v8/src/types.h

361 lines
13 KiB
C
Raw Normal View History

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TYPES_H_
#define V8_TYPES_H_
#include "v8.h"
#include "objects.h"
namespace v8 {
namespace internal {
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// The following equations and inequations hold:
//
// None <= T
// T <= Any
//
// Oddball = Boolean \/ Null \/ Undefined
// Number = Signed32 \/ Unsigned32 \/ Double
// Smi <= Signed32
// Name = String \/ Symbol
// UniqueName = InternalizedString \/ Symbol
// InternalizedString < String
//
// Allocated = Receiver \/ Number \/ Name
// Detectable = Allocated - Undetectable
// Undetectable < Object
// Receiver = Object \/ Proxy
// Array < Object
// Function < Object
// RegExp < Object
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
//
// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
//
// There are two main functions for testing types:
//
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the former is to be used to select representations (e.g., via
// T->Is(Integer31())), and the to check whether a specific case needs handling
// (e.g., via T->Maybe(Number())).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
//
// Consequently, do not use pointer equality for type tests, always use Is!
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets via smis. Class is a heap pointer to the respective map. Only
// Constant's, or unions containing Class'es or Constant's, require allocation.
// Note that the bitset representation is closed under both Union and Intersect.
//
// The type representation is heap-allocated, so cannot (currently) be used in
// a concurrent compilation context.
#define PRIMITIVE_TYPE_LIST(V) \
V(None, 0) \
V(Null, 1 << 0) \
V(Undefined, 1 << 1) \
V(Boolean, 1 << 2) \
V(Smi, 1 << 3) \
V(OtherSigned32, 1 << 4) \
V(Unsigned32, 1 << 5) \
V(Double, 1 << 6) \
V(Symbol, 1 << 7) \
V(InternalizedString, 1 << 8) \
V(OtherString, 1 << 9) \
V(Undetectable, 1 << 10) \
V(Array, 1 << 11) \
V(Function, 1 << 12) \
V(RegExp, 1 << 13) \
V(OtherObject, 1 << 14) \
V(Proxy, 1 << 15) \
V(Internal, 1 << 16)
#define COMPOSED_TYPE_LIST(V) \
V(Oddball, kBoolean | kNull | kUndefined) \
V(Signed32, kSmi | kOtherSigned32) \
V(Number, kSigned32 | kUnsigned32 | kDouble) \
V(String, kInternalizedString | kOtherString) \
V(UniqueName, kSymbol | kInternalizedString) \
V(Name, kSymbol | kString) \
V(NumberOrString, kNumber | kString) \
V(Object, kUndetectable | kArray | kFunction | \
kRegExp | kOtherObject) \
V(Receiver, kObject | kProxy) \
V(Allocated, kDouble | kName | kReceiver) \
V(Any, kOddball | kNumber | kAllocated | kInternal) \
V(NonNumber, kAny - kNumber) \
V(Detectable, kAllocated - kUndetectable)
#define TYPE_LIST(V) \
PRIMITIVE_TYPE_LIST(V) \
COMPOSED_TYPE_LIST(V)
class Type : public Object {
public:
#define DEFINE_TYPE_CONSTRUCTOR(type, value) \
static Type* type() { return from_bitset(k##type); }
TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
#undef DEFINE_TYPE_CONSTRUCTOR
static Type* Class(Handle<i::Map> map) { return from_handle(map); }
static Type* Constant(Handle<i::HeapObject> value) {
return Constant(value, value->GetIsolate());
}
static Type* Constant(Handle<i::Object> value, Isolate* isolate) {
return from_handle(isolate->factory()->NewBox(value));
}
static Type* Union(Handle<Type> type1, Handle<Type> type2);
static Type* Intersect(Handle<Type> type1, Handle<Type> type2);
static Type* Optional(Handle<Type> type); // type \/ Undefined
static Type* Of(Handle<i::Object> value) {
return from_bitset(LubBitset(*value));
}
static Type* CurrentOf(Handle<i::Object> value);
bool Is(Type* that) { return (this == that) ? true : SlowIs(that); }
bool Is(Handle<Type> that) { return this->Is(*that); }
bool Maybe(Type* that);
bool Maybe(Handle<Type> that) { return this->Maybe(*that); }
bool IsClass() { return is_class(); }
bool IsConstant() { return is_constant(); }
Handle<i::Map> AsClass() { return as_class(); }
Handle<i::Object> AsConstant() { return as_constant(); }
int NumClasses();
int NumConstants();
template<class T>
class Iterator {
public:
bool Done() const { return index_ < 0; }
Handle<T> Current();
void Advance();
private:
friend class Type;
Iterator() : index_(-1) {}
explicit Iterator(Handle<Type> type) : type_(type), index_(-1) {
Advance();
}
inline bool matches(Handle<Type> type);
inline Handle<Type> get_type();
Handle<Type> type_;
int index_;
};
Iterator<i::Map> Classes() {
if (this->is_bitset()) return Iterator<i::Map>();
return Iterator<i::Map>(this->handle());
}
Iterator<i::Object> Constants() {
if (this->is_bitset()) return Iterator<i::Object>();
return Iterator<i::Object>(this->handle());
}
static Type* cast(i::Object* object) {
Type* t = static_cast<Type*>(object);
ASSERT(t->is_bitset() || t->is_class() ||
t->is_constant() || t->is_union());
return t;
}
#ifdef OBJECT_PRINT
void TypePrint();
void TypePrint(FILE* out);
#endif
private:
// A union is a fixed array containing types. Invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
typedef FixedArray Unioned;
enum {
#define DECLARE_TYPE(type, value) k##type = (value),
TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
kUnusedEOL = 0
};
bool is_none() { return this == None(); }
bool is_bitset() { return this->IsSmi(); }
bool is_class() { return this->IsMap(); }
bool is_constant() { return this->IsBox(); }
bool is_union() { return this->IsFixedArray(); }
bool SlowIs(Type* that);
int as_bitset() { return Smi::cast(this)->value(); }
Handle<i::Map> as_class() { return Handle<i::Map>::cast(handle()); }
Handle<i::Object> as_constant() {
Handle<i::Box> box = Handle<i::Box>::cast(handle());
return i::handle(box->value(), box->GetIsolate());
}
Handle<Unioned> as_union() { return Handle<Unioned>::cast(handle()); }
Handle<Type> handle() { return handle_via_isolate_of(this); }
Handle<Type> handle_via_isolate_of(Type* type) {
ASSERT(type->IsHeapObject());
return i::handle(this, i::HeapObject::cast(type)->GetIsolate());
}
static Type* from_bitset(int bitset) {
return static_cast<Type*>(i::Object::cast(i::Smi::FromInt(bitset)));
}
static Type* from_handle(Handle<i::HeapObject> handle) {
return static_cast<Type*>(i::Object::cast(*handle));
}
static Handle<Type> union_get(Handle<Unioned> unioned, int i) {
Type* type = static_cast<Type*>(unioned->get(i));
ASSERT(!type->is_union());
return type->handle_via_isolate_of(from_handle(unioned));
}
int LubBitset(); // least upper bound that's a bitset
int GlbBitset(); // greatest lower bound that's a bitset
static int LubBitset(i::Object* value);
static int LubBitset(i::Map* map);
bool InUnion(Handle<Unioned> unioned, int current_size);
int ExtendUnion(Handle<Unioned> unioned, int current_size);
int ExtendIntersection(
Handle<Unioned> unioned, Handle<Type> type, int current_size);
static const char* GetComposedName(int type) {
switch (type) {
#define PRINT_COMPOSED_TYPE(type, value) \
case k##type: \
return # type;
COMPOSED_TYPE_LIST(PRINT_COMPOSED_TYPE)
#undef PRINT_COMPOSED_TYPE
}
return NULL;
}
static const char* GetPrimitiveName(int type) {
switch (type) {
#define PRINT_PRIMITIVE_TYPE(type, value) \
case k##type: \
return # type;
PRIMITIVE_TYPE_LIST(PRINT_PRIMITIVE_TYPE)
#undef PRINT_PRIMITIVE_TYPE
default:
UNREACHABLE();
return "InvalidType";
}
}
};
// A simple struct to represent a pair of lower/upper type bounds.
struct Bounds {
Handle<Type> lower;
Handle<Type> upper;
Bounds() {}
Bounds(Handle<Type> l, Handle<Type> u) : lower(l), upper(u) {
ASSERT(lower->Is(upper));
}
Bounds(Type* l, Type* u, Isolate* isl) : lower(l, isl), upper(u, isl) {
ASSERT(lower->Is(upper));
}
explicit Bounds(Handle<Type> t) : lower(t), upper(t) {
ASSERT(lower->Is(upper));
}
Bounds(Type* t, Isolate* isl) : lower(t, isl), upper(t, isl) {
ASSERT(lower->Is(upper));
}
// Unrestricted bounds.
static Bounds Unbounded(Isolate* isl) {
return Bounds(Type::None(), Type::Any(), isl);
}
// Meet: both b1 and b2 are known to hold.
static Bounds Both(Bounds b1, Bounds b2, Isolate* isl) {
Handle<Type> lower(Type::Union(b1.lower, b2.lower), isl);
Handle<Type> upper(Type::Intersect(b1.upper, b2.upper), isl);
// Lower bounds are considered approximate, correct as necessary.
lower = handle(Type::Intersect(lower, upper), isl);
return Bounds(lower, upper);
}
// Join: either b1 or b2 is known to hold.
static Bounds Either(Bounds b1, Bounds b2, Isolate* isl) {
return Bounds(
handle(Type::Intersect(b1.lower, b2.lower), isl),
handle(Type::Union(b1.upper, b2.upper), isl));
}
static Bounds NarrowLower(Bounds b, Handle<Type> t, Isolate* isl) {
// Lower bounds are considered approximate, correct as necessary.
t = handle(Type::Intersect(t, b.upper), isl);
return Bounds(handle(Type::Union(b.lower, t), isl), b.upper);
}
static Bounds NarrowUpper(Bounds b, Handle<Type> t, Isolate* isl) {
return Bounds(
handle(Type::Intersect(b.lower, t), isl),
handle(Type::Intersect(b.upper, t), isl));
}
};
} } // namespace v8::internal
#endif // V8_TYPES_H_