v8/test/unittests/wasm/subtyping-unittest.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

222 lines
8.7 KiB
C++
Raw Normal View History

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/wasm-subtyping.h"
#include "test/common/wasm/flag-utils.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace subtyping_unittest {
class WasmSubtypingTest : public ::testing::Test {};
using FieldInit = std::pair<ValueType, bool>;
ValueType ref(uint32_t index) { return ValueType::Ref(index, kNonNullable); }
ValueType optRef(uint32_t index) { return ValueType::Ref(index, kNullable); }
FieldInit mut(ValueType type) { return FieldInit(type, true); }
FieldInit immut(ValueType type) { return FieldInit(type, false); }
void DefineStruct(WasmModule* module, std::initializer_list<FieldInit> fields) {
StructType::Builder builder(module->signature_zone.get(),
static_cast<uint32_t>(fields.size()));
for (FieldInit field : fields) {
builder.AddField(field.first, field.second);
}
return module->add_struct_type(builder.Build());
}
void DefineArray(WasmModule* module, FieldInit element_type) {
module->add_array_type(module->signature_zone->New<ArrayType>(
element_type.first, element_type.second));
}
void DefineSignature(WasmModule* module,
std::initializer_list<ValueType> params,
std::initializer_list<ValueType> returns) {
module->add_signature(
FunctionSig::Build(module->signature_zone.get(), returns, params));
}
TEST_F(WasmSubtypingTest, Subtyping) {
v8::internal::AccountingAllocator allocator;
WasmModule module1_(std::make_unique<Zone>(&allocator, ZONE_NAME));
WasmModule module2_(std::make_unique<Zone>(&allocator, ZONE_NAME));
WasmModule* module1 = &module1_;
WasmModule* module2 = &module2_;
// Set up two identical modules.
for (WasmModule* module : {module1, module2}) {
/* 0 */ DefineStruct(module, {mut(ref(2)), immut(optRef(2))});
/* 1 */ DefineStruct(module, {mut(ref(2)), immut(ref(2))});
/* 2 */ DefineArray(module, immut(ref(0)));
/* 3 */ DefineArray(module, immut(ref(1)));
/* 4 */ DefineStruct(module,
{mut(ref(2)), immut(ref(3)), immut(kWasmF64)});
/* 5 */ DefineStruct(module, {mut(optRef(2)), immut(ref(2))});
/* 6 */ DefineArray(module, mut(kWasmI32));
/* 7 */ DefineArray(module, immut(kWasmI32));
/* 8 */ DefineStruct(module, {mut(kWasmI32), immut(optRef(8))});
/* 9 */ DefineStruct(module, {mut(kWasmI32), immut(optRef(8))});
/* 10 */ DefineSignature(module, {}, {});
/* 11 */ DefineSignature(module, {kWasmI32}, {kWasmI32});
/* 12 */ DefineSignature(module, {kWasmI32, kWasmI32}, {kWasmI32});
/* 13 */ DefineSignature(module, {ref(1)}, {kWasmI32});
/* 14 */ DefineSignature(module, {ref(0)}, {kWasmI32});
/* 15 */ DefineSignature(module, {ref(0)}, {ref(4)});
/* 16 */ DefineSignature(module, {ref(0)}, {ref(0)});
}
ValueType numeric_types[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64,
kWasmS128};
ValueType ref_types[] = {kWasmExternRef, kWasmFuncRef, kWasmEqRef,
kWasmI31Ref, kWasmDataRef, kWasmAnyRef,
optRef(0), ref(0), optRef(2),
ref(2), optRef(11), ref(11)};
#define SUBTYPE(type1, type2) \
EXPECT_TRUE(IsSubtypeOf(type1, type2, module1, module))
#define NOT_SUBTYPE(type1, type2) \
EXPECT_FALSE(IsSubtypeOf(type1, type2, module1, module))
#define SUBTYPE_IFF(type1, type2, condition) \
EXPECT_EQ(IsSubtypeOf(type1, type2, module1, module), condition)
// Type judgements across modules should work the same as within one module.
for (WasmModule* module : {module1, module2}) {
// Value types are unrelated, except if they are equal.
for (ValueType subtype : numeric_types) {
for (ValueType supertype : numeric_types) {
SUBTYPE_IFF(subtype, supertype, subtype == supertype);
}
}
// Value types are unrelated with reference types.
for (ValueType value_type : numeric_types) {
for (ValueType ref_type : ref_types) {
NOT_SUBTYPE(value_type, ref_type);
NOT_SUBTYPE(ref_type, value_type);
}
}
for (ValueType ref_type : ref_types) {
// Concrete reference types, i31ref and dataref are subtypes of eqref,
// externref/funcref/anyref/functions are not.
SUBTYPE_IFF(ref_type, kWasmEqRef,
ref_type != kWasmFuncRef && ref_type != kWasmExternRef &&
ref_type != kWasmAnyRef && ref_type != optRef(11) &&
ref_type != ref(11));
// Non-nullable struct/array types are subtypes of dataref.
SUBTYPE_IFF(
ref_type, kWasmDataRef,
ref_type == kWasmDataRef || ref_type == ref(0) || ref_type == ref(2));
// Functions are subtypes of funcref.
SUBTYPE_IFF(ref_type, kWasmFuncRef,
ref_type == kWasmFuncRef || ref_type == optRef(11) ||
ref_type == ref(11));
// Each reference type is a subtype of itself.
SUBTYPE(ref_type, ref_type);
// Each reference type is a subtype of anyref.
SUBTYPE(ref_type, kWasmAnyRef);
// Only anyref is a subtype of anyref.
SUBTYPE_IFF(kWasmAnyRef, ref_type, ref_type == kWasmAnyRef);
}
// The rest of ref. types are unrelated.
for (ValueType type_1 : {kWasmExternRef, kWasmFuncRef, kWasmI31Ref}) {
for (ValueType type_2 : {kWasmExternRef, kWasmFuncRef, kWasmI31Ref}) {
SUBTYPE_IFF(type_1, type_2, type_1 == type_2);
}
}
// Unrelated refs are unrelated.
NOT_SUBTYPE(ref(0), ref(2));
NOT_SUBTYPE(optRef(3), optRef(1));
// ref is a subtype of optref for the same struct/array.
SUBTYPE(ref(0), optRef(0));
SUBTYPE(ref(2), optRef(2));
// optref is not a subtype of ref for the same struct/array.
NOT_SUBTYPE(optRef(0), ref(0));
NOT_SUBTYPE(optRef(2), ref(2));
// ref is a subtype of optref if the same is true for the underlying
// structs/arrays.
SUBTYPE(ref(3), optRef(2));
// Prefix subtyping for structs.
SUBTYPE(optRef(4), optRef(0));
// Mutable fields are invariant.
NOT_SUBTYPE(ref(0), ref(5));
// Immutable fields are covariant.
SUBTYPE(ref(1), ref(0));
// Prefix subtyping + immutable field covariance for structs.
SUBTYPE(optRef(4), optRef(1));
// No subtyping between mutable/immutable fields.
NOT_SUBTYPE(ref(7), ref(6));
NOT_SUBTYPE(ref(6), ref(7));
// Recursive types.
SUBTYPE(ref(9), ref(8));
// Identical rtts are subtypes of each other.
SUBTYPE(ValueType::Rtt(5, 3), ValueType::Rtt(5, 3));
SUBTYPE(ValueType::Rtt(5), ValueType::Rtt(5));
// Rtts of unrelated types are unrelated.
NOT_SUBTYPE(ValueType::Rtt(1, 1), ValueType::Rtt(2, 1));
NOT_SUBTYPE(ValueType::Rtt(1), ValueType::Rtt(2));
NOT_SUBTYPE(ValueType::Rtt(1, 0), ValueType::Rtt(2));
// Rtts of different depth are unrelated.
NOT_SUBTYPE(ValueType::Rtt(5, 1), ValueType::Rtt(5, 3));
NOT_SUBTYPE(ValueType::Rtt(5, 8), ValueType::Rtt(5, 3));
// Rtts of identical types are subtype-related.
SUBTYPE(ValueType::Rtt(8, 1), ValueType::Rtt(9, 1));
SUBTYPE(ValueType::Rtt(8), ValueType::Rtt(9));
// Rtts of subtypes are not related.
NOT_SUBTYPE(ValueType::Rtt(1, 1), ValueType::Rtt(0, 1));
NOT_SUBTYPE(ValueType::Rtt(1), ValueType::Rtt(0));
// rtt(t, d) <: rtt(t)
for (uint8_t depth : {0, 1, 5}) {
SUBTYPE(ValueType::Rtt(1, depth), ValueType::Rtt(1));
}
// Function subtyping depends on the selected wasm features.
// Without wasm-gc:
// Unrelated function types are unrelated.
NOT_SUBTYPE(ref(10), ref(11));
// Function type with different parameter counts are unrelated.
NOT_SUBTYPE(ref(12), ref(11));
// Parameter contravariance does not hold.
NOT_SUBTYPE(ref(14), ref(13));
// Return type covariance does not hold.
NOT_SUBTYPE(ref(15), ref(16));
// Only identical types are subtype-related.
SUBTYPE(ref(10), ref(10));
SUBTYPE(ref(11), ref(11));
{
// With wasm-gc:
EXPERIMENTAL_FLAG_SCOPE(gc);
// Unrelated function types are unrelated.
NOT_SUBTYPE(ref(10), ref(11));
// Function type with different parameter counts are unrelated.
NOT_SUBTYPE(ref(12), ref(11));
// Parameter contravariance holds.
SUBTYPE(ref(14), ref(13));
// Return type covariance holds.
SUBTYPE(ref(15), ref(16));
// Identical types are subtype-related.
SUBTYPE(ref(10), ref(10));
SUBTYPE(ref(11), ref(11));
}
}
#undef SUBTYPE
#undef NOT_SUBTYPE
#undef SUBTYPE_IFF
}
} // namespace subtyping_unittest
} // namespace wasm
} // namespace internal
} // namespace v8