masm);
static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) {
if (constant_rhs == CodeGenerator::kUnknownIntValue) return false;
if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3;
if (op == Token::MOD) {
if (constant_rhs <= 1) return false;
if (constant_rhs <= 10) return true;
if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true;
return false;
}
return false;
}
int MinorKeyForKnownInt() {
if (!specialized_on_rhs_) return 0;
if (constant_rhs_ <= 10) return constant_rhs_ + 1;
ASSERT(IsPowerOf2(constant_rhs_));
int key = 12;
int d = constant_rhs_;
while ((d & 1) == 0) {
key++;
d >>= 1;
}
return key;
}
const char* GetName();
#ifdef DEBUG
void Print() {
if (!specialized_on_rhs_) {
PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_));
} else {
PrintF("GenericBinaryOpStub (%s by %d)\n",
Token::String(op_),
constant_rhs_);
}
}
#endif
};
class StringCompareStub: public CodeStub {
public:
StringCompareStub() { }
// Compare two flat ASCII strings and returns result in r0.
// Does not use the stack.
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4);
private:
Major MajorKey() { return StringCompare; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
} } // namespace v8::internal
#endif // V8_ARM_CODEGEN_ARM_H_