v8/src/parser.h

1003 lines
35 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PARSER_H_
#define V8_PARSER_H_
#include "src/allocation.h"
#include "src/ast.h"
#include "src/compiler.h" // For CachedDataMode
#include "src/preparse-data.h"
#include "src/preparse-data-format.h"
#include "src/preparser.h"
#include "src/scopes.h"
namespace v8 {
class ScriptCompiler;
namespace internal {
class CompilationInfo;
class ParserLog;
class PositionStack;
class Target;
class FunctionEntry BASE_EMBEDDED {
public:
enum {
kStartPositionIndex,
kEndPositionIndex,
kLiteralCountIndex,
kPropertyCountIndex,
kStrictModeIndex,
kSize
};
explicit FunctionEntry(Vector<unsigned> backing)
: backing_(backing) { }
FunctionEntry() : backing_() { }
int start_pos() { return backing_[kStartPositionIndex]; }
int end_pos() { return backing_[kEndPositionIndex]; }
int literal_count() { return backing_[kLiteralCountIndex]; }
int property_count() { return backing_[kPropertyCountIndex]; }
StrictMode strict_mode() {
DCHECK(backing_[kStrictModeIndex] == SLOPPY ||
backing_[kStrictModeIndex] == STRICT);
return static_cast<StrictMode>(backing_[kStrictModeIndex]);
}
bool is_valid() { return !backing_.is_empty(); }
private:
Vector<unsigned> backing_;
};
// Wrapper around ScriptData to provide parser-specific functionality.
class ParseData {
public:
static ParseData* FromCachedData(ScriptData* cached_data) {
ParseData* pd = new ParseData(cached_data);
if (pd->IsSane()) return pd;
cached_data->Reject();
delete pd;
return NULL;
}
void Initialize();
FunctionEntry GetFunctionEntry(int start);
int FunctionCount();
bool HasError();
unsigned* Data() { // Writable data as unsigned int array.
return reinterpret_cast<unsigned*>(const_cast<byte*>(script_data_->data()));
Update tests to use the new compilation API + related fixes. Esp. get rid of PreCompile in tests, as it's going to be removed. Notes: - The new compilation API doesn't have a separate precompilation phase, so there is no separate way to check for errors except checking the compilation errors. Removed some tests which don't make sense any more. - test-api/Regress31661 didn't make sense as a regression test even before the compilation API changes, because Blink doesn't precompile this short scripts. So detecting this kind of errors (see crbug.com/31661 for more information) cannot rely on precompilation errors. - test-parsing/PreParserStrictOctal has nothing to do with PreParser, and the comment about "forcing preparsing" was just wrong. - test-api/PreCompile was supposed to test that "pre-compilation (aka preparsing) can be called without initializing the whole VM"; that's no longer true, since there's no separate precompilation step in the new compile API. There are other tests (test-parsing/DontRegressPreParserDataSizes) which ensure that we produce cached data. - Updated tests which test preparsing to use PreParser directly (not via the preparsing API). - In the new compilation API, the user doesn't need to deal with ScriptData ever. It's only used internally, and needed in tests that test internal aspects (e.g., modify the cached data before passing it back). - Some tests which used to test preparse + parse now test first time parse + second time parse, and had to be modified to ensure we don't hit the compilation cache. BUG= R=ulan@chromium.org Review URL: https://codereview.chromium.org/225743002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20511 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-04-04 12:36:23 +00:00
}
void Reject() { script_data_->Reject(); }
bool rejected() const { return script_data_->rejected(); }
private:
explicit ParseData(ScriptData* script_data) : script_data_(script_data) {}
bool IsSane();
unsigned Magic();
unsigned Version();
int FunctionsSize();
int Length() const {
// Script data length is already checked to be a multiple of unsigned size.
return script_data_->length() / sizeof(unsigned);
}
ScriptData* script_data_;
int function_index_;
DISALLOW_COPY_AND_ASSIGN(ParseData);
};
// ----------------------------------------------------------------------------
// REGEXP PARSING
// A BufferedZoneList is an automatically growing list, just like (and backed
// by) a ZoneList, that is optimized for the case of adding and removing
// a single element. The last element added is stored outside the backing list,
// and if no more than one element is ever added, the ZoneList isn't even
// allocated.
// Elements must not be NULL pointers.
template <typename T, int initial_size>
class BufferedZoneList {
public:
BufferedZoneList() : list_(NULL), last_(NULL) {}
// Adds element at end of list. This element is buffered and can
// be read using last() or removed using RemoveLast until a new Add or until
// RemoveLast or GetList has been called.
void Add(T* value, Zone* zone) {
if (last_ != NULL) {
if (list_ == NULL) {
list_ = new(zone) ZoneList<T*>(initial_size, zone);
}
list_->Add(last_, zone);
}
last_ = value;
}
T* last() {
DCHECK(last_ != NULL);
return last_;
}
T* RemoveLast() {
DCHECK(last_ != NULL);
T* result = last_;
if ((list_ != NULL) && (list_->length() > 0))
last_ = list_->RemoveLast();
else
last_ = NULL;
return result;
}
T* Get(int i) {
DCHECK((0 <= i) && (i < length()));
if (list_ == NULL) {
DCHECK_EQ(0, i);
return last_;
} else {
if (i == list_->length()) {
DCHECK(last_ != NULL);
return last_;
} else {
return list_->at(i);
}
}
}
void Clear() {
list_ = NULL;
last_ = NULL;
}
int length() {
int length = (list_ == NULL) ? 0 : list_->length();
return length + ((last_ == NULL) ? 0 : 1);
}
ZoneList<T*>* GetList(Zone* zone) {
if (list_ == NULL) {
list_ = new(zone) ZoneList<T*>(initial_size, zone);
}
if (last_ != NULL) {
list_->Add(last_, zone);
last_ = NULL;
}
return list_;
}
private:
ZoneList<T*>* list_;
T* last_;
};
// Accumulates RegExp atoms and assertions into lists of terms and alternatives.
class RegExpBuilder: public ZoneObject {
public:
explicit RegExpBuilder(Zone* zone);
void AddCharacter(uc16 character);
// "Adds" an empty expression. Does nothing except consume a
// following quantifier
void AddEmpty();
void AddAtom(RegExpTree* tree);
void AddAssertion(RegExpTree* tree);
void NewAlternative(); // '|'
void AddQuantifierToAtom(
int min, int max, RegExpQuantifier::QuantifierType type);
RegExpTree* ToRegExp();
private:
void FlushCharacters();
void FlushText();
void FlushTerms();
Zone* zone() const { return zone_; }
Zone* zone_;
bool pending_empty_;
ZoneList<uc16>* characters_;
BufferedZoneList<RegExpTree, 2> terms_;
BufferedZoneList<RegExpTree, 2> text_;
BufferedZoneList<RegExpTree, 2> alternatives_;
#ifdef DEBUG
enum {ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM} last_added_;
#define LAST(x) last_added_ = x;
#else
#define LAST(x)
#endif
};
class RegExpParser BASE_EMBEDDED {
public:
RegExpParser(FlatStringReader* in, Handle<String>* error, bool multiline_mode,
bool unicode, Isolate* isolate, Zone* zone);
static bool ParseRegExp(Isolate* isolate, Zone* zone, FlatStringReader* input,
bool multiline, bool unicode,
RegExpCompileData* result);
RegExpTree* ParsePattern();
RegExpTree* ParseDisjunction();
RegExpTree* ParseGroup();
RegExpTree* ParseCharacterClass();
// Parses a {...,...} quantifier and stores the range in the given
// out parameters.
bool ParseIntervalQuantifier(int* min_out, int* max_out);
// Parses and returns a single escaped character. The character
// must not be 'b' or 'B' since they are usually handle specially.
uc32 ParseClassCharacterEscape();
// Checks whether the following is a length-digit hexadecimal number,
// and sets the value if it is.
bool ParseHexEscape(int length, uc32* value);
bool ParseUnicodeEscape(uc32* value);
bool ParseUnlimitedLengthHexNumber(int max_value, uc32* value);
uc32 ParseOctalLiteral();
// Tries to parse the input as a back reference. If successful it
// stores the result in the output parameter and returns true. If
// it fails it will push back the characters read so the same characters
// can be reparsed.
bool ParseBackReferenceIndex(int* index_out);
CharacterRange ParseClassAtom(uc16* char_class);
RegExpTree* ReportError(Vector<const char> message);
void Advance();
void Advance(int dist);
void Reset(int pos);
// Reports whether the pattern might be used as a literal search string.
// Only use if the result of the parse is a single atom node.
bool simple();
bool contains_anchor() { return contains_anchor_; }
void set_contains_anchor() { contains_anchor_ = true; }
int captures_started() { return captures_ == NULL ? 0 : captures_->length(); }
int position() { return next_pos_ - 1; }
bool failed() { return failed_; }
static bool IsSyntaxCharacter(uc32 c);
static const int kMaxCaptures = 1 << 16;
static const uc32 kEndMarker = (1 << 21);
private:
enum SubexpressionType {
INITIAL,
CAPTURE, // All positive values represent captures.
POSITIVE_LOOKAHEAD,
NEGATIVE_LOOKAHEAD,
GROUPING
};
class RegExpParserState : public ZoneObject {
public:
RegExpParserState(RegExpParserState* previous_state,
SubexpressionType group_type,
int disjunction_capture_index,
Zone* zone)
: previous_state_(previous_state),
builder_(new(zone) RegExpBuilder(zone)),
group_type_(group_type),
disjunction_capture_index_(disjunction_capture_index) {}
// Parser state of containing expression, if any.
RegExpParserState* previous_state() { return previous_state_; }
bool IsSubexpression() { return previous_state_ != NULL; }
// RegExpBuilder building this regexp's AST.
RegExpBuilder* builder() { return builder_; }
// Type of regexp being parsed (parenthesized group or entire regexp).
SubexpressionType group_type() { return group_type_; }
// Index in captures array of first capture in this sub-expression, if any.
// Also the capture index of this sub-expression itself, if group_type
// is CAPTURE.
int capture_index() { return disjunction_capture_index_; }
private:
// Linked list implementation of stack of states.
RegExpParserState* previous_state_;
// Builder for the stored disjunction.
RegExpBuilder* builder_;
// Stored disjunction type (capture, look-ahead or grouping), if any.
SubexpressionType group_type_;
// Stored disjunction's capture index (if any).
int disjunction_capture_index_;
};
Isolate* isolate() { return isolate_; }
Zone* zone() const { return zone_; }
uc32 current() { return current_; }
bool has_more() { return has_more_; }
bool has_next() { return next_pos_ < in()->length(); }
uc32 Next();
FlatStringReader* in() { return in_; }
void ScanForCaptures();
Isolate* isolate_;
Zone* zone_;
Handle<String>* error_;
ZoneList<RegExpCapture*>* captures_;
FlatStringReader* in_;
uc32 current_;
int next_pos_;
// The capture count is only valid after we have scanned for captures.
int capture_count_;
bool has_more_;
bool multiline_;
bool unicode_;
bool simple_;
bool contains_anchor_;
bool is_scanned_for_captures_;
bool failed_;
};
// ----------------------------------------------------------------------------
// JAVASCRIPT PARSING
class Parser;
class SingletonLogger;
class ParserTraits {
public:
struct Type {
// TODO(marja): To be removed. The Traits object should contain all the data
// it needs.
typedef v8::internal::Parser* Parser;
// Used by FunctionState and BlockState.
typedef v8::internal::Scope Scope;
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
typedef v8::internal::Scope* ScopePtr;
inline static Scope* ptr_to_scope(ScopePtr scope) { return scope; }
typedef Variable GeneratorVariable;
typedef v8::internal::Zone Zone;
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
typedef v8::internal::AstProperties AstProperties;
typedef Vector<VariableProxy*> ParameterIdentifierVector;
// Return types for traversing functions.
typedef const AstRawString* Identifier;
typedef v8::internal::Expression* Expression;
typedef Yield* YieldExpression;
typedef v8::internal::FunctionLiteral* FunctionLiteral;
typedef v8::internal::ClassLiteral* ClassLiteral;
typedef v8::internal::Literal* Literal;
typedef ObjectLiteral::Property* ObjectLiteralProperty;
typedef ZoneList<v8::internal::Expression*>* ExpressionList;
typedef ZoneList<ObjectLiteral::Property*>* PropertyList;
typedef ZoneList<v8::internal::Statement*>* StatementList;
// For constructing objects returned by the traversing functions.
typedef AstNodeFactory Factory;
};
explicit ParserTraits(Parser* parser) : parser_(parser) {}
// Helper functions for recursive descent.
bool IsEvalOrArguments(const AstRawString* identifier) const;
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
V8_INLINE bool IsFutureStrictReserved(const AstRawString* identifier) const;
// Returns true if the expression is of type "this.foo".
static bool IsThisProperty(Expression* expression);
static bool IsIdentifier(Expression* expression);
bool IsPrototype(const AstRawString* identifier) const;
bool IsConstructor(const AstRawString* identifier) const;
static const AstRawString* AsIdentifier(Expression* expression) {
DCHECK(IsIdentifier(expression));
return expression->AsVariableProxy()->raw_name();
}
static bool IsBoilerplateProperty(ObjectLiteral::Property* property) {
return ObjectLiteral::IsBoilerplateProperty(property);
}
static bool IsArrayIndex(const AstRawString* string, uint32_t* index) {
return string->AsArrayIndex(index);
}
static Expression* GetPropertyValue(ObjectLiteral::Property* property) {
return property->value();
}
// Functions for encapsulating the differences between parsing and preparsing;
// operations interleaved with the recursive descent.
static void PushLiteralName(FuncNameInferrer* fni, const AstRawString* id) {
fni->PushLiteralName(id);
}
void PushPropertyName(FuncNameInferrer* fni, Expression* expression);
static void InferFunctionName(FuncNameInferrer* fni,
FunctionLiteral* func_to_infer) {
fni->AddFunction(func_to_infer);
}
static void CheckFunctionLiteralInsideTopLevelObjectLiteral(
Scope* scope, ObjectLiteralProperty* property, bool* has_function) {
Expression* value = property->value();
if (scope->DeclarationScope()->is_script_scope() &&
value->AsFunctionLiteral() != NULL) {
*has_function = true;
value->AsFunctionLiteral()->set_pretenure();
}
}
// If we assign a function literal to a property we pretenure the
// literal so it can be added as a constant function property.
static void CheckAssigningFunctionLiteralToProperty(Expression* left,
Expression* right);
// Keep track of eval() calls since they disable all local variable
// optimizations. This checks if expression is an eval call, and if yes,
// forwards the information to scope.
void CheckPossibleEvalCall(Expression* expression, Scope* scope);
// Determine if the expression is a variable proxy and mark it as being used
// in an assignment or with a increment/decrement operator.
static Expression* MarkExpressionAsAssigned(Expression* expression);
// Returns true if we have a binary expression between two numeric
// literals. In that case, *x will be changed to an expression which is the
// computed value.
bool ShortcutNumericLiteralBinaryExpression(Expression** x, Expression* y,
Token::Value op, int pos,
AstNodeFactory* factory);
// Rewrites the following types of unary expressions:
// not <literal> -> true / false
// + <numeric literal> -> <numeric literal>
// - <numeric literal> -> <numeric literal with value negated>
// ! <literal> -> true / false
// The following rewriting rules enable the collection of type feedback
// without any special stub and the multiplication is removed later in
// Crankshaft's canonicalization pass.
// + foo -> foo * 1
// - foo -> foo * (-1)
// ~ foo -> foo ^(~0)
Expression* BuildUnaryExpression(Expression* expression, Token::Value op,
int pos, AstNodeFactory* factory);
// Generate AST node that throws a ReferenceError with the given type.
Expression* NewThrowReferenceError(const char* type, int pos);
// Generate AST node that throws a SyntaxError with the given
// type. The first argument may be null (in the handle sense) in
// which case no arguments are passed to the constructor.
Expression* NewThrowSyntaxError(
const char* type, const AstRawString* arg, int pos);
// Generate AST node that throws a TypeError with the given
// type. Both arguments must be non-null (in the handle sense).
Expression* NewThrowTypeError(const char* type, const AstRawString* arg,
int pos);
// Generic AST generator for throwing errors from compiled code.
Expression* NewThrowError(
const AstRawString* constructor, const char* type,
const AstRawString* arg, int pos);
// Reporting errors.
void ReportMessageAt(Scanner::Location source_location,
const char* message,
const char* arg = NULL,
bool is_reference_error = false);
void ReportMessage(const char* message,
const char* arg = NULL,
bool is_reference_error = false);
void ReportMessage(const char* message,
const AstRawString* arg,
bool is_reference_error = false);
void ReportMessageAt(Scanner::Location source_location,
const char* message,
const AstRawString* arg,
bool is_reference_error = false);
// "null" return type creators.
static const AstRawString* EmptyIdentifier() {
return NULL;
}
static Expression* EmptyExpression() {
return NULL;
}
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
static Expression* EmptyArrowParamList() { return NULL; }
static Literal* EmptyLiteral() {
return NULL;
}
static ObjectLiteralProperty* EmptyObjectLiteralProperty() { return NULL; }
static FunctionLiteral* EmptyFunctionLiteral() { return NULL; }
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
// Used in error return values.
static ZoneList<Expression*>* NullExpressionList() {
return NULL;
}
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
// Non-NULL empty string.
V8_INLINE const AstRawString* EmptyIdentifierString();
// Odd-ball literal creators.
Literal* GetLiteralTheHole(int position, AstNodeFactory* factory);
// Producing data during the recursive descent.
const AstRawString* GetSymbol(Scanner* scanner);
const AstRawString* GetNextSymbol(Scanner* scanner);
const AstRawString* GetNumberAsSymbol(Scanner* scanner);
Expression* ThisExpression(Scope* scope, AstNodeFactory* factory,
int pos = RelocInfo::kNoPosition);
Expression* SuperReference(Scope* scope, AstNodeFactory* factory,
int pos = RelocInfo::kNoPosition);
Expression* DefaultConstructor(bool call_super, Scope* scope, int pos,
int end_pos);
Literal* ExpressionFromLiteral(Token::Value token, int pos, Scanner* scanner,
AstNodeFactory* factory);
Expression* ExpressionFromIdentifier(const AstRawString* name, int pos,
Scope* scope, AstNodeFactory* factory);
Expression* ExpressionFromString(int pos, Scanner* scanner,
AstNodeFactory* factory);
Expression* GetIterator(Expression* iterable, AstNodeFactory* factory);
ZoneList<v8::internal::Expression*>* NewExpressionList(int size, Zone* zone) {
return new(zone) ZoneList<v8::internal::Expression*>(size, zone);
}
ZoneList<ObjectLiteral::Property*>* NewPropertyList(int size, Zone* zone) {
return new(zone) ZoneList<ObjectLiteral::Property*>(size, zone);
}
ZoneList<v8::internal::Statement*>* NewStatementList(int size, Zone* zone) {
return new(zone) ZoneList<v8::internal::Statement*>(size, zone);
}
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
V8_INLINE Scope* NewScope(Scope* parent_scope, ScopeType scope_type);
// Utility functions
int DeclareArrowParametersFromExpression(Expression* expression, Scope* scope,
Scanner::Location* dupe_loc,
bool* ok);
V8_INLINE AstValueFactory* ast_value_factory();
// Temporary glue; these functions will move to ParserBase.
Expression* ParseV8Intrinsic(bool* ok);
FunctionLiteral* ParseFunctionLiteral(
const AstRawString* name, Scanner::Location function_name_location,
bool name_is_strict_reserved, FunctionKind kind,
int function_token_position, FunctionLiteral::FunctionType type,
FunctionLiteral::ArityRestriction arity_restriction, bool* ok);
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
V8_INLINE void SkipLazyFunctionBody(const AstRawString* name,
int* materialized_literal_count,
int* expected_property_count, bool* ok);
V8_INLINE ZoneList<Statement*>* ParseEagerFunctionBody(
const AstRawString* name, int pos, Variable* fvar,
Token::Value fvar_init_op, bool is_generator, bool* ok);
ClassLiteral* ParseClassLiteral(const AstRawString* name,
Scanner::Location class_name_location,
bool name_is_strict_reserved, int pos,
bool* ok);
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
V8_INLINE void CheckConflictingVarDeclarations(v8::internal::Scope* scope,
bool* ok);
class TemplateLiteral : public ZoneObject {
public:
TemplateLiteral(Zone* zone, int pos)
: cooked_(8, zone), raw_(8, zone), expressions_(8, zone), pos_(pos) {}
const ZoneList<Expression*>* cooked() const { return &cooked_; }
const ZoneList<Expression*>* raw() const { return &raw_; }
const ZoneList<Expression*>* expressions() const { return &expressions_; }
int position() const { return pos_; }
void AddTemplateSpan(Literal* cooked, Literal* raw, int end, Zone* zone) {
DCHECK_NOT_NULL(cooked);
DCHECK_NOT_NULL(raw);
cooked_.Add(cooked, zone);
raw_.Add(raw, zone);
}
void AddExpression(Expression* expression, Zone* zone) {
DCHECK_NOT_NULL(expression);
expressions_.Add(expression, zone);
}
private:
ZoneList<Expression*> cooked_;
ZoneList<Expression*> raw_;
ZoneList<Expression*> expressions_;
int pos_;
};
typedef TemplateLiteral* TemplateLiteralState;
V8_INLINE TemplateLiteralState OpenTemplateLiteral(int pos);
V8_INLINE void AddTemplateSpan(TemplateLiteralState* state, bool tail);
V8_INLINE void AddTemplateExpression(TemplateLiteralState* state,
Expression* expression);
V8_INLINE Expression* CloseTemplateLiteral(TemplateLiteralState* state,
int start, Expression* tag);
V8_INLINE Expression* NoTemplateTag() { return NULL; }
V8_INLINE static bool IsTaggedTemplate(const Expression* tag) {
return tag != NULL;
}
private:
Parser* parser_;
};
class Parser : public ParserBase<ParserTraits> {
public:
// Note that the hash seed in ParseInfo must be the hash seed from the
// Isolate's heap, otherwise the heap will be in an inconsistent state once
// the strings created by the Parser are internalized.
struct ParseInfo {
uintptr_t stack_limit;
uint32_t hash_seed;
UnicodeCache* unicode_cache;
};
Parser(CompilationInfo* info, ParseInfo* parse_info);
~Parser() {
delete reusable_preparser_;
reusable_preparser_ = NULL;
delete cached_parse_data_;
cached_parse_data_ = NULL;
}
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
// Parses the source code represented by the compilation info and sets its
// function literal. Returns false (and deallocates any allocated AST
// nodes) if parsing failed.
static bool Parse(CompilationInfo* info,
bool allow_lazy = false) {
ParseInfo parse_info = {info->isolate()->stack_guard()->real_climit(),
info->isolate()->heap()->HashSeed(),
info->isolate()->unicode_cache()};
Parser parser(info, &parse_info);
parser.set_allow_lazy(allow_lazy);
if (parser.Parse()) {
info->SetStrictMode(info->function()->strict_mode());
return true;
}
return false;
}
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
bool Parse();
void ParseOnBackground();
// Handle errors detected during parsing, move statistics to Isolate,
// internalize strings (move them to the heap).
void Internalize();
void HandleSourceURLComments();
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
private:
friend class ParserTraits;
// Limit the allowed number of local variables in a function. The hard limit
// is that offsets computed by FullCodeGenerator::StackOperand and similar
// functions are ints, and they should not overflow. In addition, accessing
// local variables creates user-controlled constants in the generated code,
// and we don't want too much user-controlled memory inside the code (this was
// the reason why this limit was introduced in the first place; see
// https://codereview.chromium.org/7003030/ ).
static const int kMaxNumFunctionLocals = 4194303; // 2^22-1
enum VariableDeclarationContext {
kStatementListItem,
kStatement,
kForStatement
};
// If a list of variable declarations includes any initializers.
enum VariableDeclarationProperties {
kHasInitializers,
kHasNoInitializers
};
// Returns NULL if parsing failed.
FunctionLiteral* ParseProgram();
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
FunctionLiteral* ParseLazy();
FunctionLiteral* ParseLazy(Utf16CharacterStream* source);
Isolate* isolate() { return info_->isolate(); }
CompilationInfo* info() const { return info_; }
Handle<Script> script() const { return info_->script(); }
AstValueFactory* ast_value_factory() const {
return info_->ast_value_factory();
}
// Called by ParseProgram after setting up the scanner.
FunctionLiteral* DoParseProgram(CompilationInfo* info, Scope** scope,
Scope** ad_hoc_eval_scope);
void SetCachedData();
Refactor parser mode configuration for correctness This patch refactors the parser and preparser interface to be more readable and type-safe. It has no behavior changes. Previously, parsers and preparsers were configured via bitfield called parser_flags in the Parser constructor, and flags in PreParser::PreParseProgram, ParserApi::Parse, and ParserApi::PreParse. This was error-prone in practice: six call sites passed incorrectly typed values to this interface (a boolean FLAG value, a boolean false and a boolean true value). None of these errors were caught by the compiler because it's just an "int". The parser flags interface was also awkward because it encoded a language mode, but the language mode was only used to turn on harmony scoping or not -- it wasn't used to actually set the parser's language mode. Fundamentally these errors came in because of the desire for a procedural parser interface, in ParserApi. Because we need to be able to configure the parser in various ways, the flags argument got added; but no one understood how to use the flags properly. Also they were only used by constructors: callers packed bits, and the constructors unpacked them into booleans on the parser or preparser. The solution is to allow parser construction, configuration, and invocation to be separated. This patch does that. It passes the existing tests. BUG= Review URL: https://codereview.chromium.org/13450007 Patch from Andy Wingo <wingo@igalia.com>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14151 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-04-05 13:01:06 +00:00
bool inside_with() const { return scope_->inside_with(); }
Change ScriptCompiler::CompileOptions to allow for two 'cache' modes (parser or code) and to be explicit about cache consumption or production (rather than making presence of cached_data imply one or the other.) Also add a --cache flag to d8, to allow testing the functionality. ----------------------------- API change Reason: Currently, V8 supports a 'parser cache' for repeatedly executing the same script. We'd like to add a 2nd mode that would cache code, and would like to let the embedder decide which mode they chose (if any). Note: Previously, the 'use cached data' property was implied by the presence of the cached data itself. (That is, kNoCompileOptions and source->cached_data != NULL.) That is no longer sufficient, since the presence of data is no longer sufficient to determine /which kind/ of data is present. Changes from old behaviour: - If you previously didn't use caching, nothing changes. Example: v8::CompileUnbound(isolate, source, kNoCompileOptions); - If you previously used caching, it worked like this: - 1st run: v8::CompileUnbound(isolate, source, kProduceToCache); Then, source->cached_data would contain the data-to-be cached. This remains the same, except you need to tell V8 which type of data you want. v8::CompileUnbound(isolate, source, kProduceParserCache); - 2nd run: v8::CompileUnbound(isolate, source, kNoCompileOptions); with source->cached_data set to the data you received in the first run. This will now ignore the cached data, and you need to explicitly tell V8 to use it: v8::CompileUnbound(isolate, source, kConsumeParserCache); ----------------------------- BUG= R=marja@chromium.org, yangguo@chromium.org Review URL: https://codereview.chromium.org/389573006 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22431 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-16 12:18:33 +00:00
ScriptCompiler::CompileOptions compile_options() const {
return info_->compile_options();
}
bool consume_cached_parse_data() const {
return compile_options() == ScriptCompiler::kConsumeParserCache &&
cached_parse_data_ != NULL;
}
bool produce_cached_parse_data() const {
return compile_options() == ScriptCompiler::kProduceParserCache;
}
Scope* DeclarationScope(VariableMode mode) {
return IsLexicalVariableMode(mode)
? scope_ : scope_->DeclarationScope();
}
// All ParseXXX functions take as the last argument an *ok parameter
// which is set to false if parsing failed; it is unchanged otherwise.
// By making the 'exception handling' explicit, we are forced to check
// for failure at the call sites.
void* ParseStatementList(ZoneList<Statement*>* processor, int end_token,
bool is_eval, Scope** ad_hoc_eval_scope, bool* ok);
Statement* ParseStatementListItem(bool* ok);
Module* ParseModule(bool* ok);
Statement* ParseModuleItem(bool* ok);
Module* ParseModuleSpecifier(bool* ok);
Statement* ParseImportDeclaration(bool* ok);
Statement* ParseExportDeclaration(bool* ok);
Statement* ParseExportDefault(bool* ok);
void* ParseModuleDeclarationClause(ZoneList<const AstRawString*>* names,
bool* ok);
Statement* ParseStatement(ZoneList<const AstRawString*>* labels, bool* ok);
Statement* ParseFunctionDeclaration(ZoneList<const AstRawString*>* names,
bool* ok);
Statement* ParseClassDeclaration(ZoneList<const AstRawString*>* names,
bool* ok);
Statement* ParseNativeDeclaration(bool* ok);
Block* ParseBlock(ZoneList<const AstRawString*>* labels, bool* ok);
Block* ParseVariableStatement(VariableDeclarationContext var_context,
ZoneList<const AstRawString*>* names,
bool* ok);
Block* ParseVariableDeclarations(VariableDeclarationContext var_context,
VariableDeclarationProperties* decl_props,
ZoneList<const AstRawString*>* names,
const AstRawString** out,
bool* ok);
Statement* ParseExpressionOrLabelledStatement(
ZoneList<const AstRawString*>* labels, bool* ok);
IfStatement* ParseIfStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
Statement* ParseContinueStatement(bool* ok);
Statement* ParseBreakStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
Statement* ParseReturnStatement(bool* ok);
Statement* ParseWithStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
CaseClause* ParseCaseClause(bool* default_seen_ptr, bool* ok);
SwitchStatement* ParseSwitchStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
DoWhileStatement* ParseDoWhileStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
WhileStatement* ParseWhileStatement(ZoneList<const AstRawString*>* labels,
bool* ok);
Statement* ParseForStatement(ZoneList<const AstRawString*>* labels, bool* ok);
Statement* ParseThrowStatement(bool* ok);
Expression* MakeCatchContext(Handle<String> id, VariableProxy* value);
TryStatement* ParseTryStatement(bool* ok);
DebuggerStatement* ParseDebuggerStatement(bool* ok);
// Support for hamony block scoped bindings.
Block* ParseScopedBlock(ZoneList<const AstRawString*>* labels, bool* ok);
// Initialize the components of a for-in / for-of statement.
void InitializeForEachStatement(ForEachStatement* stmt,
Expression* each,
Expression* subject,
Statement* body);
Statement* DesugarLetBindingsInForStatement(
Scope* inner_scope, ZoneList<const AstRawString*>* names,
ForStatement* loop, Statement* init, Expression* cond, Statement* next,
Statement* body, bool* ok);
FunctionLiteral* ParseFunctionLiteral(
const AstRawString* name, Scanner::Location function_name_location,
bool name_is_strict_reserved, FunctionKind kind,
int function_token_position, FunctionLiteral::FunctionType type,
FunctionLiteral::ArityRestriction arity_restriction, bool* ok);
ClassLiteral* ParseClassLiteral(const AstRawString* name,
Scanner::Location class_name_location,
bool name_is_strict_reserved, int pos,
bool* ok);
// Magical syntax support.
Expression* ParseV8Intrinsic(bool* ok);
bool CheckInOrOf(bool accept_OF, ForEachStatement::VisitMode* visit_mode);
// Get odd-ball literals.
Literal* GetLiteralUndefined(int position);
// For harmony block scoping mode: Check if the scope has conflicting var/let
// declarations from different scopes. It covers for example
//
// function f() { { { var x; } let x; } }
// function g() { { var x; let x; } }
//
// The var declarations are hoisted to the function scope, but originate from
// a scope where the name has also been let bound or the var declaration is
// hoisted over such a scope.
void CheckConflictingVarDeclarations(Scope* scope, bool* ok);
// Parser support
VariableProxy* NewUnresolved(const AstRawString* name,
VariableMode mode,
Interface* interface);
void Declare(Declaration* declaration, bool resolve, bool* ok);
bool TargetStackContainsLabel(const AstRawString* label);
BreakableStatement* LookupBreakTarget(const AstRawString* label, bool* ok);
IterationStatement* LookupContinueTarget(const AstRawString* label, bool* ok);
// Factory methods.
2011-10-21 10:26:59 +00:00
Scope* NewScope(Scope* parent, ScopeType type);
FunctionLiteral* DefaultConstructor(bool call_super, Scope* scope, int pos,
int end_pos);
// Skip over a lazy function, either using cached data if we have it, or
// by parsing the function with PreParser. Consumes the ending }.
void SkipLazyFunctionBody(const AstRawString* function_name,
int* materialized_literal_count,
int* expected_property_count,
bool* ok);
PreParser::PreParseResult ParseLazyFunctionBodyWithPreParser(
SingletonLogger* logger);
// Consumes the ending }.
ZoneList<Statement*>* ParseEagerFunctionBody(
const AstRawString* function_name, int pos, Variable* fvar,
Token::Value fvar_init_op, bool is_generator, bool* ok);
void ThrowPendingError();
TemplateLiteralState OpenTemplateLiteral(int pos);
void AddTemplateSpan(TemplateLiteralState* state, bool tail);
void AddTemplateExpression(TemplateLiteralState* state,
Expression* expression);
Expression* CloseTemplateLiteral(TemplateLiteralState* state, int start,
Expression* tag);
uint32_t ComputeTemplateLiteralHash(const TemplateLiteral* lit);
Scanner scanner_;
PreParser* reusable_preparser_;
Scope* original_scope_; // for ES5 function declarations in sloppy eval
Target* target_stack_; // for break, continue statements
ParseData* cached_parse_data_;
CompilationInfo* info_;
// Pending errors.
bool has_pending_error_;
Scanner::Location pending_error_location_;
const char* pending_error_message_;
const AstRawString* pending_error_arg_;
const char* pending_error_char_arg_;
bool pending_error_is_reference_error_;
// Other information which will be stored in Parser and moved to Isolate after
// parsing.
int use_counts_[v8::Isolate::kUseCounterFeatureCount];
int total_preparse_skipped_;
HistogramTimer* pre_parse_timer_;
};
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
bool ParserTraits::IsFutureStrictReserved(
const AstRawString* identifier) const {
return parser_->scanner()->IdentifierIsFutureStrictReserved(identifier);
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
}
Scope* ParserTraits::NewScope(Scope* parent_scope, ScopeType scope_type) {
return parser_->NewScope(parent_scope, scope_type);
}
const AstRawString* ParserTraits::EmptyIdentifierString() {
return parser_->ast_value_factory()->empty_string();
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
}
void ParserTraits::SkipLazyFunctionBody(const AstRawString* function_name,
int* materialized_literal_count,
int* expected_property_count,
bool* ok) {
return parser_->SkipLazyFunctionBody(
function_name, materialized_literal_count, expected_property_count, ok);
}
ZoneList<Statement*>* ParserTraits::ParseEagerFunctionBody(
const AstRawString* name, int pos, Variable* fvar,
Token::Value fvar_init_op, bool is_generator, bool* ok) {
return parser_->ParseEagerFunctionBody(name, pos, fvar, fvar_init_op,
is_generator, ok);
}
void ParserTraits::CheckConflictingVarDeclarations(v8::internal::Scope* scope,
bool* ok) {
parser_->CheckConflictingVarDeclarations(scope, ok);
}
AstValueFactory* ParserTraits::ast_value_factory() {
return parser_->ast_value_factory();
Implement handling of arrow functions in the parser Arrow functions are parsed from ParseAssignmentExpression(). Handling the parameter list is done by letting ParseConditionalExpression() parse a comma separated list of identifiers, and it returns a tree of BinaryOperation nodes with VariableProxy leaves, or a single VariableProxy if there is only one parameter. When the arrow token "=>" is found, the VariableProxy nodes are passed to ParseArrowFunctionLiteral(), which will then skip parsing the paramaeter list. This avoids having to rewind when the arrow is found and restart parsing the parameter list. Note that the empty parameter list "()" is handled directly in ParsePrimaryExpression(): after is has consumed the opening parenthesis, if a closing parenthesis follows, then the only valid input is an arrow function. In this case, ParsePrimaryExpression() directly calls ParseArrowFunctionLiteral(), to avoid needing to return a sentinel value to signal the empty parameter list. Because it will consume the body of the arrow function, ParseAssignmentExpression() will not see the arrow "=>" token as next, and return the already-parser expression. The implementation is done in ParserBase, so it was needed to do some additions to ParserBase, ParserTraits and PreParserTraits. Some of the glue code can be removed later on when more more functionality is moved to ParserBase. Additionally, this adds a runtime flag "harmony_arrow_functions" (disabled by default); enabling "harmony" will enable it as well. BUG=v8:2700 LOG=N R=marja@chromium.org Review URL: https://codereview.chromium.org/383983002 Patch from Adrián Pérez de Castro <aperez@igalia.com>. git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22366 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-07-14 07:55:45 +00:00
}
// Support for handling complex values (array and object literals) that
// can be fully handled at compile time.
class CompileTimeValue: public AllStatic {
public:
enum LiteralType {
OBJECT_LITERAL_FAST_ELEMENTS,
OBJECT_LITERAL_SLOW_ELEMENTS,
ARRAY_LITERAL
};
static bool IsCompileTimeValue(Expression* expression);
// Get the value as a compile time value.
static Handle<FixedArray> GetValue(Isolate* isolate, Expression* expression);
// Get the type of a compile time value returned by GetValue().
static LiteralType GetLiteralType(Handle<FixedArray> value);
// Get the elements array of a compile time value returned by GetValue().
static Handle<FixedArray> GetElements(Handle<FixedArray> value);
private:
static const int kLiteralTypeSlot = 0;
static const int kElementsSlot = 1;
DISALLOW_IMPLICIT_CONSTRUCTORS(CompileTimeValue);
};
ParserTraits::TemplateLiteralState ParserTraits::OpenTemplateLiteral(int pos) {
return parser_->OpenTemplateLiteral(pos);
}
void ParserTraits::AddTemplateSpan(TemplateLiteralState* state, bool tail) {
parser_->AddTemplateSpan(state, tail);
}
void ParserTraits::AddTemplateExpression(TemplateLiteralState* state,
Expression* expression) {
parser_->AddTemplateExpression(state, expression);
}
Expression* ParserTraits::CloseTemplateLiteral(TemplateLiteralState* state,
int start, Expression* tag) {
return parser_->CloseTemplateLiteral(state, start, tag);
}
} } // namespace v8::internal
#endif // V8_PARSER_H_