v8/src/ast.cc

1218 lines
34 KiB
C++
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "ast.h"
#include "parser.h"
#include "scopes.h"
#include "string-stream.h"
#include "type-info.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// All the Accept member functions for each syntax tree node type.
#define DECL_ACCEPT(type) \
void type::Accept(AstVisitor* v) { v->Visit##type(this); }
AST_NODE_LIST(DECL_ACCEPT)
#undef DECL_ACCEPT
// ----------------------------------------------------------------------------
// Implementation of other node functionality.
bool Expression::IsSmiLiteral() {
return AsLiteral() != NULL && AsLiteral()->handle()->IsSmi();
}
bool Expression::IsStringLiteral() {
return AsLiteral() != NULL && AsLiteral()->handle()->IsString();
}
bool Expression::IsNullLiteral() {
return AsLiteral() != NULL && AsLiteral()->handle()->IsNull();
}
VariableProxy::VariableProxy(Isolate* isolate, Variable* var)
: Expression(isolate),
name_(var->name()),
var_(NULL), // Will be set by the call to BindTo.
is_this_(var->is_this()),
is_trivial_(false),
position_(RelocInfo::kNoPosition) {
BindTo(var);
}
VariableProxy::VariableProxy(Isolate* isolate,
Handle<String> name,
bool is_this,
int position)
: Expression(isolate),
name_(name),
var_(NULL),
is_this_(is_this),
is_trivial_(false),
position_(position) {
// Names must be canonicalized for fast equality checks.
ASSERT(name->IsSymbol());
}
void VariableProxy::BindTo(Variable* var) {
ASSERT(var_ == NULL); // must be bound only once
ASSERT(var != NULL); // must bind
ASSERT((is_this() && var->is_this()) || name_.is_identical_to(var->name()));
// Ideally CONST-ness should match. However, this is very hard to achieve
// because we don't know the exact semantics of conflicting (const and
// non-const) multiple variable declarations, const vars introduced via
// eval() etc. Const-ness and variable declarations are a complete mess
// in JS. Sigh...
var_ = var;
var->set_is_used(true);
}
Assignment::Assignment(Isolate* isolate,
Token::Value op,
Expression* target,
Expression* value,
int pos)
: Expression(isolate),
op_(op),
target_(target),
value_(value),
pos_(pos),
binary_operation_(NULL),
compound_load_id_(kNoNumber),
assignment_id_(GetNextId(isolate)),
block_start_(false),
block_end_(false),
is_monomorphic_(false) {
ASSERT(Token::IsAssignmentOp(op));
if (is_compound()) {
binary_operation_ =
new(isolate->zone()) BinaryOperation(isolate,
binary_op(),
target,
value,
pos + 1);
compound_load_id_ = GetNextId(isolate);
}
}
Token::Value Assignment::binary_op() const {
switch (op_) {
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
case Token::ASSIGN_SHL: return Token::SHL;
case Token::ASSIGN_SAR: return Token::SAR;
case Token::ASSIGN_SHR: return Token::SHR;
case Token::ASSIGN_ADD: return Token::ADD;
case Token::ASSIGN_SUB: return Token::SUB;
case Token::ASSIGN_MUL: return Token::MUL;
case Token::ASSIGN_DIV: return Token::DIV;
case Token::ASSIGN_MOD: return Token::MOD;
default: UNREACHABLE();
}
return Token::ILLEGAL;
}
bool FunctionLiteral::AllowsLazyCompilation() {
return scope()->AllowsLazyCompilation();
}
int FunctionLiteral::start_position() const {
return scope()->start_position();
}
int FunctionLiteral::end_position() const {
return scope()->end_position();
}
StrictModeFlag FunctionLiteral::strict_mode_flag() const {
return scope()->strict_mode_flag();
}
ObjectLiteral::Property::Property(Literal* key, Expression* value) {
emit_store_ = true;
key_ = key;
value_ = value;
Object* k = *key->handle();
if (k->IsSymbol() && HEAP->Proto_symbol()->Equals(String::cast(k))) {
kind_ = PROTOTYPE;
} else if (value_->AsMaterializedLiteral() != NULL) {
kind_ = MATERIALIZED_LITERAL;
} else if (value_->AsLiteral() != NULL) {
kind_ = CONSTANT;
} else {
kind_ = COMPUTED;
}
}
ObjectLiteral::Property::Property(bool is_getter, FunctionLiteral* value) {
Isolate* isolate = Isolate::Current();
emit_store_ = true;
key_ = new(isolate->zone()) Literal(isolate, value->name());
value_ = value;
kind_ = is_getter ? GETTER : SETTER;
}
bool ObjectLiteral::Property::IsCompileTimeValue() {
return kind_ == CONSTANT ||
(kind_ == MATERIALIZED_LITERAL &&
CompileTimeValue::IsCompileTimeValue(value_));
}
void ObjectLiteral::Property::set_emit_store(bool emit_store) {
emit_store_ = emit_store;
}
bool ObjectLiteral::Property::emit_store() {
return emit_store_;
}
bool IsEqualString(void* first, void* second) {
ASSERT((*reinterpret_cast<String**>(first))->IsString());
ASSERT((*reinterpret_cast<String**>(second))->IsString());
Handle<String> h1(reinterpret_cast<String**>(first));
Handle<String> h2(reinterpret_cast<String**>(second));
return (*h1)->Equals(*h2);
}
bool IsEqualNumber(void* first, void* second) {
ASSERT((*reinterpret_cast<Object**>(first))->IsNumber());
ASSERT((*reinterpret_cast<Object**>(second))->IsNumber());
Handle<Object> h1(reinterpret_cast<Object**>(first));
Handle<Object> h2(reinterpret_cast<Object**>(second));
if (h1->IsSmi()) {
return h2->IsSmi() && *h1 == *h2;
}
if (h2->IsSmi()) return false;
Handle<HeapNumber> n1 = Handle<HeapNumber>::cast(h1);
Handle<HeapNumber> n2 = Handle<HeapNumber>::cast(h2);
ASSERT(isfinite(n1->value()));
ASSERT(isfinite(n2->value()));
return n1->value() == n2->value();
}
void ObjectLiteral::CalculateEmitStore() {
HashMap properties(&IsEqualString);
HashMap elements(&IsEqualNumber);
for (int i = this->properties()->length() - 1; i >= 0; i--) {
ObjectLiteral::Property* property = this->properties()->at(i);
Literal* literal = property->key();
Handle<Object> handle = literal->handle();
if (handle->IsNull()) {
continue;
}
uint32_t hash;
HashMap* table;
void* key;
Factory* factory = Isolate::Current()->factory();
if (handle->IsSymbol()) {
Handle<String> name(String::cast(*handle));
if (name->AsArrayIndex(&hash)) {
Handle<Object> key_handle = factory->NewNumberFromUint(hash);
key = key_handle.location();
table = &elements;
} else {
key = name.location();
hash = name->Hash();
table = &properties;
}
} else if (handle->ToArrayIndex(&hash)) {
key = handle.location();
table = &elements;
} else {
ASSERT(handle->IsNumber());
double num = handle->Number();
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
const char* str = DoubleToCString(num, buffer);
Handle<String> name = factory->NewStringFromAscii(CStrVector(str));
key = name.location();
hash = name->Hash();
table = &properties;
}
// If the key of a computed property is in the table, do not emit
// a store for the property later.
if (property->kind() == ObjectLiteral::Property::COMPUTED) {
if (table->Lookup(key, hash, false) != NULL) {
property->set_emit_store(false);
}
}
// Add key to the table.
table->Lookup(key, hash, true);
}
}
void TargetCollector::AddTarget(Label* target) {
// Add the label to the collector, but discard duplicates.
int length = targets_.length();
for (int i = 0; i < length; i++) {
if (targets_[i] == target) return;
}
targets_.Add(target);
}
bool UnaryOperation::ResultOverwriteAllowed() {
switch (op_) {
case Token::BIT_NOT:
case Token::SUB:
return true;
default:
return false;
}
}
bool BinaryOperation::ResultOverwriteAllowed() {
switch (op_) {
case Token::COMMA:
case Token::OR:
case Token::AND:
return false;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
return true;
default:
UNREACHABLE();
}
return false;
}
2011-09-19 14:50:33 +00:00
static bool IsTypeof(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
}
2011-09-19 14:50:33 +00:00
// Check for the pattern: typeof <expression> equals <string literal>.
static bool MatchLiteralCompareTypeof(Expression* left,
Token::Value op,
Expression* right,
Expression** expr,
Handle<String>* check) {
if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
*expr = left->AsUnaryOperation()->expression();
*check = Handle<String>::cast(right->AsLiteral()->handle());
return true;
}
return false;
}
2011-09-19 14:50:33 +00:00
bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
Handle<String>* check) {
return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
}
2011-09-19 14:50:33 +00:00
static bool IsVoidOfLiteral(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL &&
maybe_unary->op() == Token::VOID &&
maybe_unary->expression()->AsLiteral() != NULL;
}
2011-09-19 14:50:33 +00:00
// Check for the pattern: void <literal> equals <expression>
static bool MatchLiteralCompareUndefined(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
2011-09-19 14:50:33 +00:00
bool CompareOperation::IsLiteralCompareUndefined(Expression** expr) {
return MatchLiteralCompareUndefined(left_, op_, right_, expr) ||
MatchLiteralCompareUndefined(right_, op_, left_, expr);
}
2011-09-19 14:50:33 +00:00
// Check for the pattern: null equals <expression>
static bool MatchLiteralCompareNull(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
2011-09-19 14:50:33 +00:00
bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
return MatchLiteralCompareNull(left_, op_, right_, expr) ||
MatchLiteralCompareNull(right_, op_, left_, expr);
}
// ----------------------------------------------------------------------------
// Inlining support
bool Declaration::IsInlineable() const {
return proxy()->var()->IsStackAllocated() && fun() == NULL;
}
bool TargetCollector::IsInlineable() const {
UNREACHABLE();
return false;
}
bool ForInStatement::IsInlineable() const {
return false;
}
bool WithStatement::IsInlineable() const {
return false;
}
bool SwitchStatement::IsInlineable() const {
return false;
}
bool TryStatement::IsInlineable() const {
return false;
}
bool TryCatchStatement::IsInlineable() const {
return false;
}
bool TryFinallyStatement::IsInlineable() const {
return false;
}
bool DebuggerStatement::IsInlineable() const {
return false;
}
bool Throw::IsInlineable() const {
return exception()->IsInlineable();
}
bool MaterializedLiteral::IsInlineable() const {
// TODO(1322): Allow materialized literals.
return false;
}
bool FunctionLiteral::IsInlineable() const {
// TODO(1322): Allow materialized literals.
return false;
}
bool ThisFunction::IsInlineable() const {
return true;
}
bool SharedFunctionInfoLiteral::IsInlineable() const {
return false;
}
bool ForStatement::IsInlineable() const {
return (init() == NULL || init()->IsInlineable())
&& (cond() == NULL || cond()->IsInlineable())
&& (next() == NULL || next()->IsInlineable())
&& body()->IsInlineable();
}
bool WhileStatement::IsInlineable() const {
return cond()->IsInlineable()
&& body()->IsInlineable();
}
bool DoWhileStatement::IsInlineable() const {
return cond()->IsInlineable()
&& body()->IsInlineable();
}
bool ContinueStatement::IsInlineable() const {
return true;
}
bool BreakStatement::IsInlineable() const {
return true;
}
bool EmptyStatement::IsInlineable() const {
return true;
}
bool Literal::IsInlineable() const {
return true;
}
bool Block::IsInlineable() const {
const int count = statements_.length();
for (int i = 0; i < count; ++i) {
if (!statements_[i]->IsInlineable()) return false;
}
return true;
}
bool ExpressionStatement::IsInlineable() const {
return expression()->IsInlineable();
}
bool IfStatement::IsInlineable() const {
return condition()->IsInlineable()
&& then_statement()->IsInlineable()
&& else_statement()->IsInlineable();
}
bool ReturnStatement::IsInlineable() const {
return expression()->IsInlineable();
}
bool Conditional::IsInlineable() const {
return condition()->IsInlineable() && then_expression()->IsInlineable() &&
else_expression()->IsInlineable();
}
bool VariableProxy::IsInlineable() const {
return var()->IsUnallocated()
|| var()->IsStackAllocated()
|| var()->IsContextSlot();
}
bool Assignment::IsInlineable() const {
return target()->IsInlineable() && value()->IsInlineable();
}
bool Property::IsInlineable() const {
return obj()->IsInlineable() && key()->IsInlineable();
}
bool Call::IsInlineable() const {
if (!expression()->IsInlineable()) return false;
const int count = arguments()->length();
for (int i = 0; i < count; ++i) {
if (!arguments()->at(i)->IsInlineable()) return false;
}
return true;
}
bool CallNew::IsInlineable() const {
if (!expression()->IsInlineable()) return false;
const int count = arguments()->length();
for (int i = 0; i < count; ++i) {
if (!arguments()->at(i)->IsInlineable()) return false;
}
return true;
}
bool CallRuntime::IsInlineable() const {
// Don't try to inline JS runtime calls because we don't (currently) even
// optimize them.
if (is_jsruntime()) return false;
// Don't inline the %_ArgumentsLength or %_Arguments because their
// implementation will not work. There is no stack frame to get them
// from.
if (function()->intrinsic_type == Runtime::INLINE &&
(name()->IsEqualTo(CStrVector("_ArgumentsLength")) ||
name()->IsEqualTo(CStrVector("_Arguments")))) {
return false;
}
const int count = arguments()->length();
for (int i = 0; i < count; ++i) {
if (!arguments()->at(i)->IsInlineable()) return false;
}
return true;
}
bool UnaryOperation::IsInlineable() const {
return expression()->IsInlineable();
}
bool BinaryOperation::IsInlineable() const {
return left()->IsInlineable() && right()->IsInlineable();
}
bool CompareOperation::IsInlineable() const {
return left()->IsInlineable() && right()->IsInlineable();
}
bool CountOperation::IsInlineable() const {
return expression()->IsInlineable();
}
// ----------------------------------------------------------------------------
// Recording of type feedback
void Property::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
// Record type feedback from the oracle in the AST.
is_monomorphic_ = oracle->LoadIsMonomorphicNormal(this);
receiver_types_.Clear();
if (key()->IsPropertyName()) {
if (oracle->LoadIsBuiltin(this, Builtins::kLoadIC_ArrayLength)) {
is_array_length_ = true;
} else if (oracle->LoadIsBuiltin(this, Builtins::kLoadIC_StringLength)) {
is_string_length_ = true;
} else if (oracle->LoadIsBuiltin(this,
Builtins::kLoadIC_FunctionPrototype)) {
is_function_prototype_ = true;
} else {
Literal* lit_key = key()->AsLiteral();
ASSERT(lit_key != NULL && lit_key->handle()->IsString());
Handle<String> name = Handle<String>::cast(lit_key->handle());
oracle->LoadReceiverTypes(this, name, &receiver_types_);
}
} else if (oracle->LoadIsBuiltin(this, Builtins::kKeyedLoadIC_String)) {
is_string_access_ = true;
} else if (is_monomorphic_) {
receiver_types_.Add(oracle->LoadMonomorphicReceiverType(this));
} else if (oracle->LoadIsMegamorphicWithTypeInfo(this)) {
receiver_types_.Reserve(kMaxKeyedPolymorphism);
oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_);
}
}
void Assignment::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
Property* prop = target()->AsProperty();
ASSERT(prop != NULL);
is_monomorphic_ = oracle->StoreIsMonomorphicNormal(this);
receiver_types_.Clear();
if (prop->key()->IsPropertyName()) {
Literal* lit_key = prop->key()->AsLiteral();
ASSERT(lit_key != NULL && lit_key->handle()->IsString());
Handle<String> name = Handle<String>::cast(lit_key->handle());
oracle->StoreReceiverTypes(this, name, &receiver_types_);
} else if (is_monomorphic_) {
// Record receiver type for monomorphic keyed stores.
receiver_types_.Add(oracle->StoreMonomorphicReceiverType(this));
} else if (oracle->StoreIsMegamorphicWithTypeInfo(this)) {
receiver_types_.Reserve(kMaxKeyedPolymorphism);
oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_);
}
}
void CountOperation::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
is_monomorphic_ = oracle->StoreIsMonomorphicNormal(this);
receiver_types_.Clear();
if (is_monomorphic_) {
// Record receiver type for monomorphic keyed stores.
receiver_types_.Add(oracle->StoreMonomorphicReceiverType(this));
} else if (oracle->StoreIsMegamorphicWithTypeInfo(this)) {
receiver_types_.Reserve(kMaxKeyedPolymorphism);
oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_);
}
}
void CaseClause::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
TypeInfo info = oracle->SwitchType(this);
if (info.IsSmi()) {
compare_type_ = SMI_ONLY;
} else if (info.IsSymbol()) {
compare_type_ = SYMBOL_ONLY;
} else if (info.IsNonSymbol()) {
compare_type_ = STRING_ONLY;
} else if (info.IsNonPrimitive()) {
compare_type_ = OBJECT_ONLY;
} else {
ASSERT(compare_type_ == NONE);
}
}
static bool CanCallWithoutIC(Handle<JSFunction> target, int arity) {
SharedFunctionInfo* info = target->shared();
// If the number of formal parameters of the target function does
// not match the number of arguments we're passing, we don't want to
// deal with it. Otherwise, we can call it directly.
return !target->NeedsArgumentsAdaption() ||
info->formal_parameter_count() == arity;
}
bool Call::ComputeTarget(Handle<Map> type, Handle<String> name) {
if (check_type_ == RECEIVER_MAP_CHECK) {
// For primitive checks the holder is set up to point to the
// corresponding prototype object, i.e. one step of the algorithm
// below has been already performed.
// For non-primitive checks we clear it to allow computing targets
// for polymorphic calls.
holder_ = Handle<JSObject>::null();
}
while (true) {
LookupResult lookup(type->GetIsolate());
type->LookupInDescriptors(NULL, *name, &lookup);
// If the function wasn't found directly in the map, we start
// looking upwards through the prototype chain.
if (!lookup.IsFound() && type->prototype()->IsJSObject()) {
holder_ = Handle<JSObject>(JSObject::cast(type->prototype()));
type = Handle<Map>(holder()->map());
} else if (lookup.IsProperty() && lookup.type() == CONSTANT_FUNCTION) {
target_ = Handle<JSFunction>(lookup.GetConstantFunctionFromMap(*type));
return CanCallWithoutIC(target_, arguments()->length());
} else {
return false;
}
}
}
bool Call::ComputeGlobalTarget(Handle<GlobalObject> global,
LookupResult* lookup) {
target_ = Handle<JSFunction>::null();
cell_ = Handle<JSGlobalPropertyCell>::null();
ASSERT(lookup->IsProperty() &&
lookup->type() == NORMAL &&
lookup->holder() == *global);
cell_ = Handle<JSGlobalPropertyCell>(global->GetPropertyCell(lookup));
if (cell_->value()->IsJSFunction()) {
Handle<JSFunction> candidate(JSFunction::cast(cell_->value()));
// If the function is in new space we assume it's more likely to
// change and thus prefer the general IC code.
if (!HEAP->InNewSpace(*candidate) &&
CanCallWithoutIC(candidate, arguments()->length())) {
target_ = candidate;
return true;
}
}
return false;
}
void Call::RecordTypeFeedback(TypeFeedbackOracle* oracle,
CallKind call_kind) {
is_monomorphic_ = oracle->CallIsMonomorphic(this);
Property* property = expression()->AsProperty();
if (property == NULL) {
// Function call. Specialize for monomorphic calls.
if (is_monomorphic_) target_ = oracle->GetCallTarget(this);
} else {
// Method call. Specialize for the receiver types seen at runtime.
Literal* key = property->key()->AsLiteral();
ASSERT(key != NULL && key->handle()->IsString());
Handle<String> name = Handle<String>::cast(key->handle());
receiver_types_.Clear();
oracle->CallReceiverTypes(this, name, call_kind, &receiver_types_);
#ifdef DEBUG
if (FLAG_enable_slow_asserts) {
int length = receiver_types_.length();
for (int i = 0; i < length; i++) {
Handle<Map> map = receiver_types_.at(i);
ASSERT(!map.is_null() && *map != NULL);
}
}
#endif
check_type_ = oracle->GetCallCheckType(this);
if (is_monomorphic_) {
Handle<Map> map;
if (receiver_types_.length() > 0) {
ASSERT(check_type_ == RECEIVER_MAP_CHECK);
map = receiver_types_.at(0);
} else {
ASSERT(check_type_ != RECEIVER_MAP_CHECK);
holder_ = Handle<JSObject>(
oracle->GetPrototypeForPrimitiveCheck(check_type_));
map = Handle<Map>(holder_->map());
}
is_monomorphic_ = ComputeTarget(map, name);
}
}
}
void CompareOperation::RecordTypeFeedback(TypeFeedbackOracle* oracle) {
TypeInfo info = oracle->CompareType(this);
if (info.IsSmi()) {
compare_type_ = SMI_ONLY;
} else if (info.IsNonPrimitive()) {
compare_type_ = OBJECT_ONLY;
} else {
ASSERT(compare_type_ == NONE);
}
}
// ----------------------------------------------------------------------------
// Implementation of AstVisitor
bool AstVisitor::CheckStackOverflow() {
if (stack_overflow_) return true;
StackLimitCheck check(isolate_);
if (!check.HasOverflowed()) return false;
return (stack_overflow_ = true);
}
void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
for (int i = 0; i < declarations->length(); i++) {
Visit(declarations->at(i));
}
}
void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Visit(statements->at(i));
}
}
void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
for (int i = 0; i < expressions->length(); i++) {
// The variable statement visiting code may pass NULL expressions
// to this code. Maybe this should be handled by introducing an
// undefined expression or literal? Revisit this code if this
// changes
Expression* expression = expressions->at(i);
if (expression != NULL) Visit(expression);
}
}
// ----------------------------------------------------------------------------
// Regular expressions
#define MAKE_ACCEPT(Name) \
void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
return visitor->Visit##Name(this, data); \
}
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
#undef MAKE_ACCEPT
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExpTree::As##Name() { \
return NULL; \
} \
bool RegExpTree::Is##Name() { return false; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExp##Name::As##Name() { \
return this; \
} \
bool RegExp##Name::Is##Name() { return true; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
Interval result = Interval::Empty();
for (int i = 0; i < children->length(); i++)
result = result.Union(children->at(i)->CaptureRegisters());
return result;
}
Interval RegExpAlternative::CaptureRegisters() {
return ListCaptureRegisters(nodes());
}
Interval RegExpDisjunction::CaptureRegisters() {
return ListCaptureRegisters(alternatives());
}
Interval RegExpLookahead::CaptureRegisters() {
return body()->CaptureRegisters();
}
Interval RegExpCapture::CaptureRegisters() {
Interval self(StartRegister(index()), EndRegister(index()));
return self.Union(body()->CaptureRegisters());
}
Interval RegExpQuantifier::CaptureRegisters() {
return body()->CaptureRegisters();
}
bool RegExpAssertion::IsAnchoredAtStart() {
return type() == RegExpAssertion::START_OF_INPUT;
}
bool RegExpAssertion::IsAnchoredAtEnd() {
return type() == RegExpAssertion::END_OF_INPUT;
}
bool RegExpAlternative::IsAnchoredAtStart() {
ZoneList<RegExpTree*>* nodes = this->nodes();
for (int i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->at(i);
if (node->IsAnchoredAtStart()) { return true; }
if (node->max_match() > 0) { return false; }
}
return false;
}
bool RegExpAlternative::IsAnchoredAtEnd() {
ZoneList<RegExpTree*>* nodes = this->nodes();
for (int i = nodes->length() - 1; i >= 0; i--) {
RegExpTree* node = nodes->at(i);
if (node->IsAnchoredAtEnd()) { return true; }
if (node->max_match() > 0) { return false; }
}
return false;
}
bool RegExpDisjunction::IsAnchoredAtStart() {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
for (int i = 0; i < alternatives->length(); i++) {
if (!alternatives->at(i)->IsAnchoredAtStart())
return false;
}
return true;
}
bool RegExpDisjunction::IsAnchoredAtEnd() {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
for (int i = 0; i < alternatives->length(); i++) {
if (!alternatives->at(i)->IsAnchoredAtEnd())
return false;
}
return true;
}
bool RegExpLookahead::IsAnchoredAtStart() {
return is_positive() && body()->IsAnchoredAtStart();
}
bool RegExpCapture::IsAnchoredAtStart() {
return body()->IsAnchoredAtStart();
}
bool RegExpCapture::IsAnchoredAtEnd() {
return body()->IsAnchoredAtEnd();
}
// Convert regular expression trees to a simple sexp representation.
// This representation should be different from the input grammar
// in as many cases as possible, to make it more difficult for incorrect
// parses to look as correct ones which is likely if the input and
// output formats are alike.
class RegExpUnparser: public RegExpVisitor {
public:
RegExpUnparser();
void VisitCharacterRange(CharacterRange that);
SmartArrayPointer<const char> ToString() { return stream_.ToCString(); }
#define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, void* data);
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
private:
StringStream* stream() { return &stream_; }
HeapStringAllocator alloc_;
StringStream stream_;
};
RegExpUnparser::RegExpUnparser() : stream_(&alloc_) {
}
void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
stream()->Add("(|");
for (int i = 0; i < that->alternatives()->length(); i++) {
stream()->Add(" ");
that->alternatives()->at(i)->Accept(this, data);
}
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
stream()->Add("(:");
for (int i = 0; i < that->nodes()->length(); i++) {
stream()->Add(" ");
that->nodes()->at(i)->Accept(this, data);
}
stream()->Add(")");
return NULL;
}
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
stream()->Add("%k", that.from());
if (!that.IsSingleton()) {
stream()->Add("-%k", that.to());
}
}
void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
void* data) {
if (that->is_negated())
stream()->Add("^");
stream()->Add("[");
for (int i = 0; i < that->ranges()->length(); i++) {
if (i > 0) stream()->Add(" ");
VisitCharacterRange(that->ranges()->at(i));
}
stream()->Add("]");
return NULL;
}
void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
switch (that->type()) {
case RegExpAssertion::START_OF_INPUT:
stream()->Add("@^i");
break;
case RegExpAssertion::END_OF_INPUT:
stream()->Add("@$i");
break;
case RegExpAssertion::START_OF_LINE:
stream()->Add("@^l");
break;
case RegExpAssertion::END_OF_LINE:
stream()->Add("@$l");
break;
case RegExpAssertion::BOUNDARY:
stream()->Add("@b");
break;
case RegExpAssertion::NON_BOUNDARY:
stream()->Add("@B");
break;
}
return NULL;
}
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
stream()->Add("'");
Vector<const uc16> chardata = that->data();
for (int i = 0; i < chardata.length(); i++) {
stream()->Add("%k", chardata[i]);
}
stream()->Add("'");
return NULL;
}
void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
if (that->elements()->length() == 1) {
that->elements()->at(0).data.u_atom->Accept(this, data);
} else {
stream()->Add("(!");
for (int i = 0; i < that->elements()->length(); i++) {
stream()->Add(" ");
that->elements()->at(i).data.u_atom->Accept(this, data);
}
stream()->Add(")");
}
return NULL;
}
void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
stream()->Add("(# %i ", that->min());
if (that->max() == RegExpTree::kInfinity) {
stream()->Add("- ");
} else {
stream()->Add("%i ", that->max());
}
stream()->Add(that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
that->body()->Accept(this, data);
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
stream()->Add("(^ ");
that->body()->Accept(this, data);
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) {
stream()->Add("(-> ");
stream()->Add(that->is_positive() ? "+ " : "- ");
that->body()->Accept(this, data);
stream()->Add(")");
return NULL;
}
void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
void* data) {
stream()->Add("(<- %i)", that->index());
return NULL;
}
void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
stream()->Put('%');
return NULL;
}
SmartArrayPointer<const char> RegExpTree::ToString() {
RegExpUnparser unparser;
Accept(&unparser, NULL);
return unparser.ToString();
}
RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
: alternatives_(alternatives) {
ASSERT(alternatives->length() > 1);
RegExpTree* first_alternative = alternatives->at(0);
min_match_ = first_alternative->min_match();
max_match_ = first_alternative->max_match();
for (int i = 1; i < alternatives->length(); i++) {
RegExpTree* alternative = alternatives->at(i);
min_match_ = Min(min_match_, alternative->min_match());
max_match_ = Max(max_match_, alternative->max_match());
}
}
RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
: nodes_(nodes) {
ASSERT(nodes->length() > 1);
min_match_ = 0;
max_match_ = 0;
for (int i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->at(i);
min_match_ += node->min_match();
int node_max_match = node->max_match();
if (kInfinity - max_match_ < node_max_match) {
max_match_ = kInfinity;
} else {
max_match_ += node->max_match();
}
}
}
CaseClause::CaseClause(Isolate* isolate,
Expression* label,
ZoneList<Statement*>* statements,
int pos)
: label_(label),
statements_(statements),
position_(pos),
compare_type_(NONE),
compare_id_(AstNode::GetNextId(isolate)),
entry_id_(AstNode::GetNextId(isolate)) {
}
} } // namespace v8::internal