v8/src/globals.h

938 lines
28 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_GLOBALS_H_
#define V8_GLOBALS_H_
#include <stddef.h>
#include <stdint.h>
#include <ostream>
#include "src/base/build_config.h"
#include "src/base/logging.h"
#include "src/base/macros.h"
// Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
// warning flag and certain versions of GCC due to a bug:
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
// For now, we use the more involved template-based version from <limits>, but
// only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
#if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
# include <limits> // NOLINT
# define V8_INFINITY std::numeric_limits<double>::infinity()
#elif V8_LIBC_MSVCRT
# define V8_INFINITY HUGE_VAL
#elif V8_OS_AIX
#define V8_INFINITY (__builtin_inff())
#else
# define V8_INFINITY INFINITY
#endif
#if V8_TARGET_ARCH_IA32 || (V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_32_BIT) || \
V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC
#define V8_TURBOFAN_BACKEND 1
#else
#define V8_TURBOFAN_BACKEND 0
#endif
#if V8_TURBOFAN_BACKEND
#define V8_TURBOFAN_TARGET 1
#else
#define V8_TURBOFAN_TARGET 0
#endif
namespace v8 {
namespace base {
class Mutex;
class RecursiveMutex;
class VirtualMemory;
}
namespace internal {
// Determine whether we are running in a simulated environment.
// Setting USE_SIMULATOR explicitly from the build script will force
// the use of a simulated environment.
#if !defined(USE_SIMULATOR)
#if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
#define USE_SIMULATOR 1
#endif
#endif
// Determine whether the architecture uses an out-of-line constant pool.
#define V8_OOL_CONSTANT_POOL 0
#ifdef V8_TARGET_ARCH_ARM
// Set stack limit lower for ARM than for other architectures because
// stack allocating MacroAssembler takes 120K bytes.
// See issue crbug.com/405338
#define V8_DEFAULT_STACK_SIZE_KB 864
#else
// Slightly less than 1MB, since Windows' default stack size for
// the main execution thread is 1MB for both 32 and 64-bit.
#define V8_DEFAULT_STACK_SIZE_KB 984
#endif
// Determine whether double field unboxing feature is enabled.
#if V8_TARGET_ARCH_64_BIT
#define V8_DOUBLE_FIELDS_UNBOXING 1
#else
#define V8_DOUBLE_FIELDS_UNBOXING 0
#endif
typedef uint8_t byte;
typedef byte* Address;
// -----------------------------------------------------------------------------
// Constants
const int KB = 1024;
const int MB = KB * KB;
const int GB = KB * KB * KB;
const int kMaxInt = 0x7FFFFFFF;
const int kMinInt = -kMaxInt - 1;
const int kMaxInt8 = (1 << 7) - 1;
const int kMinInt8 = -(1 << 7);
const int kMaxUInt8 = (1 << 8) - 1;
const int kMinUInt8 = 0;
const int kMaxInt16 = (1 << 15) - 1;
const int kMinInt16 = -(1 << 15);
const int kMaxUInt16 = (1 << 16) - 1;
const int kMinUInt16 = 0;
const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
const int kCharSize = sizeof(char); // NOLINT
const int kShortSize = sizeof(short); // NOLINT
const int kIntSize = sizeof(int); // NOLINT
const int kInt32Size = sizeof(int32_t); // NOLINT
const int kInt64Size = sizeof(int64_t); // NOLINT
const int kDoubleSize = sizeof(double); // NOLINT
const int kIntptrSize = sizeof(intptr_t); // NOLINT
const int kPointerSize = sizeof(void*); // NOLINT
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
const int kRegisterSize = kPointerSize + kPointerSize;
#else
const int kRegisterSize = kPointerSize;
#endif
const int kPCOnStackSize = kRegisterSize;
const int kFPOnStackSize = kRegisterSize;
const int kDoubleSizeLog2 = 3;
#if V8_HOST_ARCH_64_BIT
const int kPointerSizeLog2 = 3;
const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
const bool kRequiresCodeRange = true;
const size_t kMaximalCodeRangeSize = 512 * MB;
#if V8_OS_WIN
const size_t kMinimumCodeRangeSize = 4 * MB;
const size_t kReservedCodeRangePages = 1;
#else
const size_t kMinimumCodeRangeSize = 3 * MB;
const size_t kReservedCodeRangePages = 0;
#endif
#else
const int kPointerSizeLog2 = 2;
const intptr_t kIntptrSignBit = 0x80000000;
const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
// x32 port also requires code range.
const bool kRequiresCodeRange = true;
const size_t kMaximalCodeRangeSize = 256 * MB;
const size_t kMinimumCodeRangeSize = 3 * MB;
const size_t kReservedCodeRangePages = 0;
#else
const bool kRequiresCodeRange = false;
const size_t kMaximalCodeRangeSize = 0 * MB;
const size_t kMinimumCodeRangeSize = 0 * MB;
const size_t kReservedCodeRangePages = 0;
#endif
#endif
STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
const int kBitsPerByte = 8;
const int kBitsPerByteLog2 = 3;
const int kBitsPerPointer = kPointerSize * kBitsPerByte;
const int kBitsPerInt = kIntSize * kBitsPerByte;
// IEEE 754 single precision floating point number bit layout.
const uint32_t kBinary32SignMask = 0x80000000u;
const uint32_t kBinary32ExponentMask = 0x7f800000u;
const uint32_t kBinary32MantissaMask = 0x007fffffu;
const int kBinary32ExponentBias = 127;
const int kBinary32MaxExponent = 0xFE;
const int kBinary32MinExponent = 0x01;
const int kBinary32MantissaBits = 23;
const int kBinary32ExponentShift = 23;
// Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
// other bits set.
const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
// Latin1/UTF-16 constants
// Code-point values in Unicode 4.0 are 21 bits wide.
// Code units in UTF-16 are 16 bits wide.
typedef uint16_t uc16;
typedef int32_t uc32;
const int kOneByteSize = kCharSize;
const int kUC16Size = sizeof(uc16); // NOLINT
// Round up n to be a multiple of sz, where sz is a power of 2.
#define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))
// FUNCTION_ADDR(f) gets the address of a C function f.
#define FUNCTION_ADDR(f) \
(reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))
// FUNCTION_CAST<F>(addr) casts an address into a function
// of type F. Used to invoke generated code from within C.
template <typename F>
F FUNCTION_CAST(Address addr) {
return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
}
// -----------------------------------------------------------------------------
// Forward declarations for frequently used classes
// (sorted alphabetically)
class FreeStoreAllocationPolicy;
template <typename T, class P = FreeStoreAllocationPolicy> class List;
// -----------------------------------------------------------------------------
// Declarations for use in both the preparser and the rest of V8.
// The Strict Mode (ECMA-262 5th edition, 4.2.2).
enum LanguageMode {
// LanguageMode is expressed as a bitmask. Descriptions of the bits:
STRICT_BIT = 1 << 0,
STRONG_BIT = 1 << 1,
LANGUAGE_END,
// Shorthands for some common language modes.
SLOPPY = 0,
STRICT = STRICT_BIT,
STRONG = STRICT_BIT | STRONG_BIT
};
inline std::ostream& operator<<(std::ostream& os, LanguageMode mode) {
switch (mode) {
case SLOPPY:
return os << "sloppy";
case STRICT:
return os << "strict";
case STRONG:
return os << "strong";
default:
return os << "unknown";
}
}
inline bool is_sloppy(LanguageMode language_mode) {
return (language_mode & STRICT_BIT) == 0;
}
inline bool is_strict(LanguageMode language_mode) {
return language_mode & STRICT_BIT;
}
inline bool is_strong(LanguageMode language_mode) {
return language_mode & STRONG_BIT;
}
inline bool is_valid_language_mode(int language_mode) {
return language_mode == SLOPPY || language_mode == STRICT ||
language_mode == STRONG;
}
inline LanguageMode construct_language_mode(bool strict_bit, bool strong_bit) {
int language_mode = 0;
if (strict_bit) language_mode |= STRICT_BIT;
if (strong_bit) language_mode |= STRONG_BIT;
DCHECK(is_valid_language_mode(language_mode));
return static_cast<LanguageMode>(language_mode);
}
// Mask for the sign bit in a smi.
const intptr_t kSmiSignMask = kIntptrSignBit;
const int kObjectAlignmentBits = kPointerSizeLog2;
const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
// Desired alignment for pointers.
const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
// Desired alignment for double values.
const intptr_t kDoubleAlignment = 8;
const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
// Desired alignment for generated code is 32 bytes (to improve cache line
// utilization).
const int kCodeAlignmentBits = 5;
const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
// The owner field of a page is tagged with the page header tag. We need that
// to find out if a slot is part of a large object. If we mask out the lower
// 0xfffff bits (1M pages), go to the owner offset, and see that this field
// is tagged with the page header tag, we can just look up the owner.
// Otherwise, we know that we are somewhere (not within the first 1M) in a
// large object.
const int kPageHeaderTag = 3;
const int kPageHeaderTagSize = 2;
const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
// Zap-value: The value used for zapping dead objects.
// Should be a recognizable hex value tagged as a failure.
#ifdef V8_HOST_ARCH_64_BIT
const Address kZapValue =
reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
const Address kHandleZapValue =
reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
const Address kGlobalHandleZapValue =
reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
const Address kFromSpaceZapValue =
reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
#else
const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
const uint32_t kSlotsZapValue = 0xbeefdeef;
const uint32_t kDebugZapValue = 0xbadbaddb;
const uint32_t kFreeListZapValue = 0xfeed1eaf;
#endif
const int kCodeZapValue = 0xbadc0de;
const uint32_t kPhantomReferenceZap = 0xca11bac;
// On Intel architecture, cache line size is 64 bytes.
// On ARM it may be less (32 bytes), but as far this constant is
// used for aligning data, it doesn't hurt to align on a greater value.
#define PROCESSOR_CACHE_LINE_SIZE 64
// Constants relevant to double precision floating point numbers.
// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
// -----------------------------------------------------------------------------
// Forward declarations for frequently used classes
class AccessorInfo;
class Allocation;
class Arguments;
class Assembler;
class Code;
class CodeGenerator;
class CodeStub;
class Context;
class Debug;
class Debugger;
class DebugInfo;
class Descriptor;
class DescriptorArray;
class TransitionArray;
class ExternalReference;
class FixedArray;
class FunctionTemplateInfo;
class MemoryChunk;
class SeededNumberDictionary;
class UnseededNumberDictionary;
class NameDictionary;
template <typename T> class MaybeHandle;
template <typename T> class Handle;
class Heap;
class HeapObject;
class IC;
class InterceptorInfo;
class Isolate;
class JSReceiver;
class JSArray;
class JSFunction;
class JSObject;
class LargeObjectSpace;
class MacroAssembler;
class Map;
class MapSpace;
class MarkCompactCollector;
class NewSpace;
class Object;
class OldSpace;
class Foreign;
class Scope;
class ScopeInfo;
class Script;
class Smi;
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
class SplayTree;
class String;
class Symbol;
class Name;
class Struct;
class Symbol;
class Variable;
class RelocInfo;
class Deserializer;
class MessageLocation;
typedef bool (*WeakSlotCallback)(Object** pointer);
typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);
// -----------------------------------------------------------------------------
// Miscellaneous
// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
// consecutive.
// Keep this enum in sync with the ObjectSpace enum in v8.h
enum AllocationSpace {
NEW_SPACE, // Semispaces collected with copying collector.
OLD_SPACE, // May contain pointers to new space.
CODE_SPACE, // No pointers to new space, marked executable.
MAP_SPACE, // Only and all map objects.
LO_SPACE, // Promoted large objects.
FIRST_SPACE = NEW_SPACE,
LAST_SPACE = LO_SPACE,
FIRST_PAGED_SPACE = OLD_SPACE,
LAST_PAGED_SPACE = MAP_SPACE
};
const int kSpaceTagSize = 3;
const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;
enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
// A flag that indicates whether objects should be pretenured when
// allocated (allocated directly into the old generation) or not
// (allocated in the young generation if the object size and type
// allows).
enum PretenureFlag { NOT_TENURED, TENURED };
enum MinimumCapacity {
USE_DEFAULT_MINIMUM_CAPACITY,
USE_CUSTOM_MINIMUM_CAPACITY
};
enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
enum Executability { NOT_EXECUTABLE, EXECUTABLE };
enum VisitMode {
VISIT_ALL,
VISIT_ALL_IN_SCAVENGE,
VISIT_ALL_IN_SWEEP_NEWSPACE,
VISIT_ONLY_STRONG
};
// Flag indicating whether code is built into the VM (one of the natives files).
enum NativesFlag { NOT_NATIVES_CODE, NATIVES_CODE };
// ParseRestriction is used to restrict the set of valid statements in a
// unit of compilation. Restriction violations cause a syntax error.
enum ParseRestriction {
NO_PARSE_RESTRICTION, // All expressions are allowed.
ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
};
// A CodeDesc describes a buffer holding instructions and relocation
// information. The instructions start at the beginning of the buffer
// and grow forward, the relocation information starts at the end of
// the buffer and grows backward.
//
// |<--------------- buffer_size ---------------->|
// |<-- instr_size -->| |<-- reloc_size -->|
// +==================+========+==================+
// | instructions | free | reloc info |
// +==================+========+==================+
// ^
// |
// buffer
struct CodeDesc {
byte* buffer;
int buffer_size;
int instr_size;
int reloc_size;
Assembler* origin;
};
// Callback function used for iterating objects in heap spaces,
// for example, scanning heap objects.
typedef int (*HeapObjectCallback)(HeapObject* obj);
// Callback function used for checking constraints when copying/relocating
// objects. Returns true if an object can be copied/relocated from its
// old_addr to a new_addr.
typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);
// Callback function on inline caches, used for iterating over inline caches
// in compiled code.
typedef void (*InlineCacheCallback)(Code* code, Address ic);
// State for inline cache call sites. Aliased as IC::State.
enum InlineCacheState {
// Has never been executed.
UNINITIALIZED,
// Has been executed but monomorhic state has been delayed.
PREMONOMORPHIC,
// Has been executed and only one receiver type has been seen.
MONOMORPHIC,
// Check failed due to prototype (or map deprecation).
PROTOTYPE_FAILURE,
// Multiple receiver types have been seen.
POLYMORPHIC,
// Many receiver types have been seen.
MEGAMORPHIC,
// A generic handler is installed and no extra typefeedback is recorded.
GENERIC,
// Special state for debug break or step in prepare stubs.
DEBUG_STUB,
// Type-vector-based ICs have a default state, with the full calculation
// of IC state only determined by a look at the IC and the typevector
// together.
DEFAULT
};
enum CallFunctionFlags {
NO_CALL_FUNCTION_FLAGS,
CALL_AS_METHOD,
// Always wrap the receiver and call to the JSFunction. Only use this flag
// both the receiver type and the target method are statically known.
WRAP_AND_CALL
};
enum CallConstructorFlags {
NO_CALL_CONSTRUCTOR_FLAGS = 0,
// The call target is cached in the instruction stream.
RECORD_CONSTRUCTOR_TARGET = 1,
SUPER_CONSTRUCTOR_CALL = 1 << 1,
SUPER_CALL_RECORD_TARGET = SUPER_CONSTRUCTOR_CALL | RECORD_CONSTRUCTOR_TARGET
};
enum CacheHolderFlag {
kCacheOnPrototype,
kCacheOnPrototypeReceiverIsDictionary,
kCacheOnPrototypeReceiverIsPrimitive,
kCacheOnReceiver
};
// The Store Buffer (GC).
typedef enum {
kStoreBufferFullEvent,
kStoreBufferStartScanningPagesEvent,
kStoreBufferScanningPageEvent
} StoreBufferEvent;
typedef void (*StoreBufferCallback)(Heap* heap,
MemoryChunk* page,
StoreBufferEvent event);
// Union used for fast testing of specific double values.
union DoubleRepresentation {
double value;
int64_t bits;
DoubleRepresentation(double x) { value = x; }
bool operator==(const DoubleRepresentation& other) const {
return bits == other.bits;
}
};
// Union used for customized checking of the IEEE double types
// inlined within v8 runtime, rather than going to the underlying
// platform headers and libraries
union IeeeDoubleLittleEndianArchType {
double d;
struct {
unsigned int man_low :32;
unsigned int man_high :20;
unsigned int exp :11;
unsigned int sign :1;
} bits;
};
union IeeeDoubleBigEndianArchType {
double d;
struct {
unsigned int sign :1;
unsigned int exp :11;
unsigned int man_high :20;
unsigned int man_low :32;
} bits;
};
// AccessorCallback
struct AccessorDescriptor {
Object* (*getter)(Isolate* isolate, Object* object, void* data);
Object* (*setter)(
Isolate* isolate, JSObject* object, Object* value, void* data);
void* data;
};
// -----------------------------------------------------------------------------
// Macros
// Testers for test.
#define HAS_SMI_TAG(value) \
((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)
// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
#define OBJECT_POINTER_ALIGN(value) \
(((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)
// POINTER_SIZE_ALIGN returns the value aligned as a pointer.
#define POINTER_SIZE_ALIGN(value) \
(((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)
// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
#define CODE_POINTER_ALIGN(value) \
(((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)
// DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
#define DOUBLE_POINTER_ALIGN(value) \
(((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)
// CPU feature flags.
enum CpuFeature {
// x86
SSE4_1,
SSE3,
SAHF,
AVX,
FMA3,
BMI1,
BMI2,
LZCNT,
POPCNT,
ATOM,
// ARM
VFP3,
ARMv7,
ARMv8,
SUDIV,
MLS,
UNALIGNED_ACCESSES,
MOVW_MOVT_IMMEDIATE_LOADS,
VFP32DREGS,
NEON,
// MIPS, MIPS64
FPU,
FP64FPU,
MIPSr1,
MIPSr2,
MIPSr6,
// ARM64
ALWAYS_ALIGN_CSP,
COHERENT_CACHE,
// PPC
FPR_GPR_MOV,
LWSYNC,
ISELECT,
NUMBER_OF_CPU_FEATURES
};
// Used to specify if a macro instruction must perform a smi check on tagged
// values.
enum SmiCheckType {
DONT_DO_SMI_CHECK,
DO_SMI_CHECK
};
enum ScopeType {
EVAL_SCOPE, // The top-level scope for an eval source.
FUNCTION_SCOPE, // The top-level scope for a function.
MODULE_SCOPE, // The scope introduced by a module literal
SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
CATCH_SCOPE, // The scope introduced by catch.
BLOCK_SCOPE, // The scope introduced by a new block.
WITH_SCOPE, // The scope introduced by with.
ARROW_SCOPE // The top-level scope for an arrow function literal.
};
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6)) || \
(V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6))
const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
#else
const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
#endif
const uint64_t kHoleNanInt64 =
(static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
// The order of this enum has to be kept in sync with the predicates below.
enum VariableMode {
// User declared variables:
VAR, // declared via 'var', and 'function' declarations
CONST_LEGACY, // declared via legacy 'const' declarations
LET, // declared via 'let' declarations (first lexical)
CONST, // declared via 'const' declarations
IMPORT, // declared via 'import' declarations (last lexical)
// Variables introduced by the compiler:
INTERNAL, // like VAR, but not user-visible (may or may not
// be in a context)
TEMPORARY, // temporary variables (not user-visible), stack-allocated
// unless the scope as a whole has forced context allocation
DYNAMIC, // always require dynamic lookup (we don't know
// the declaration)
DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the
// variable is global unless it has been shadowed
// by an eval-introduced variable
DYNAMIC_LOCAL // requires dynamic lookup, but we know that the
// variable is local and where it is unless it
// has been shadowed by an eval-introduced
// variable
};
inline bool IsDynamicVariableMode(VariableMode mode) {
return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
}
inline bool IsDeclaredVariableMode(VariableMode mode) {
return mode >= VAR && mode <= IMPORT;
}
inline bool IsLexicalVariableMode(VariableMode mode) {
return mode >= LET && mode <= IMPORT;
}
inline bool IsImmutableVariableMode(VariableMode mode) {
return mode == CONST || mode == CONST_LEGACY || mode == IMPORT;
}
// ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
// and immutable bindings that can be in two states: initialized and
// uninitialized. In ES5 only immutable bindings have these two states. When
// accessing a binding, it needs to be checked for initialization. However in
// the following cases the binding is initialized immediately after creation
// so the initialization check can always be skipped:
// 1. Var declared local variables.
// var foo;
// 2. A local variable introduced by a function declaration.
// function foo() {}
// 3. Parameters
// function x(foo) {}
// 4. Catch bound variables.
// try {} catch (foo) {}
// 6. Function variables of named function expressions.
// var x = function foo() {}
// 7. Implicit binding of 'this'.
// 8. Implicit binding of 'arguments' in functions.
//
// ES5 specified object environment records which are introduced by ES elements
// such as Program and WithStatement that associate identifier bindings with the
// properties of some object. In the specification only mutable bindings exist
// (which may be non-writable) and have no distinct initialization step. However
// V8 allows const declarations in global code with distinct creation and
// initialization steps which are represented by non-writable properties in the
// global object. As a result also these bindings need to be checked for
// initialization.
//
// The following enum specifies a flag that indicates if the binding needs a
// distinct initialization step (kNeedsInitialization) or if the binding is
// immediately initialized upon creation (kCreatedInitialized).
enum InitializationFlag {
kNeedsInitialization,
kCreatedInitialized
};
enum MaybeAssignedFlag { kNotAssigned, kMaybeAssigned };
// Serialized in PreparseData, so numeric values should not be changed.
enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };
enum ClearExceptionFlag {
KEEP_EXCEPTION,
CLEAR_EXCEPTION
};
enum MinusZeroMode {
TREAT_MINUS_ZERO_AS_ZERO,
FAIL_ON_MINUS_ZERO
};
enum Signedness { kSigned, kUnsigned };
enum FunctionKind {
kNormalFunction = 0,
kArrowFunction = 1 << 0,
kGeneratorFunction = 1 << 1,
kConciseMethod = 1 << 2,
kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
kAccessorFunction = 1 << 3,
kDefaultConstructor = 1 << 4,
kSubclassConstructor = 1 << 5,
kBaseConstructor = 1 << 6,
kInObjectLiteral = 1 << 7,
kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor,
kConciseMethodInObjectLiteral = kConciseMethod | kInObjectLiteral,
kConciseGeneratorMethodInObjectLiteral =
kConciseGeneratorMethod | kInObjectLiteral,
kAccessorFunctionInObjectLiteral = kAccessorFunction | kInObjectLiteral,
};
inline bool IsValidFunctionKind(FunctionKind kind) {
return kind == FunctionKind::kNormalFunction ||
kind == FunctionKind::kArrowFunction ||
kind == FunctionKind::kGeneratorFunction ||
kind == FunctionKind::kConciseMethod ||
kind == FunctionKind::kConciseGeneratorMethod ||
kind == FunctionKind::kAccessorFunction ||
kind == FunctionKind::kDefaultBaseConstructor ||
kind == FunctionKind::kDefaultSubclassConstructor ||
kind == FunctionKind::kBaseConstructor ||
kind == FunctionKind::kSubclassConstructor ||
kind == FunctionKind::kConciseMethodInObjectLiteral ||
kind == FunctionKind::kConciseGeneratorMethodInObjectLiteral ||
kind == FunctionKind::kAccessorFunctionInObjectLiteral;
}
inline bool IsArrowFunction(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kArrowFunction;
}
inline bool IsGeneratorFunction(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kGeneratorFunction;
}
inline bool IsConciseMethod(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kConciseMethod;
}
inline bool IsAccessorFunction(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kAccessorFunction;
}
inline bool IsDefaultConstructor(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kDefaultConstructor;
}
inline bool IsBaseConstructor(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kBaseConstructor;
}
inline bool IsSubclassConstructor(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kSubclassConstructor;
}
inline bool IsConstructor(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind &
(FunctionKind::kBaseConstructor | FunctionKind::kSubclassConstructor |
FunctionKind::kDefaultConstructor);
}
inline bool IsInObjectLiteral(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
return kind & FunctionKind::kInObjectLiteral;
}
inline FunctionKind WithObjectLiteralBit(FunctionKind kind) {
kind = static_cast<FunctionKind>(kind | FunctionKind::kInObjectLiteral);
DCHECK(IsValidFunctionKind(kind));
return kind;
}
} } // namespace v8::internal
namespace i = v8::internal;
#endif // V8_GLOBALS_H_