v8/test/unittests/compiler/regalloc/move-optimizer-unittest.cc

432 lines
14 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/move-optimizer.h"
#include "src/compiler/pipeline.h"
#include "test/unittests/compiler/instruction-sequence-unittest.h"
namespace v8 {
namespace internal {
namespace compiler {
class MoveOptimizerTest : public InstructionSequenceTest {
public:
// FP register indices which don't interfere under simple or complex aliasing.
static const int kF64_1 = 0;
static const int kF64_2 = 1;
static const int kF32_1 = 4;
static const int kF32_2 = 5;
static const int kS128_1 = 2;
static const int kS128_2 = 3;
Instruction* LastInstruction() { return sequence()->instructions().back(); }
void AddMove(Instruction* instr, TestOperand from, TestOperand to,
Instruction::GapPosition pos = Instruction::START) {
auto parallel_move = instr->GetOrCreateParallelMove(pos, zone());
parallel_move->AddMove(ConvertMoveArg(from), ConvertMoveArg(to));
}
int NonRedundantSize(ParallelMove* moves) {
int i = 0;
for (auto move : *moves) {
if (move->IsRedundant()) continue;
i++;
}
return i;
}
bool Contains(ParallelMove* moves, TestOperand from_op, TestOperand to_op) {
auto from = ConvertMoveArg(from_op);
auto to = ConvertMoveArg(to_op);
for (auto move : *moves) {
if (move->IsRedundant()) continue;
if (move->source().Equals(from) && move->destination().Equals(to)) {
return true;
}
}
return false;
}
// TODO(dcarney): add a verifier.
void Optimize() {
WireBlocks();
if (FLAG_trace_turbo) {
OFStream os(stdout);
PrintableInstructionSequence printable = {config(), sequence()};
os << "----- Instruction sequence before move optimization -----\n"
<< printable;
}
MoveOptimizer move_optimizer(zone(), sequence());
move_optimizer.Run();
if (FLAG_trace_turbo) {
OFStream os(stdout);
PrintableInstructionSequence printable = {config(), sequence()};
os << "----- Instruction sequence after move optimization -----\n"
<< printable;
}
}
private:
bool DoesRegisterAllocation() const override { return false; }
InstructionOperand ConvertMoveArg(TestOperand op) {
CHECK_EQ(kNoValue, op.vreg_.value_);
CHECK_NE(kNoValue, op.value_);
switch (op.type_) {
case kConstant:
return ConstantOperand(op.value_);
case kFixedSlot:
return AllocatedOperand(LocationOperand::STACK_SLOT,
MachineRepresentation::kWord32, op.value_);
case kFixedRegister: {
MachineRepresentation rep = GetCanonicalRep(op);
CHECK(0 <= op.value_ && op.value_ < GetNumRegs(rep));
return AllocatedOperand(LocationOperand::REGISTER, rep, op.value_);
}
case kExplicit: {
MachineRepresentation rep = GetCanonicalRep(op);
CHECK(0 <= op.value_ && op.value_ < GetNumRegs(rep));
return ExplicitOperand(LocationOperand::REGISTER, rep, op.value_);
}
default:
break;
}
CHECK(false);
return InstructionOperand();
}
};
TEST_F(MoveOptimizerTest, RemovesRedundant) {
StartBlock();
auto first_instr = EmitNop();
auto last_instr = EmitNop();
AddMove(first_instr, Reg(0), Reg(1));
AddMove(last_instr, Reg(1), Reg(0));
AddMove(first_instr, FPReg(kS128_1, kSimd128), FPReg(kS128_2, kSimd128));
AddMove(last_instr, FPReg(kS128_2, kSimd128), FPReg(kS128_1, kSimd128));
AddMove(first_instr, FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64));
AddMove(last_instr, FPReg(kF64_2, kFloat64), FPReg(kF64_1, kFloat64));
AddMove(first_instr, FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32));
AddMove(last_instr, FPReg(kF32_2, kFloat32), FPReg(kF32_1, kFloat32));
EndBlock(Last());
Optimize();
CHECK_EQ(0, NonRedundantSize(first_instr->parallel_moves()[0]));
auto move = last_instr->parallel_moves()[0];
CHECK_EQ(4, NonRedundantSize(move));
CHECK(Contains(move, Reg(0), Reg(1)));
CHECK(Contains(move, FPReg(kS128_1, kSimd128), FPReg(kS128_2, kSimd128)));
CHECK(Contains(move, FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64)));
CHECK(Contains(move, FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32)));
}
[turbofan] Create ExplicitOperands to specify operands without virtual registers Up until now, if one wanted to specify an explicit stack location or register as an operand for an instruction, it had to also be explicitly associated with a virtual register as a so-called FixedRegister or FixedStackSlot. For the implementation of tail calls, the plan is to use the gap resolver needs to shuffle stack locations from the caller to the tail-called callee. In order to do this, it must be possible to explicitly address operand locations on the stack that are not associated with virtual registers. This CL introduces ExplictOperands, which can specify a specific register or stack location that is not associated with virtual register. This will allow tail calls to specify the target locations for the necessary stack moves in the gap for the tail call without the core register allocation having to know about the target of the stack moves at all. In the process this CL: * creates a new Operand kind, ExplicitOperand, with which instructions can specify register and stack slots without an associated virtual register. * creates a LocationOperand class from which AllocatedOperand and ExplicitOperand are derived and provides a common interface to get Register, DoubleRegister and spill slot information. * removes RegisterOperand, DoubleRegisterOperand, StackSlotOperand and DoubleStackSlotOperand, they are subsumed by LocationOperand. * addresses a cleanup TODO in AllocatedOperand to reduce the redundancy of AllocatedOperand::Kind by using machine_type() to determine if an operand corresponds to a general purpose or double register. BUG=v8:4076 LOG=n Review URL: https://codereview.chromium.org/1389373002 Cr-Commit-Position: refs/heads/master@{#31603}
2015-10-27 13:26:35 +00:00
TEST_F(MoveOptimizerTest, RemovesRedundantExplicit) {
int index1 = GetAllocatableCode(0);
int index2 = GetAllocatableCode(1);
int s128_1 = GetAllocatableCode(kS128_1, kSimd128);
int s128_2 = GetAllocatableCode(kS128_2, kSimd128);
int f64_1 = GetAllocatableCode(kF64_1, kFloat64);
int f64_2 = GetAllocatableCode(kF64_2, kFloat64);
int f32_1 = GetAllocatableCode(kF32_1, kFloat32);
int f32_2 = GetAllocatableCode(kF32_2, kFloat32);
[turbofan] Create ExplicitOperands to specify operands without virtual registers Up until now, if one wanted to specify an explicit stack location or register as an operand for an instruction, it had to also be explicitly associated with a virtual register as a so-called FixedRegister or FixedStackSlot. For the implementation of tail calls, the plan is to use the gap resolver needs to shuffle stack locations from the caller to the tail-called callee. In order to do this, it must be possible to explicitly address operand locations on the stack that are not associated with virtual registers. This CL introduces ExplictOperands, which can specify a specific register or stack location that is not associated with virtual register. This will allow tail calls to specify the target locations for the necessary stack moves in the gap for the tail call without the core register allocation having to know about the target of the stack moves at all. In the process this CL: * creates a new Operand kind, ExplicitOperand, with which instructions can specify register and stack slots without an associated virtual register. * creates a LocationOperand class from which AllocatedOperand and ExplicitOperand are derived and provides a common interface to get Register, DoubleRegister and spill slot information. * removes RegisterOperand, DoubleRegisterOperand, StackSlotOperand and DoubleStackSlotOperand, they are subsumed by LocationOperand. * addresses a cleanup TODO in AllocatedOperand to reduce the redundancy of AllocatedOperand::Kind by using machine_type() to determine if an operand corresponds to a general purpose or double register. BUG=v8:4076 LOG=n Review URL: https://codereview.chromium.org/1389373002 Cr-Commit-Position: refs/heads/master@{#31603}
2015-10-27 13:26:35 +00:00
StartBlock();
auto first_instr = EmitNop();
auto last_instr = EmitNop();
AddMove(first_instr, Reg(index1), ExplicitReg(index2));
AddMove(last_instr, Reg(index2), Reg(index1));
AddMove(first_instr, FPReg(s128_1, kSimd128),
ExplicitFPReg(s128_2, kSimd128));
AddMove(last_instr, FPReg(s128_2, kSimd128), FPReg(s128_1, kSimd128));
AddMove(first_instr, FPReg(f64_1, kFloat64), ExplicitFPReg(f64_2, kFloat64));
AddMove(last_instr, FPReg(f64_2, kFloat64), FPReg(f64_1, kFloat64));
AddMove(first_instr, FPReg(f32_1, kFloat32), ExplicitFPReg(f32_2, kFloat32));
AddMove(last_instr, FPReg(f32_2, kFloat32), FPReg(f32_1, kFloat32));
[turbofan] Create ExplicitOperands to specify operands without virtual registers Up until now, if one wanted to specify an explicit stack location or register as an operand for an instruction, it had to also be explicitly associated with a virtual register as a so-called FixedRegister or FixedStackSlot. For the implementation of tail calls, the plan is to use the gap resolver needs to shuffle stack locations from the caller to the tail-called callee. In order to do this, it must be possible to explicitly address operand locations on the stack that are not associated with virtual registers. This CL introduces ExplictOperands, which can specify a specific register or stack location that is not associated with virtual register. This will allow tail calls to specify the target locations for the necessary stack moves in the gap for the tail call without the core register allocation having to know about the target of the stack moves at all. In the process this CL: * creates a new Operand kind, ExplicitOperand, with which instructions can specify register and stack slots without an associated virtual register. * creates a LocationOperand class from which AllocatedOperand and ExplicitOperand are derived and provides a common interface to get Register, DoubleRegister and spill slot information. * removes RegisterOperand, DoubleRegisterOperand, StackSlotOperand and DoubleStackSlotOperand, they are subsumed by LocationOperand. * addresses a cleanup TODO in AllocatedOperand to reduce the redundancy of AllocatedOperand::Kind by using machine_type() to determine if an operand corresponds to a general purpose or double register. BUG=v8:4076 LOG=n Review URL: https://codereview.chromium.org/1389373002 Cr-Commit-Position: refs/heads/master@{#31603}
2015-10-27 13:26:35 +00:00
EndBlock(Last());
Optimize();
CHECK_EQ(0, NonRedundantSize(first_instr->parallel_moves()[0]));
auto move = last_instr->parallel_moves()[0];
CHECK_EQ(4, NonRedundantSize(move));
CHECK(Contains(move, Reg(index1), ExplicitReg(index2)));
CHECK(
Contains(move, FPReg(s128_1, kSimd128), ExplicitFPReg(s128_2, kSimd128)));
CHECK(Contains(move, FPReg(f64_1, kFloat64), ExplicitFPReg(f64_2, kFloat64)));
CHECK(Contains(move, FPReg(f32_1, kFloat32), ExplicitFPReg(f32_2, kFloat32)));
[turbofan] Create ExplicitOperands to specify operands without virtual registers Up until now, if one wanted to specify an explicit stack location or register as an operand for an instruction, it had to also be explicitly associated with a virtual register as a so-called FixedRegister or FixedStackSlot. For the implementation of tail calls, the plan is to use the gap resolver needs to shuffle stack locations from the caller to the tail-called callee. In order to do this, it must be possible to explicitly address operand locations on the stack that are not associated with virtual registers. This CL introduces ExplictOperands, which can specify a specific register or stack location that is not associated with virtual register. This will allow tail calls to specify the target locations for the necessary stack moves in the gap for the tail call without the core register allocation having to know about the target of the stack moves at all. In the process this CL: * creates a new Operand kind, ExplicitOperand, with which instructions can specify register and stack slots without an associated virtual register. * creates a LocationOperand class from which AllocatedOperand and ExplicitOperand are derived and provides a common interface to get Register, DoubleRegister and spill slot information. * removes RegisterOperand, DoubleRegisterOperand, StackSlotOperand and DoubleStackSlotOperand, they are subsumed by LocationOperand. * addresses a cleanup TODO in AllocatedOperand to reduce the redundancy of AllocatedOperand::Kind by using machine_type() to determine if an operand corresponds to a general purpose or double register. BUG=v8:4076 LOG=n Review URL: https://codereview.chromium.org/1389373002 Cr-Commit-Position: refs/heads/master@{#31603}
2015-10-27 13:26:35 +00:00
}
TEST_F(MoveOptimizerTest, SplitsConstants) {
StartBlock();
EndBlock(Last());
auto gap = LastInstruction();
AddMove(gap, Const(1), Slot(0));
AddMove(gap, Const(1), Slot(1));
AddMove(gap, Const(1), Reg(0));
AddMove(gap, Const(1), Slot(2));
Optimize();
auto move = gap->parallel_moves()[0];
CHECK_EQ(1, NonRedundantSize(move));
CHECK(Contains(move, Const(1), Reg(0)));
move = gap->parallel_moves()[1];
CHECK_EQ(3, NonRedundantSize(move));
CHECK(Contains(move, Reg(0), Slot(0)));
CHECK(Contains(move, Reg(0), Slot(1)));
CHECK(Contains(move, Reg(0), Slot(2)));
}
TEST_F(MoveOptimizerTest, SimpleMerge) {
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
EndBlock(Jump(2));
AddMove(LastInstruction(), Reg(0), Reg(1));
AddMove(LastInstruction(), FPReg(kS128_1, kSimd128),
FPReg(kS128_2, kSimd128));
AddMove(LastInstruction(), FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64));
AddMove(LastInstruction(), FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32));
StartBlock();
EndBlock(Jump(1));
AddMove(LastInstruction(), Reg(0), Reg(1));
AddMove(LastInstruction(), FPReg(kS128_1, kSimd128),
FPReg(kS128_2, kSimd128));
AddMove(LastInstruction(), FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64));
AddMove(LastInstruction(), FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32));
StartBlock();
EndBlock(Last());
auto last = LastInstruction();
Optimize();
auto move = last->parallel_moves()[0];
CHECK_EQ(4, NonRedundantSize(move));
CHECK(Contains(move, Reg(0), Reg(1)));
CHECK(Contains(move, FPReg(kS128_1, kSimd128), FPReg(kS128_2, kSimd128)));
CHECK(Contains(move, FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64)));
CHECK(Contains(move, FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32)));
}
TEST_F(MoveOptimizerTest, SimpleMergeCycle) {
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
EndBlock(Jump(2));
auto gap_0 = LastInstruction();
AddMove(gap_0, Reg(0), Reg(1));
AddMove(LastInstruction(), Reg(1), Reg(0));
AddMove(gap_0, FPReg(kS128_1, kSimd128), FPReg(kS128_2, kSimd128));
AddMove(LastInstruction(), FPReg(kS128_2, kSimd128),
FPReg(kS128_1, kSimd128));
AddMove(gap_0, FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64));
AddMove(LastInstruction(), FPReg(kF64_2, kFloat64), FPReg(kF64_1, kFloat64));
AddMove(gap_0, FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32));
AddMove(LastInstruction(), FPReg(kF32_2, kFloat32), FPReg(kF32_1, kFloat32));
StartBlock();
EndBlock(Jump(1));
auto gap_1 = LastInstruction();
AddMove(gap_1, Reg(0), Reg(1));
AddMove(gap_1, Reg(1), Reg(0));
AddMove(gap_1, FPReg(kS128_1, kSimd128), FPReg(kS128_2, kSimd128));
AddMove(gap_1, FPReg(kS128_2, kSimd128), FPReg(kS128_1, kSimd128));
AddMove(gap_1, FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64));
AddMove(gap_1, FPReg(kF64_2, kFloat64), FPReg(kF64_1, kFloat64));
AddMove(gap_1, FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32));
AddMove(gap_1, FPReg(kF32_2, kFloat32), FPReg(kF32_1, kFloat32));
StartBlock();
EndBlock(Last());
auto last = LastInstruction();
Optimize();
CHECK(gap_0->AreMovesRedundant());
CHECK(gap_1->AreMovesRedundant());
auto move = last->parallel_moves()[0];
CHECK_EQ(8, NonRedundantSize(move));
CHECK(Contains(move, Reg(0), Reg(1)));
CHECK(Contains(move, Reg(1), Reg(0)));
CHECK(Contains(move, FPReg(kS128_1, kSimd128), FPReg(kS128_2, kSimd128)));
CHECK(Contains(move, FPReg(kS128_2, kSimd128), FPReg(kS128_1, kSimd128)));
CHECK(Contains(move, FPReg(kF64_1, kFloat64), FPReg(kF64_2, kFloat64)));
CHECK(Contains(move, FPReg(kF64_2, kFloat64), FPReg(kF64_1, kFloat64)));
CHECK(Contains(move, FPReg(kF32_1, kFloat32), FPReg(kF32_2, kFloat32)));
CHECK(Contains(move, FPReg(kF32_2, kFloat32), FPReg(kF32_1, kFloat32)));
}
TEST_F(MoveOptimizerTest, GapsCanMoveOverInstruction) {
StartBlock();
int const_index = 1;
DefineConstant(const_index);
Instruction* ctant_def = LastInstruction();
AddMove(ctant_def, Reg(1), Reg(0));
Instruction* last = EmitNop();
AddMove(last, Const(const_index), Reg(0));
AddMove(last, Reg(0), Reg(1));
EndBlock(Last());
Optimize();
ParallelMove* inst1_start =
ctant_def->GetParallelMove(Instruction::GapPosition::START);
ParallelMove* inst1_end =
ctant_def->GetParallelMove(Instruction::GapPosition::END);
ParallelMove* last_start =
last->GetParallelMove(Instruction::GapPosition::START);
CHECK(inst1_start == nullptr || NonRedundantSize(inst1_start) == 0);
CHECK(inst1_end == nullptr || NonRedundantSize(inst1_end) == 0);
CHECK(last_start->size() == 2);
int redundants = 0;
int assignment = 0;
for (MoveOperands* move : *last_start) {
if (move->IsRedundant()) {
++redundants;
} else {
++assignment;
CHECK(move->destination().IsRegister());
CHECK(move->source().IsConstant());
}
}
CHECK_EQ(1, redundants);
CHECK_EQ(1, assignment);
}
TEST_F(MoveOptimizerTest, SubsetMovesMerge) {
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
EndBlock(Jump(2));
Instruction* last_move_b1 = LastInstruction();
AddMove(last_move_b1, Reg(0), Reg(1));
AddMove(last_move_b1, Reg(2), Reg(3));
StartBlock();
EndBlock(Jump(1));
Instruction* last_move_b2 = LastInstruction();
AddMove(last_move_b2, Reg(0), Reg(1));
AddMove(last_move_b2, Reg(4), Reg(5));
StartBlock();
EndBlock(Last());
Instruction* last = LastInstruction();
Optimize();
ParallelMove* last_move = last->parallel_moves()[0];
CHECK_EQ(1, NonRedundantSize(last_move));
CHECK(Contains(last_move, Reg(0), Reg(1)));
ParallelMove* b1_move = last_move_b1->parallel_moves()[0];
CHECK_EQ(1, NonRedundantSize(b1_move));
CHECK(Contains(b1_move, Reg(2), Reg(3)));
ParallelMove* b2_move = last_move_b2->parallel_moves()[0];
CHECK_EQ(1, NonRedundantSize(b2_move));
CHECK(Contains(b2_move, Reg(4), Reg(5)));
}
TEST_F(MoveOptimizerTest, GapConflictSubsetMovesDoNotMerge) {
StartBlock();
EndBlock(Branch(Imm(), 1, 2));
StartBlock();
EndBlock(Jump(2));
Instruction* last_move_b1 = LastInstruction();
AddMove(last_move_b1, Reg(0), Reg(1));
AddMove(last_move_b1, Reg(2), Reg(0));
AddMove(last_move_b1, Reg(4), Reg(5));
StartBlock();
EndBlock(Jump(1));
Instruction* last_move_b2 = LastInstruction();
AddMove(last_move_b2, Reg(0), Reg(1));
AddMove(last_move_b2, Reg(4), Reg(5));
StartBlock();
EndBlock(Last());
Instruction* last = LastInstruction();
Optimize();
ParallelMove* last_move = last->parallel_moves()[0];
CHECK_EQ(1, NonRedundantSize(last_move));
CHECK(Contains(last_move, Reg(4), Reg(5)));
ParallelMove* b1_move = last_move_b1->parallel_moves()[0];
CHECK_EQ(2, NonRedundantSize(b1_move));
CHECK(Contains(b1_move, Reg(0), Reg(1)));
CHECK(Contains(b1_move, Reg(2), Reg(0)));
ParallelMove* b2_move = last_move_b2->parallel_moves()[0];
CHECK_EQ(1, NonRedundantSize(b2_move));
CHECK(Contains(b1_move, Reg(0), Reg(1)));
}
TEST_F(MoveOptimizerTest, ClobberedDestinationsAreEliminated) {
StartBlock();
EmitNop();
Instruction* first_instr = LastInstruction();
AddMove(first_instr, Reg(0), Reg(1));
EmitOI(Reg(1), 0, nullptr);
Instruction* last_instr = LastInstruction();
EndBlock();
Optimize();
ParallelMove* first_move = first_instr->parallel_moves()[0];
CHECK_EQ(0, NonRedundantSize(first_move));
ParallelMove* last_move = last_instr->parallel_moves()[0];
CHECK_EQ(0, NonRedundantSize(last_move));
}
TEST_F(MoveOptimizerTest, ClobberedFPDestinationsAreEliminated) {
StartBlock();
EmitNop();
Instruction* first_instr = LastInstruction();
AddMove(first_instr, FPReg(4, kFloat64), FPReg(1, kFloat64));
if (!kSimpleFPAliasing) {
// We clobber q0 below. This is aliased by d0, d1, s0, s1, s2, and s3.
// Add moves to registers s2 and s3.
AddMove(first_instr, FPReg(10, kFloat32), FPReg(0, kFloat32));
AddMove(first_instr, FPReg(11, kFloat32), FPReg(1, kFloat32));
}
// Clobbers output register 0.
EmitOI(FPReg(0, kSimd128), 0, nullptr);
Instruction* last_instr = LastInstruction();
EndBlock();
Optimize();
ParallelMove* first_move = first_instr->parallel_moves()[0];
CHECK_EQ(0, NonRedundantSize(first_move));
ParallelMove* last_move = last_instr->parallel_moves()[0];
CHECK_EQ(0, NonRedundantSize(last_move));
}
} // namespace compiler
} // namespace internal
} // namespace v8