v8/src/platform-win32.cc

1912 lines
56 KiB
C++
Raw Normal View History

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for Win32.
#ifndef WIN32_LEAN_AND_MEAN
// WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
#define WIN32_LEAN_AND_MEAN
#endif
#ifndef NOMINMAX
#define NOMINMAX
#endif
#ifndef NOKERNEL
#define NOKERNEL
#endif
#ifndef NOUSER
#define NOUSER
#endif
#ifndef NOSERVICE
#define NOSERVICE
#endif
#ifndef NOSOUND
#define NOSOUND
#endif
#ifndef NOMCX
#define NOMCX
#endif
// Require Windows XP or higher (this is required for the RtlCaptureContext
// function to be present).
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x501
#endif
#include <windows.h>
#include <time.h> // For LocalOffset() implementation.
#include <mmsystem.h> // For timeGetTime().
#ifdef __MINGW32__
// Require Windows XP or higher when compiling with MinGW. This is for MinGW
// header files to expose getaddrinfo.
#undef _WIN32_WINNT
#define _WIN32_WINNT 0x501
#endif // __MINGW32__
#ifndef __MINGW32__
#include <dbghelp.h> // For SymLoadModule64 and al.
#endif // __MINGW32__
#include <limits.h> // For INT_MAX and al.
#include <tlhelp32.h> // For Module32First and al.
// These additional WIN32 includes have to be right here as the #undef's below
// makes it impossible to have them elsewhere.
#include <winsock2.h>
#include <ws2tcpip.h>
#include <process.h> // for _beginthreadex()
#include <stdlib.h>
#undef VOID
#undef DELETE
#undef IN
#undef THIS
#undef CONST
#undef NAN
#undef GetObject
#undef CreateMutex
#undef CreateSemaphore
#include "v8.h"
#include "platform.h"
// Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
// refer to The Open Group Base Specification for specification of the correct
// semantics for these functions.
// (http://www.opengroup.org/onlinepubs/000095399/)
#ifdef _MSC_VER
namespace v8 {
namespace internal {
// Test for finite value - usually defined in math.h
int isfinite(double x) {
return _finite(x);
}
} // namespace v8
} // namespace internal
// Test for a NaN (not a number) value - usually defined in math.h
int isnan(double x) {
return _isnan(x);
}
// Test for infinity - usually defined in math.h
int isinf(double x) {
return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
}
// Test if x is less than y and both nominal - usually defined in math.h
int isless(double x, double y) {
return isnan(x) || isnan(y) ? 0 : x < y;
}
// Test if x is greater than y and both nominal - usually defined in math.h
int isgreater(double x, double y) {
return isnan(x) || isnan(y) ? 0 : x > y;
}
// Classify floating point number - usually defined in math.h
int fpclassify(double x) {
// Use the MS-specific _fpclass() for classification.
int flags = _fpclass(x);
// Determine class. We cannot use a switch statement because
// the _FPCLASS_ constants are defined as flags.
if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
// All cases should be covered by the code above.
ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
return FP_NAN;
}
// Test sign - usually defined in math.h
int signbit(double x) {
// We need to take care of the special case of both positive
// and negative versions of zero.
if (x == 0)
return _fpclass(x) & _FPCLASS_NZ;
else
return x < 0;
}
// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
// defined in strings.h.
int strncasecmp(const char* s1, const char* s2, int n) {
return _strnicmp(s1, s2, n);
}
#endif // _MSC_VER
// Extra functions for MinGW. Most of these are the _s functions which are in
// the Microsoft Visual Studio C++ CRT.
#ifdef __MINGW32__
int localtime_s(tm* out_tm, const time_t* time) {
tm* posix_local_time_struct = localtime(time);
if (posix_local_time_struct == NULL) return 1;
*out_tm = *posix_local_time_struct;
return 0;
}
// Not sure this the correct interpretation of _mkgmtime
time_t _mkgmtime(tm* timeptr) {
return mktime(timeptr);
}
int fopen_s(FILE** pFile, const char* filename, const char* mode) {
*pFile = fopen(filename, mode);
return *pFile != NULL ? 0 : 1;
}
int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
const char* format, va_list argptr) {
return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
}
#define _TRUNCATE 0
int strncpy_s(char* strDest, size_t numberOfElements,
const char* strSource, size_t count) {
strncpy(strDest, strSource, count);
return 0;
}
#endif // __MINGW32__
// Generate a pseudo-random number in the range 0-2^31-1. Usually
// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
int random() {
return rand();
}
namespace v8 {
namespace internal {
double ceiling(double x) {
return ceil(x);
}
#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Defined in codegen-x64.cc.
ModuloFunction CreateModuloFunction();
double modulo(double x, double y) {
static ModuloFunction function = CreateModuloFunction();
return function(x, y);
}
#else // Win32
double modulo(double x, double y) {
// Workaround MS fmod bugs. ECMA-262 says:
// dividend is finite and divisor is an infinity => result equals dividend
// dividend is a zero and divisor is nonzero finite => result equals dividend
if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
!(x == 0 && (y != 0 && isfinite(y)))) {
x = fmod(x, y);
}
return x;
}
#endif // _WIN64
// ----------------------------------------------------------------------------
// The Time class represents time on win32. A timestamp is represented as
// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
// January 1, 1970.
class Time {
public:
// Constructors.
Time();
explicit Time(double jstime);
Time(int year, int mon, int day, int hour, int min, int sec);
// Convert timestamp to JavaScript representation.
double ToJSTime();
// Set timestamp to current time.
void SetToCurrentTime();
// Returns the local timezone offset in milliseconds east of UTC. This is
// the number of milliseconds you must add to UTC to get local time, i.e.
// LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
// routine also takes into account whether daylight saving is effect
// at the time.
int64_t LocalOffset();
// Returns the daylight savings time offset for the time in milliseconds.
int64_t DaylightSavingsOffset();
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
char* LocalTimezone();
private:
// Constants for time conversion.
static const int64_t kTimeEpoc = 116444736000000000LL;
static const int64_t kTimeScaler = 10000;
static const int64_t kMsPerMinute = 60000;
// Constants for timezone information.
static const int kTzNameSize = 128;
static const bool kShortTzNames = false;
// Timezone information. We need to have static buffers for the
// timezone names because we return pointers to these in
// LocalTimezone().
static bool tz_initialized_;
static TIME_ZONE_INFORMATION tzinfo_;
static char std_tz_name_[kTzNameSize];
static char dst_tz_name_[kTzNameSize];
// Initialize the timezone information (if not already done).
static void TzSet();
// Guess the name of the timezone from the bias.
static const char* GuessTimezoneNameFromBias(int bias);
// Return whether or not daylight savings time is in effect at this time.
bool InDST();
// Return the difference (in milliseconds) between this timestamp and
// another timestamp.
int64_t Diff(Time* other);
// Accessor for FILETIME representation.
FILETIME& ft() { return time_.ft_; }
// Accessor for integer representation.
int64_t& t() { return time_.t_; }
// Although win32 uses 64-bit integers for representing timestamps,
// these are packed into a FILETIME structure. The FILETIME structure
// is just a struct representing a 64-bit integer. The TimeStamp union
// allows access to both a FILETIME and an integer representation of
// the timestamp.
union TimeStamp {
FILETIME ft_;
int64_t t_;
};
TimeStamp time_;
};
// Static variables.
bool Time::tz_initialized_ = false;
TIME_ZONE_INFORMATION Time::tzinfo_;
char Time::std_tz_name_[kTzNameSize];
char Time::dst_tz_name_[kTzNameSize];
// Initialize timestamp to start of epoc.
Time::Time() {
t() = 0;
}
// Initialize timestamp from a JavaScript timestamp.
Time::Time(double jstime) {
t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
}
// Initialize timestamp from date/time components.
Time::Time(int year, int mon, int day, int hour, int min, int sec) {
SYSTEMTIME st;
st.wYear = year;
st.wMonth = mon;
st.wDay = day;
st.wHour = hour;
st.wMinute = min;
st.wSecond = sec;
st.wMilliseconds = 0;
SystemTimeToFileTime(&st, &ft());
}
// Convert timestamp to JavaScript timestamp.
double Time::ToJSTime() {
return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
}
// Guess the name of the timezone from the bias.
// The guess is very biased towards the northern hemisphere.
const char* Time::GuessTimezoneNameFromBias(int bias) {
static const int kHour = 60;
switch (-bias) {
case -9*kHour: return "Alaska";
case -8*kHour: return "Pacific";
case -7*kHour: return "Mountain";
case -6*kHour: return "Central";
case -5*kHour: return "Eastern";
case -4*kHour: return "Atlantic";
case 0*kHour: return "GMT";
case +1*kHour: return "Central Europe";
case +2*kHour: return "Eastern Europe";
case +3*kHour: return "Russia";
case +5*kHour + 30: return "India";
case +8*kHour: return "China";
case +9*kHour: return "Japan";
case +12*kHour: return "New Zealand";
default: return "Local";
}
}
// Initialize timezone information. The timezone information is obtained from
// windows. If we cannot get the timezone information we fall back to CET.
// Please notice that this code is not thread-safe.
void Time::TzSet() {
// Just return if timezone information has already been initialized.
if (tz_initialized_) return;
// Initialize POSIX time zone data.
_tzset();
// Obtain timezone information from operating system.
memset(&tzinfo_, 0, sizeof(tzinfo_));
if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
// If we cannot get timezone information we fall back to CET.
tzinfo_.Bias = -60;
tzinfo_.StandardDate.wMonth = 10;
tzinfo_.StandardDate.wDay = 5;
tzinfo_.StandardDate.wHour = 3;
tzinfo_.StandardBias = 0;
tzinfo_.DaylightDate.wMonth = 3;
tzinfo_.DaylightDate.wDay = 5;
tzinfo_.DaylightDate.wHour = 2;
tzinfo_.DaylightBias = -60;
}
// Make standard and DST timezone names.
OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
"%S",
tzinfo_.StandardName);
std_tz_name_[kTzNameSize - 1] = '\0';
OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
"%S",
tzinfo_.DaylightName);
dst_tz_name_[kTzNameSize - 1] = '\0';
// If OS returned empty string or resource id (like "@tzres.dll,-211")
// simply guess the name from the UTC bias of the timezone.
// To properly resolve the resource identifier requires a library load,
// which is not possible in a sandbox.
if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
"%s Standard Time",
GuessTimezoneNameFromBias(tzinfo_.Bias));
}
if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
"%s Daylight Time",
GuessTimezoneNameFromBias(tzinfo_.Bias));
}
// Timezone information initialized.
tz_initialized_ = true;
}
// Return the difference in milliseconds between this and another timestamp.
int64_t Time::Diff(Time* other) {
return (t() - other->t()) / kTimeScaler;
}
// Set timestamp to current time.
void Time::SetToCurrentTime() {
// The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
// Because we're fast, we like fast timers which have at least a
// 1ms resolution.
//
// timeGetTime() provides 1ms granularity when combined with
// timeBeginPeriod(). If the host application for v8 wants fast
// timers, it can use timeBeginPeriod to increase the resolution.
//
// Using timeGetTime() has a drawback because it is a 32bit value
// and hence rolls-over every ~49days.
//
// To use the clock, we use GetSystemTimeAsFileTime as our base;
// and then use timeGetTime to extrapolate current time from the
// start time. To deal with rollovers, we resync the clock
// any time when more than kMaxClockElapsedTime has passed or
// whenever timeGetTime creates a rollover.
static bool initialized = false;
static TimeStamp init_time;
static DWORD init_ticks;
static const int64_t kHundredNanosecondsPerSecond = 10000000;
static const int64_t kMaxClockElapsedTime =
60*kHundredNanosecondsPerSecond; // 1 minute
// If we are uninitialized, we need to resync the clock.
bool needs_resync = !initialized;
// Get the current time.
TimeStamp time_now;
GetSystemTimeAsFileTime(&time_now.ft_);
DWORD ticks_now = timeGetTime();
// Check if we need to resync due to clock rollover.
needs_resync |= ticks_now < init_ticks;
// Check if we need to resync due to elapsed time.
needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
// Resync the clock if necessary.
if (needs_resync) {
GetSystemTimeAsFileTime(&init_time.ft_);
init_ticks = ticks_now = timeGetTime();
initialized = true;
}
// Finally, compute the actual time. Why is this so hard.
DWORD elapsed = ticks_now - init_ticks;
this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
}
// Return the local timezone offset in milliseconds east of UTC. This
// takes into account whether daylight saving is in effect at the time.
// Only times in the 32-bit Unix range may be passed to this function.
// Also, adding the time-zone offset to the input must not overflow.
// The function EquivalentTime() in date.js guarantees this.
int64_t Time::LocalOffset() {
// Initialize timezone information, if needed.
TzSet();
Time rounded_to_second(*this);
rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
1000 * kTimeScaler;
// Convert to local time using POSIX localtime function.
// Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
// very slow. Other browsers use localtime().
// Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
// POSIX seconds past 1/1/1970 0:00:00.
double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
return 0;
}
// Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
time_t posix_time = static_cast<time_t>(unchecked_posix_time);
// Convert to local time, as struct with fields for day, hour, year, etc.
tm posix_local_time_struct;
if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
// Convert local time in struct to POSIX time as if it were a UTC time.
time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
Time localtime(1000.0 * local_posix_time);
return localtime.Diff(&rounded_to_second);
}
// Return whether or not daylight savings time is in effect at this time.
bool Time::InDST() {
// Initialize timezone information, if needed.
TzSet();
// Determine if DST is in effect at the specified time.
bool in_dst = false;
if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
// Get the local timezone offset for the timestamp in milliseconds.
int64_t offset = LocalOffset();
// Compute the offset for DST. The bias parameters in the timezone info
// are specified in minutes. These must be converted to milliseconds.
int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
// If the local time offset equals the timezone bias plus the daylight
// bias then DST is in effect.
in_dst = offset == dstofs;
}
return in_dst;
}
// Return the daylight savings time offset for this time.
int64_t Time::DaylightSavingsOffset() {
return InDST() ? 60 * kMsPerMinute : 0;
}
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
char* Time::LocalTimezone() {
// Return the standard or DST time zone name based on whether daylight
// saving is in effect at the given time.
return InDST() ? dst_tz_name_ : std_tz_name_;
}
void OS::Setup() {
// Seed the random number generator.
// Convert the current time to a 64-bit integer first, before converting it
// to an unsigned. Going directly can cause an overflow and the seed to be
// set to all ones. The seed will be identical for different instances that
// call this setup code within the same millisecond.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
srand(static_cast<unsigned int>(seed));
}
// Returns the accumulated user time for thread.
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
FILETIME dummy;
uint64_t usertime;
// Get the amount of time that the thread has executed in user mode.
if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
reinterpret_cast<FILETIME*>(&usertime))) return -1;
// Adjust the resolution to micro-seconds.
usertime /= 10;
// Convert to seconds and microseconds
*secs = static_cast<uint32_t>(usertime / 1000000);
*usecs = static_cast<uint32_t>(usertime % 1000000);
return 0;
}
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
double OS::TimeCurrentMillis() {
Time t;
t.SetToCurrentTime();
return t.ToJSTime();
}
// Returns the tickcounter based on timeGetTime.
int64_t OS::Ticks() {
return timeGetTime() * 1000; // Convert to microseconds.
}
// Returns a string identifying the current timezone taking into
// account daylight saving.
const char* OS::LocalTimezone(double time) {
return Time(time).LocalTimezone();
}
// Returns the local time offset in milliseconds east of UTC without
// taking daylight savings time into account.
double OS::LocalTimeOffset() {
// Use current time, rounded to the millisecond.
Time t(TimeCurrentMillis());
// Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
}
// Returns the daylight savings offset in milliseconds for the given
// time.
double OS::DaylightSavingsOffset(double time) {
int64_t offset = Time(time).DaylightSavingsOffset();
return static_cast<double>(offset);
}
// ----------------------------------------------------------------------------
// Win32 console output.
//
// If a Win32 application is linked as a console application it has a normal
// standard output and standard error. In this case normal printf works fine
// for output. However, if the application is linked as a GUI application,
// the process doesn't have a console, and therefore (debugging) output is lost.
// This is the case if we are embedded in a windows program (like a browser).
// In order to be able to get debug output in this case the the debugging
// facility using OutputDebugString. This output goes to the active debugger
// for the process (if any). Else the output can be monitored using DBMON.EXE.
enum OutputMode {
UNKNOWN, // Output method has not yet been determined.
CONSOLE, // Output is written to stdout.
ODS // Output is written to debug facility.
};
static OutputMode output_mode = UNKNOWN; // Current output mode.
// Determine if the process has a console for output.
static bool HasConsole() {
// Only check the first time. Eventual race conditions are not a problem,
// because all threads will eventually determine the same mode.
if (output_mode == UNKNOWN) {
// We cannot just check that the standard output is attached to a console
// because this would fail if output is redirected to a file. Therefore we
// say that a process does not have an output console if either the
// standard output handle is invalid or its file type is unknown.
if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
output_mode = CONSOLE;
else
output_mode = ODS;
}
return output_mode == CONSOLE;
}
static void VPrintHelper(FILE* stream, const char* format, va_list args) {
if (HasConsole()) {
vfprintf(stream, format, args);
} else {
// It is important to use safe print here in order to avoid
// overflowing the buffer. We might truncate the output, but this
// does not crash.
EmbeddedVector<char, 4096> buffer;
OS::VSNPrintF(buffer, format, args);
OutputDebugStringA(buffer.start());
}
}
FILE* OS::FOpen(const char* path, const char* mode) {
FILE* result;
if (fopen_s(&result, path, mode) == 0) {
return result;
} else {
return NULL;
}
}
// Open log file in binary mode to avoid /n -> /r/n conversion.
const char* OS::LogFileOpenMode = "wb";
// Print (debug) message to console.
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VPrint(format, args);
va_end(args);
}
void OS::VPrint(const char* format, va_list args) {
VPrintHelper(stdout, format, args);
}
// Print error message to console.
void OS::PrintError(const char* format, ...) {
va_list args;
va_start(args, format);
VPrintError(format, args);
va_end(args);
}
void OS::VPrintError(const char* format, va_list args) {
VPrintHelper(stderr, format, args);
}
int OS::SNPrintF(Vector<char> str, const char* format, ...) {
va_list args;
va_start(args, format);
int result = VSNPrintF(str, format, args);
va_end(args);
return result;
}
int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
// Make sure to zero-terminate the string if the output was
// truncated or if there was an error.
if (n < 0 || n >= str.length()) {
str[str.length() - 1] = '\0';
return -1;
} else {
return n;
}
}
char* OS::StrChr(char* str, int c) {
return const_cast<char*>(strchr(str, c));
}
void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
int result = strncpy_s(dest.start(), dest.length(), src, n);
USE(result);
ASSERT(result == 0);
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, ie, not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* pointer) {
if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
return true;
// Ask the Windows API
if (IsBadWritePtr(pointer, 1))
return true;
return false;
}
// Get the system's page size used by VirtualAlloc() or the next power
// of two. The reason for always returning a power of two is that the
// rounding up in OS::Allocate expects that.
static size_t GetPageSize() {
static size_t page_size = 0;
if (page_size == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
page_size = RoundUpToPowerOf2(info.dwPageSize);
}
return page_size;
}
// The allocation alignment is the guaranteed alignment for
// VirtualAlloc'ed blocks of memory.
size_t OS::AllocateAlignment() {
static size_t allocate_alignment = 0;
if (allocate_alignment == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
allocate_alignment = info.dwAllocationGranularity;
}
return allocate_alignment;
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
// VirtualAlloc rounds allocated size to page size automatically.
size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
// Windows XP SP2 allows Data Excution Prevention (DEP).
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
if (mbase == NULL) {
LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
return NULL;
}
ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
return mbase;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): VirtualFree has a return value which is ignored here.
VirtualFree(address, 0, MEM_RELEASE);
USE(size);
}
#ifdef ENABLE_HEAP_PROTECTION
void OS::Protect(void* address, size_t size) {
// TODO(1240712): VirtualProtect has a return value which is ignored here.
DWORD old_protect;
VirtualProtect(address, size, PAGE_READONLY, &old_protect);
}
void OS::Unprotect(void* address, size_t size, bool is_executable) {
// TODO(1240712): VirtualProtect has a return value which is ignored here.
DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
DWORD old_protect;
VirtualProtect(address, size, new_protect, &old_protect);
}
#endif
void OS::Sleep(int milliseconds) {
::Sleep(milliseconds);
}
void OS::Abort() {
if (!IsDebuggerPresent()) {
#ifdef _MSC_VER
// Make the MSVCRT do a silent abort.
_set_abort_behavior(0, _WRITE_ABORT_MSG);
_set_abort_behavior(0, _CALL_REPORTFAULT);
#endif // _MSC_VER
abort();
} else {
DebugBreak();
}
}
void OS::DebugBreak() {
#ifdef _MSC_VER
__debugbreak();
#else
::DebugBreak();
#endif
}
class Win32MemoryMappedFile : public OS::MemoryMappedFile {
public:
Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
: file_(file), file_mapping_(file_mapping), memory_(memory) { }
virtual ~Win32MemoryMappedFile();
virtual void* memory() { return memory_; }
private:
HANDLE file_;
HANDLE file_mapping_;
void* memory_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
// Open a physical file
HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
if (file == NULL) return NULL;
// Create a file mapping for the physical file
HANDLE file_mapping = CreateFileMapping(file, NULL,
PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
if (file_mapping == NULL) return NULL;
// Map a view of the file into memory
void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
if (memory) memmove(memory, initial, size);
return new Win32MemoryMappedFile(file, file_mapping, memory);
}
Win32MemoryMappedFile::~Win32MemoryMappedFile() {
if (memory_ != NULL)
UnmapViewOfFile(memory_);
CloseHandle(file_mapping_);
CloseHandle(file_);
}
// The following code loads functions defined in DbhHelp.h and TlHelp32.h
// dynamically. This is to avoid being depending on dbghelp.dll and
// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
// kernel32.dll at some point so loading functions defines in TlHelp32.h
// dynamically might not be necessary any more - for some versions of Windows?).
// Function pointers to functions dynamically loaded from dbghelp.dll.
#define DBGHELP_FUNCTION_LIST(V) \
V(SymInitialize) \
V(SymGetOptions) \
V(SymSetOptions) \
V(SymGetSearchPath) \
V(SymLoadModule64) \
V(StackWalk64) \
V(SymGetSymFromAddr64) \
V(SymGetLineFromAddr64) \
V(SymFunctionTableAccess64) \
V(SymGetModuleBase64)
// Function pointers to functions dynamically loaded from dbghelp.dll.
#define TLHELP32_FUNCTION_LIST(V) \
V(CreateToolhelp32Snapshot) \
V(Module32FirstW) \
V(Module32NextW)
// Define the decoration to use for the type and variable name used for
// dynamically loaded DLL function..
#define DLL_FUNC_TYPE(name) _##name##_
#define DLL_FUNC_VAR(name) _##name
// Define the type for each dynamically loaded DLL function. The function
// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
// from the Windows include files are redefined here to have the function
// definitions to be as close to the ones in the original .h files as possible.
#ifndef IN
#define IN
#endif
#ifndef VOID
#define VOID void
#endif
// DbgHelp isn't supported on MinGW yet
#ifndef __MINGW32__
// DbgHelp.h functions.
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
IN PSTR UserSearchPath,
IN BOOL fInvadeProcess);
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
IN HANDLE hProcess,
OUT PSTR SearchPath,
IN DWORD SearchPathLength);
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
IN HANDLE hProcess,
IN HANDLE hFile,
IN PSTR ImageName,
IN PSTR ModuleName,
IN DWORD64 BaseOfDll,
IN DWORD SizeOfDll);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
DWORD MachineType,
HANDLE hProcess,
HANDLE hThread,
LPSTACKFRAME64 StackFrame,
PVOID ContextRecord,
PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
IN HANDLE hProcess,
IN DWORD64 qwAddr,
OUT PDWORD64 pdwDisplacement,
OUT PIMAGEHLP_SYMBOL64 Symbol);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
IN HANDLE hProcess,
IN DWORD64 qwAddr,
OUT PDWORD pdwDisplacement,
OUT PIMAGEHLP_LINE64 Line64);
// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
HANDLE hProcess,
DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
HANDLE hProcess,
DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
// TlHelp32.h functions.
typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
DWORD dwFlags,
DWORD th32ProcessID);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
LPMODULEENTRY32W lpme);
typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
LPMODULEENTRY32W lpme);
#undef IN
#undef VOID
// Declare a variable for each dynamically loaded DLL function.
#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
#undef DEF_DLL_FUNCTION
// Load the functions. This function has a lot of "ugly" macros in order to
// keep down code duplication.
static bool LoadDbgHelpAndTlHelp32() {
static bool dbghelp_loaded = false;
if (dbghelp_loaded) return true;
HMODULE module;
// Load functions from the dbghelp.dll module.
module = LoadLibrary(TEXT("dbghelp.dll"));
if (module == NULL) {
return false;
}
#define LOAD_DLL_FUNC(name) \
DLL_FUNC_VAR(name) = \
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
#undef LOAD_DLL_FUNC
// Load functions from the kernel32.dll module (the TlHelp32.h function used
// to be in tlhelp32.dll but are now moved to kernel32.dll).
module = LoadLibrary(TEXT("kernel32.dll"));
if (module == NULL) {
return false;
}
#define LOAD_DLL_FUNC(name) \
DLL_FUNC_VAR(name) = \
reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
#undef LOAD_DLL_FUNC
// Check that all functions where loaded.
bool result =
#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
#undef DLL_FUNC_LOADED
true;
dbghelp_loaded = result;
return result;
// NOTE: The modules are never unloaded and will stay around until the
// application is closed.
}
// Load the symbols for generating stack traces.
static bool LoadSymbols(HANDLE process_handle) {
static bool symbols_loaded = false;
if (symbols_loaded) return true;
BOOL ok;
// Initialize the symbol engine.
ok = _SymInitialize(process_handle, // hProcess
NULL, // UserSearchPath
FALSE); // fInvadeProcess
if (!ok) return false;
DWORD options = _SymGetOptions();
options |= SYMOPT_LOAD_LINES;
options |= SYMOPT_FAIL_CRITICAL_ERRORS;
options = _SymSetOptions(options);
char buf[OS::kStackWalkMaxNameLen] = {0};
ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
if (!ok) {
int err = GetLastError();
PrintF("%d\n", err);
return false;
}
HANDLE snapshot = _CreateToolhelp32Snapshot(
TH32CS_SNAPMODULE, // dwFlags
GetCurrentProcessId()); // th32ProcessId
if (snapshot == INVALID_HANDLE_VALUE) return false;
MODULEENTRY32W module_entry;
module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
BOOL cont = _Module32FirstW(snapshot, &module_entry);
while (cont) {
DWORD64 base;
// NOTE the SymLoadModule64 function has the peculiarity of accepting a
// both unicode and ASCII strings even though the parameter is PSTR.
base = _SymLoadModule64(
process_handle, // hProcess
0, // hFile
reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
module_entry.modBaseSize); // SizeOfDll
if (base == 0) {
int err = GetLastError();
if (err != ERROR_MOD_NOT_FOUND &&
err != ERROR_INVALID_HANDLE) return false;
}
LOG(SharedLibraryEvent(
module_entry.szExePath,
reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
module_entry.modBaseSize)));
cont = _Module32NextW(snapshot, &module_entry);
}
CloseHandle(snapshot);
symbols_loaded = true;
return true;
}
void OS::LogSharedLibraryAddresses() {
// SharedLibraryEvents are logged when loading symbol information.
// Only the shared libraries loaded at the time of the call to
// LogSharedLibraryAddresses are logged. DLLs loaded after
// initialization are not accounted for.
if (!LoadDbgHelpAndTlHelp32()) return;
HANDLE process_handle = GetCurrentProcess();
LoadSymbols(process_handle);
}
// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
// Switch off warning 4748 (/GS can not protect parameters and local variables
// from local buffer overrun because optimizations are disabled in function) as
// it is triggered by the use of inline assembler.
#pragma warning(push)
#pragma warning(disable : 4748)
int OS::StackWalk(Vector<OS::StackFrame> frames) {
BOOL ok;
// Load the required functions from DLL's.
if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
// Get the process and thread handles.
HANDLE process_handle = GetCurrentProcess();
HANDLE thread_handle = GetCurrentThread();
// Read the symbols.
if (!LoadSymbols(process_handle)) return kStackWalkError;
// Capture current context.
CONTEXT context;
RtlCaptureContext(&context);
// Initialize the stack walking
STACKFRAME64 stack_frame;
memset(&stack_frame, 0, sizeof(stack_frame));
#ifdef _WIN64
stack_frame.AddrPC.Offset = context.Rip;
stack_frame.AddrFrame.Offset = context.Rbp;
stack_frame.AddrStack.Offset = context.Rsp;
#else
stack_frame.AddrPC.Offset = context.Eip;
stack_frame.AddrFrame.Offset = context.Ebp;
stack_frame.AddrStack.Offset = context.Esp;
#endif
stack_frame.AddrPC.Mode = AddrModeFlat;
stack_frame.AddrFrame.Mode = AddrModeFlat;
stack_frame.AddrStack.Mode = AddrModeFlat;
int frames_count = 0;
// Collect stack frames.
int frames_size = frames.length();
while (frames_count < frames_size) {
ok = _StackWalk64(
IMAGE_FILE_MACHINE_I386, // MachineType
process_handle, // hProcess
thread_handle, // hThread
&stack_frame, // StackFrame
&context, // ContextRecord
NULL, // ReadMemoryRoutine
_SymFunctionTableAccess64, // FunctionTableAccessRoutine
_SymGetModuleBase64, // GetModuleBaseRoutine
NULL); // TranslateAddress
if (!ok) break;
// Store the address.
ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
frames[frames_count].address =
reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
// Try to locate a symbol for this frame.
DWORD64 symbol_displacement;
SmartPointer<IMAGEHLP_SYMBOL64> symbol(
NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
if (symbol.is_empty()) return kStackWalkError; // Out of memory.
memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
(*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
(*symbol)->MaxNameLength = kStackWalkMaxNameLen;
ok = _SymGetSymFromAddr64(process_handle, // hProcess
stack_frame.AddrPC.Offset, // Address
&symbol_displacement, // Displacement
*symbol); // Symbol
if (ok) {
// Try to locate more source information for the symbol.
IMAGEHLP_LINE64 Line;
memset(&Line, 0, sizeof(Line));
Line.SizeOfStruct = sizeof(Line);
DWORD line_displacement;
ok = _SymGetLineFromAddr64(
process_handle, // hProcess
stack_frame.AddrPC.Offset, // dwAddr
&line_displacement, // pdwDisplacement
&Line); // Line
// Format a text representation of the frame based on the information
// available.
if (ok) {
SNPrintF(MutableCStrVector(frames[frames_count].text,
kStackWalkMaxTextLen),
"%s %s:%d:%d",
(*symbol)->Name, Line.FileName, Line.LineNumber,
line_displacement);
} else {
SNPrintF(MutableCStrVector(frames[frames_count].text,
kStackWalkMaxTextLen),
"%s",
(*symbol)->Name);
}
// Make sure line termination is in place.
frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
} else {
// No text representation of this frame
frames[frames_count].text[0] = '\0';
// Continue if we are just missing a module (for non C/C++ frames a
// module will never be found).
int err = GetLastError();
if (err != ERROR_MOD_NOT_FOUND) {
break;
}
}
frames_count++;
}
// Return the number of frames filled in.
return frames_count;
}
// Restore warnings to previous settings.
#pragma warning(pop)
#else // __MINGW32__
void OS::LogSharedLibraryAddresses() { }
int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
#endif // __MINGW32__
uint64_t OS::CpuFeaturesImpliedByPlatform() {
return 0; // Windows runs on anything.
}
double OS::nan_value() {
#ifdef _MSC_VER
// Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
// in mask set, so value equals mask.
static const __int64 nanval = kQuietNaNMask;
return *reinterpret_cast<const double*>(&nanval);
#else // _MSC_VER
return NAN;
#endif // _MSC_VER
}
int OS::ActivationFrameAlignment() {
#ifdef _WIN64
return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
#else
return 8; // Floating-point math runs faster with 8-byte alignment.
#endif
}
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
MemoryBarrier();
*ptr = value;
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
VirtualMemory::VirtualMemory(size_t size) {
address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
size_ = size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
}
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
return false;
}
UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
return true;
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
ASSERT(IsReserved());
return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
}
// ----------------------------------------------------------------------------
// Win32 thread support.
// Definition of invalid thread handle and id.
static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
static const DWORD kNoThreadId = 0;
class ThreadHandle::PlatformData : public Malloced {
public:
explicit PlatformData(ThreadHandle::Kind kind) {
Initialize(kind);
}
void Initialize(ThreadHandle::Kind kind) {
switch (kind) {
case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
}
}
DWORD tid_; // Win32 thread identifier.
};
// Entry point for threads. The supplied argument is a pointer to the thread
// object. The entry function dispatches to the run method in the thread
// object. It is important that this function has __stdcall calling
// convention.
static unsigned int __stdcall ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the last parameter to _beginthreadex() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
thread->thread_handle_data()->tid_ = GetCurrentThreadId();
thread->Run();
return 0;
}
// Initialize thread handle to invalid handle.
ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
data_ = new PlatformData(kind);
}
ThreadHandle::~ThreadHandle() {
delete data_;
}
// The thread is running if it has the same id as the current thread.
bool ThreadHandle::IsSelf() const {
return GetCurrentThreadId() == data_->tid_;
}
// Test for invalid thread handle.
bool ThreadHandle::IsValid() const {
return data_->tid_ != kNoThreadId;
}
void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
data_->Initialize(kind);
}
class Thread::PlatformData : public Malloced {
public:
explicit PlatformData(HANDLE thread) : thread_(thread) {}
HANDLE thread_;
};
// Initialize a Win32 thread object. The thread has an invalid thread
// handle until it is started.
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
data_ = new PlatformData(kNoThread);
}
// Close our own handle for the thread.
Thread::~Thread() {
if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
delete data_;
}
// Create a new thread. It is important to use _beginthreadex() instead of
// the Win32 function CreateThread(), because the CreateThread() does not
// initialize thread specific structures in the C runtime library.
void Thread::Start() {
data_->thread_ = reinterpret_cast<HANDLE>(
_beginthreadex(NULL,
0,
ThreadEntry,
this,
0,
reinterpret_cast<unsigned int*>(
&thread_handle_data()->tid_)));
ASSERT(IsValid());
}
// Wait for thread to terminate.
void Thread::Join() {
WaitForSingleObject(data_->thread_, INFINITE);
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
DWORD result = TlsAlloc();
ASSERT(result != TLS_OUT_OF_INDEXES);
return static_cast<LocalStorageKey>(result);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
BOOL result = TlsFree(static_cast<DWORD>(key));
USE(result);
ASSERT(result);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
return TlsGetValue(static_cast<DWORD>(key));
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
USE(result);
ASSERT(result);
}
void Thread::YieldCPU() {
Sleep(0);
}
// ----------------------------------------------------------------------------
// Win32 mutex support.
//
// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
// faster than Win32 Mutex objects because they are implemented using user mode
// atomic instructions. Therefore we only do ring transitions if there is lock
// contention.
class Win32Mutex : public Mutex {
public:
Win32Mutex() { InitializeCriticalSection(&cs_); }
~Win32Mutex() { DeleteCriticalSection(&cs_); }
int Lock() {
EnterCriticalSection(&cs_);
return 0;
}
int Unlock() {
LeaveCriticalSection(&cs_);
return 0;
}
private:
CRITICAL_SECTION cs_; // Critical section used for mutex
};
Mutex* OS::CreateMutex() {
return new Win32Mutex();
}
// ----------------------------------------------------------------------------
// Win32 semaphore support.
//
// On Win32 semaphores are implemented using Win32 Semaphore objects. The
// semaphores are anonymous. Also, the semaphores are initialized to have
// no upper limit on count.
class Win32Semaphore : public Semaphore {
public:
explicit Win32Semaphore(int count) {
sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
}
~Win32Semaphore() {
CloseHandle(sem);
}
void Wait() {
WaitForSingleObject(sem, INFINITE);
}
bool Wait(int timeout) {
// Timeout in Windows API is in milliseconds.
DWORD millis_timeout = timeout / 1000;
return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
}
void Signal() {
LONG dummy;
ReleaseSemaphore(sem, 1, &dummy);
}
private:
HANDLE sem;
};
Semaphore* OS::CreateSemaphore(int count) {
return new Win32Semaphore(count);
}
// ----------------------------------------------------------------------------
// Win32 socket support.
//
class Win32Socket : public Socket {
public:
explicit Win32Socket() {
// Create the socket.
socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
}
explicit Win32Socket(SOCKET socket): socket_(socket) { }
virtual ~Win32Socket() { Shutdown(); }
// Server initialization.
bool Bind(const int port);
bool Listen(int backlog) const;
Socket* Accept() const;
// Client initialization.
bool Connect(const char* host, const char* port);
// Shutdown socket for both read and write.
bool Shutdown();
// Data Transimission
int Send(const char* data, int len) const;
int Receive(char* data, int len) const;
bool SetReuseAddress(bool reuse_address);
bool IsValid() const { return socket_ != INVALID_SOCKET; }
private:
SOCKET socket_;
};
bool Win32Socket::Bind(const int port) {
if (!IsValid()) {
return false;
}
sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(port);
int status = bind(socket_,
reinterpret_cast<struct sockaddr *>(&addr),
sizeof(addr));
return status == 0;
}
bool Win32Socket::Listen(int backlog) const {
if (!IsValid()) {
return false;
}
int status = listen(socket_, backlog);
return status == 0;
}
Socket* Win32Socket::Accept() const {
if (!IsValid()) {
return NULL;
}
SOCKET socket = accept(socket_, NULL, NULL);
if (socket == INVALID_SOCKET) {
return NULL;
} else {
return new Win32Socket(socket);
}
}
bool Win32Socket::Connect(const char* host, const char* port) {
if (!IsValid()) {
return false;
}
// Lookup host and port.
struct addrinfo *result = NULL;
struct addrinfo hints;
memset(&hints, 0, sizeof(addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
int status = getaddrinfo(host, port, &hints, &result);
if (status != 0) {
return false;
}
// Connect.
status = connect(socket_,
result->ai_addr,
static_cast<int>(result->ai_addrlen));
freeaddrinfo(result);
return status == 0;
}
bool Win32Socket::Shutdown() {
if (IsValid()) {
// Shutdown socket for both read and write.
int status = shutdown(socket_, SD_BOTH);
closesocket(socket_);
socket_ = INVALID_SOCKET;
return status == SOCKET_ERROR;
}
return true;
}
int Win32Socket::Send(const char* data, int len) const {
int status = send(socket_, data, len, 0);
return status;
}
int Win32Socket::Receive(char* data, int len) const {
int status = recv(socket_, data, len, 0);
return status;
}
bool Win32Socket::SetReuseAddress(bool reuse_address) {
BOOL on = reuse_address ? TRUE : FALSE;
int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
reinterpret_cast<char*>(&on), sizeof(on));
return status == SOCKET_ERROR;
}
bool Socket::Setup() {
// Initialize Winsock32
int err;
WSADATA winsock_data;
WORD version_requested = MAKEWORD(1, 0);
err = WSAStartup(version_requested, &winsock_data);
if (err != 0) {
PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
}
return err == 0;
}
int Socket::LastError() {
return WSAGetLastError();
}
uint16_t Socket::HToN(uint16_t value) {
return htons(value);
}
uint16_t Socket::NToH(uint16_t value) {
return ntohs(value);
}
uint32_t Socket::HToN(uint32_t value) {
return htonl(value);
}
uint32_t Socket::NToH(uint32_t value) {
return ntohl(value);
}
Socket* OS::CreateSocket() {
return new Win32Socket();
}
#ifdef ENABLE_LOGGING_AND_PROFILING
// ----------------------------------------------------------------------------
// Win32 profiler support.
//
// On win32 we use a sampler thread with high priority to sample the program
// counter for the profiled thread.
class Sampler::PlatformData : public Malloced {
public:
explicit PlatformData(Sampler* sampler) {
sampler_ = sampler;
sampler_thread_ = INVALID_HANDLE_VALUE;
profiled_thread_ = INVALID_HANDLE_VALUE;
}
Sampler* sampler_;
HANDLE sampler_thread_;
HANDLE profiled_thread_;
// Sampler thread handler.
void Runner() {
// Context used for sampling the register state of the profiled thread.
CONTEXT context;
memset(&context, 0, sizeof(context));
// Loop until the sampler is disengaged, keeping the specified samling freq.
for ( ; sampler_->IsActive(); Sleep(sampler_->interval_)) {
TickSample sample_obj;
TickSample* sample = CpuProfiler::TickSampleEvent();
if (sample == NULL) sample = &sample_obj;
// We always sample the VM state.
sample->state = VMState::current_state();
// If profiling, we record the pc and sp of the profiled thread.
if (sampler_->IsProfiling()
&& SuspendThread(profiled_thread_) != (DWORD)-1) {
context.ContextFlags = CONTEXT_FULL;
if (GetThreadContext(profiled_thread_, &context) != 0) {
#if V8_HOST_ARCH_X64
sample->pc = reinterpret_cast<Address>(context.Rip);
sample->sp = reinterpret_cast<Address>(context.Rsp);
sample->fp = reinterpret_cast<Address>(context.Rbp);
#else
sample->pc = reinterpret_cast<Address>(context.Eip);
sample->sp = reinterpret_cast<Address>(context.Esp);
sample->fp = reinterpret_cast<Address>(context.Ebp);
#endif
sampler_->SampleStack(sample);
}
ResumeThread(profiled_thread_);
}
// Invoke tick handler with program counter and stack pointer.
sampler_->Tick(sample);
}
}
};
// Entry point for sampler thread.
static unsigned int __stdcall SamplerEntry(void* arg) {
Sampler::PlatformData* data =
reinterpret_cast<Sampler::PlatformData*>(arg);
data->Runner();
return 0;
}
// Initialize a profile sampler.
Sampler::Sampler(int interval, bool profiling)
: interval_(interval), profiling_(profiling), active_(false) {
data_ = new PlatformData(this);
}
Sampler::~Sampler() {
delete data_;
}
// Start profiling.
void Sampler::Start() {
// If we are profiling, we need to be able to access the calling
// thread.
if (IsProfiling()) {
// Get a handle to the calling thread. This is the thread that we are
// going to profile. We need to make a copy of the handle because we are
// going to use it in the sampler thread. Using GetThreadHandle() will
// not work in this case. We're using OpenThread because DuplicateHandle
// for some reason doesn't work in Chrome's sandbox.
data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
THREAD_SUSPEND_RESUME |
THREAD_QUERY_INFORMATION,
FALSE,
GetCurrentThreadId());
BOOL ok = data_->profiled_thread_ != NULL;
if (!ok) return;
}
// Start sampler thread.
unsigned int tid;
active_ = true;
data_->sampler_thread_ = reinterpret_cast<HANDLE>(
_beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
// Set thread to high priority to increase sampling accuracy.
SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
}
// Stop profiling.
void Sampler::Stop() {
// Seting active to false triggers termination of the sampler
// thread.
active_ = false;
// Wait for sampler thread to terminate.
WaitForSingleObject(data_->sampler_thread_, INFINITE);
// Release the thread handles
CloseHandle(data_->sampler_thread_);
CloseHandle(data_->profiled_thread_);
}
#endif // ENABLE_LOGGING_AND_PROFILING
} } // namespace v8::internal