v8/test/cctest/test-assembler-x64.cc

2545 lines
71 KiB
C++
Raw Normal View History

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include <iostream>
#include "src/v8.h"
#include "src/base/platform/platform.h"
#include "src/base/utils/random-number-generator.h"
#include "src/double.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/ostreams.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
// The AMD64 calling convention is used, with the first six arguments
// in RDI, RSI, RDX, RCX, R8, and R9, and floating point arguments in
// the XMM registers. The return value is in RAX.
// This calling convention is used on Linux, with GCC, and on Mac OS,
// with GCC. A different convention is used on 64-bit windows,
// where the first four integer arguments are passed in RCX, RDX, R8 and R9.
typedef int (*F0)();
typedef int (*F1)(int64_t x);
typedef int (*F2)(int64_t x, int64_t y);
typedef unsigned (*F3)(double x);
typedef uint64_t (*F4)(uint64_t* x, uint64_t* y);
typedef uint64_t (*F5)(uint64_t x);
#ifdef _WIN64
static const Register arg1 = rcx;
static const Register arg2 = rdx;
#else
static const Register arg1 = rdi;
static const Register arg2 = rsi;
#endif
#define __ assm.
TEST(AssemblerX64ReturnOperation) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 2 and returns it.
__ movq(rax, arg2);
__ nop();
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(2, result);
}
TEST(AssemblerX64StackOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 2 and returns it.
// We compile without stack frame pointers, so the gdb debugger shows
// incorrect stack frames when debugging this function (which has them).
__ pushq(rbp);
__ movq(rbp, rsp);
__ pushq(arg2); // Value at (rbp - 8)
__ pushq(arg2); // Value at (rbp - 16)
__ pushq(arg1); // Value at (rbp - 24)
__ popq(rax);
__ popq(rax);
__ popq(rax);
__ popq(rbp);
__ nop();
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(2, result);
}
TEST(AssemblerX64ArithmeticOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that adds arguments returning the sum.
__ movq(rax, arg2);
__ addq(rax, arg1);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(5, result);
}
TEST(AssemblerX64CmpbOperation) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a function that compare argument byte returing 1 if equal else 0.
// On Windows, it compares rcx with rdx which does not require REX prefix;
// on Linux, it compares rdi with rsi which requires REX prefix.
Label done;
__ movq(rax, Immediate(1));
__ cmpb(arg1, arg2);
__ j(equal, &done);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(0x1002, 0x2002);
CHECK_EQ(1, result);
result = FUNCTION_CAST<F2>(buffer)(0x1002, 0x2003);
CHECK_EQ(0, result);
}
TEST(Regression684407) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
Address before = assm.pc();
__ cmpl(Operand(arg1, 0),
Immediate(0, RelocInfo::WASM_MEMORY_SIZE_REFERENCE));
Address after = assm.pc();
size_t instruction_size = static_cast<size_t>(after - before);
// Check that the immediate is not encoded as uint8.
CHECK_LT(sizeof(uint32_t), instruction_size);
}
TEST(AssemblerX64ImulOperation) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that multiplies arguments returning the high
// word.
__ movq(rax, arg2);
__ imulq(arg1);
__ movq(rax, rdx);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(0, result);
result = FUNCTION_CAST<F2>(buffer)(0x100000000l, 0x100000000l);
CHECK_EQ(1, result);
result = FUNCTION_CAST<F2>(buffer)(-0x100000000l, 0x100000000l);
CHECK_EQ(-1, result);
}
TEST(AssemblerX64testbwqOperation) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ pushq(rbx);
__ pushq(rdi);
__ pushq(rsi);
__ pushq(r12);
__ pushq(r13);
__ pushq(r14);
__ pushq(r15);
// Assemble a simple function that tests testb and testw
Label bad;
Label done;
// Test immediate testb and testw
__ movq(rax, Immediate(2));
__ movq(rbx, Immediate(4));
__ movq(rcx, Immediate(8));
__ movq(rdx, Immediate(16));
__ movq(rsi, Immediate(32));
__ movq(rdi, Immediate(64));
__ movq(r10, Immediate(128));
__ movq(r11, Immediate(0));
__ movq(r12, Immediate(0));
__ movq(r13, Immediate(0));
__ testb(rax, Immediate(2));
__ j(zero, &bad);
__ testb(rbx, Immediate(4));
__ j(zero, &bad);
__ testb(rcx, Immediate(8));
__ j(zero, &bad);
__ testb(rdx, Immediate(16));
__ j(zero, &bad);
__ testb(rsi, Immediate(32));
__ j(zero, &bad);
__ testb(rdi, Immediate(64));
__ j(zero, &bad);
__ testb(r10, Immediate(128));
__ j(zero, &bad);
__ testw(rax, Immediate(2));
__ j(zero, &bad);
__ testw(rbx, Immediate(4));
__ j(zero, &bad);
__ testw(rcx, Immediate(8));
__ j(zero, &bad);
__ testw(rdx, Immediate(16));
__ j(zero, &bad);
__ testw(rsi, Immediate(32));
__ j(zero, &bad);
__ testw(rdi, Immediate(64));
__ j(zero, &bad);
__ testw(r10, Immediate(128));
__ j(zero, &bad);
// Test reg, reg testb and testw
__ movq(rax, Immediate(2));
__ movq(rbx, Immediate(2));
__ testb(rax, rbx);
__ j(zero, &bad);
__ movq(rbx, Immediate(4));
__ movq(rax, Immediate(4));
__ testb(rbx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(8));
__ testb(rcx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(16));
__ testb(rdx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(32));
__ testb(rsi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(64));
__ testb(rdi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(128));
__ testb(r10, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(2));
__ movq(rbx, Immediate(2));
__ testw(rax, rbx);
__ j(zero, &bad);
__ movq(rbx, Immediate(4));
__ movq(rax, Immediate(4));
__ testw(rbx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(8));
__ testw(rcx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(16));
__ testw(rdx, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(32));
__ testw(rsi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(64));
__ testw(rdi, rax);
__ j(zero, &bad);
__ movq(rax, Immediate(128));
__ testw(r10, rax);
__ j(zero, &bad);
// Test diffrrent extended register coding combinations.
__ movq(rax, Immediate(5));
__ movq(r11, Immediate(5));
__ testb(r11, rax);
__ j(zero, &bad);
__ testb(rax, r11);
__ j(zero, &bad);
__ testw(r11, rax);
__ j(zero, &bad);
__ testw(rax, r11);
__ j(zero, &bad);
__ movq(r11, Immediate(3));
__ movq(r12, Immediate(3));
__ movq(rdi, Immediate(3));
__ testb(r12, rdi);
__ j(zero, &bad);
__ testb(rdi, r12);
__ j(zero, &bad);
__ testb(r12, r11);
__ j(zero, &bad);
__ testb(r11, r12);
__ j(zero, &bad);
__ testw(r12, r11);
__ j(zero, &bad);
__ testw(r11, r12);
__ j(zero, &bad);
// Test sign-extended imediate tests
__ movq(r11, Immediate(2));
__ shlq(r11, Immediate(32));
__ testq(r11, Immediate(-1));
__ j(zero, &bad);
// All tests passed
__ movq(rax, Immediate(1));
__ jmp(&done);
__ bind(&bad);
__ movq(rax, Immediate(0));
__ bind(&done);
__ popq(r15);
__ popq(r14);
__ popq(r13);
__ popq(r12);
__ popq(rsi);
__ popq(rdi);
__ popq(rbx);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(0, 0);
CHECK_EQ(1, result);
}
TEST(AssemblerX64XchglOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg1, 0));
__ movq(r11, Operand(arg2, 0));
__ xchgl(rax, r11);
__ movq(Operand(arg1, 0), rax);
__ movq(Operand(arg2, 0), r11);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 40000000), left);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 20000000), right);
USE(result);
}
TEST(AssemblerX64OrlOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg2, 0));
__ orl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 60000000), left);
USE(result);
}
TEST(AssemblerX64RollOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, arg1);
__ roll(rax, Immediate(1));
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
uint64_t src = V8_2PART_UINT64_C(0x10000000, C0000000);
uint64_t result = FUNCTION_CAST<F5>(buffer)(src);
CHECK_EQ(V8_2PART_UINT64_C(0x00000000, 80000001), result);
}
TEST(AssemblerX64SublOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg2, 0));
__ subl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 40000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, e0000000), left);
USE(result);
}
TEST(AssemblerX64TestlOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Set rax with the ZF flag of the testl instruction.
Label done;
__ movq(rax, Immediate(1));
__ movq(r11, Operand(arg2, 0));
__ testl(Operand(arg1, 0), r11);
__ j(zero, &done, Label::kNear);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 00000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(1u, result);
}
TEST(AssemblerX64TestwOperations) {
typedef uint16_t (*F)(uint16_t * x);
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Set rax with the ZF flag of the testl instruction.
Label done;
__ movq(rax, Immediate(1));
__ testw(Operand(arg1, 0), Immediate(0xf0f0));
__ j(not_zero, &done, Label::kNear);
__ movq(rax, Immediate(0));
__ bind(&done);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
uint16_t operand = 0x8000;
uint16_t result = FUNCTION_CAST<F>(buffer)(&operand);
CHECK_EQ(1u, result);
}
TEST(AssemblerX64XorlOperations) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(rax, Operand(arg2, 0));
__ xorl(Operand(arg1, 0), rax);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
uint64_t left = V8_2PART_UINT64_C(0x10000000, 20000000);
uint64_t right = V8_2PART_UINT64_C(0x30000000, 60000000);
uint64_t result = FUNCTION_CAST<F4>(buffer)(&left, &right);
CHECK_EQ(V8_2PART_UINT64_C(0x10000000, 40000000), left);
USE(result);
}
TEST(AssemblerX64MemoryOperands) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 2 and returns it.
__ pushq(rbp);
__ movq(rbp, rsp);
__ pushq(arg2); // Value at (rbp - 8)
__ pushq(arg2); // Value at (rbp - 16)
__ pushq(arg1); // Value at (rbp - 24)
const int kStackElementSize = 8;
__ movq(rax, Operand(rbp, -3 * kStackElementSize));
__ popq(arg2);
__ popq(arg2);
__ popq(arg2);
__ popq(rbp);
__ nop();
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(3, result);
}
TEST(AssemblerX64ControlFlow) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble a simple function that copies argument 1 and returns it.
__ pushq(rbp);
__ movq(rbp, rsp);
__ movq(rax, arg1);
Label target;
__ jmp(&target);
__ movq(rax, arg2);
__ bind(&target);
__ popq(rbp);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F2>(buffer)(3, 2);
CHECK_EQ(3, result);
}
TEST(AssemblerX64LoopImmediates) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
// Assemble two loops using rax as counter, and verify the ending counts.
Label Fail;
__ movq(rax, Immediate(-3));
Label Loop1_test;
Label Loop1_body;
__ jmp(&Loop1_test);
__ bind(&Loop1_body);
__ addq(rax, Immediate(7));
__ bind(&Loop1_test);
__ cmpq(rax, Immediate(20));
__ j(less_equal, &Loop1_body);
// Did the loop terminate with the expected value?
__ cmpq(rax, Immediate(25));
__ j(not_equal, &Fail);
Label Loop2_test;
Label Loop2_body;
__ movq(rax, Immediate(0x11FEED00));
__ jmp(&Loop2_test);
__ bind(&Loop2_body);
__ addq(rax, Immediate(-0x1100));
__ bind(&Loop2_test);
__ cmpq(rax, Immediate(0x11FE8000));
__ j(greater, &Loop2_body);
// Did the loop terminate with the expected value?
__ cmpq(rax, Immediate(0x11FE7600));
__ j(not_equal, &Fail);
__ movq(rax, Immediate(1));
__ ret(0);
__ bind(&Fail);
__ movq(rax, Immediate(0));
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
// Call the function from C++.
int result = FUNCTION_CAST<F0>(buffer)();
CHECK_EQ(1, result);
}
TEST(OperandRegisterDependency) {
int offsets[4] = {0, 1, 0xfed, 0xbeefcad};
for (int i = 0; i < 4; i++) {
int offset = offsets[i];
CHECK(Operand(rax, offset).AddressUsesRegister(rax));
CHECK(!Operand(rax, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, offset).AddressUsesRegister(rcx));
CHECK(Operand(rax, rax, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, rax, times_1, offset).AddressUsesRegister(rcx));
CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rax));
CHECK(Operand(rax, rcx, times_1, offset).AddressUsesRegister(rcx));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(r9));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rdx));
CHECK(!Operand(rax, rcx, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, offset).AddressUsesRegister(rsp));
CHECK(!Operand(rsp, offset).AddressUsesRegister(rax));
CHECK(!Operand(rsp, offset).AddressUsesRegister(r15));
CHECK(Operand(rbp, offset).AddressUsesRegister(rbp));
CHECK(!Operand(rbp, offset).AddressUsesRegister(rax));
CHECK(!Operand(rbp, offset).AddressUsesRegister(r13));
CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rbp));
CHECK(Operand(rbp, rax, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rcx));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r13));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(r8));
CHECK(!Operand(rbp, rax, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rsp));
CHECK(Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rbp));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(rax));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r15));
CHECK(!Operand(rsp, rbp, times_1, offset).AddressUsesRegister(r13));
}
}
TEST(AssemblerX64LabelChaining) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Assembler assm(CcTest::i_isolate(), NULL, 0);
Label target;
__ j(equal, &target);
__ j(not_equal, &target);
__ bind(&target);
__ nop();
}
TEST(AssemblerMultiByteNop) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
byte buffer[1024];
Isolate* isolate = CcTest::i_isolate();
Assembler assm(isolate, buffer, sizeof(buffer));
__ pushq(rbx);
__ pushq(rcx);
__ pushq(rdx);
__ pushq(rdi);
__ pushq(rsi);
__ movq(rax, Immediate(1));
__ movq(rbx, Immediate(2));
__ movq(rcx, Immediate(3));
__ movq(rdx, Immediate(4));
__ movq(rdi, Immediate(5));
__ movq(rsi, Immediate(6));
for (int i = 0; i < 16; i++) {
int before = assm.pc_offset();
__ Nop(i);
CHECK_EQ(assm.pc_offset() - before, i);
}
Label fail;
__ cmpq(rax, Immediate(1));
__ j(not_equal, &fail);
__ cmpq(rbx, Immediate(2));
__ j(not_equal, &fail);
__ cmpq(rcx, Immediate(3));
__ j(not_equal, &fail);
__ cmpq(rdx, Immediate(4));
__ j(not_equal, &fail);
__ cmpq(rdi, Immediate(5));
__ j(not_equal, &fail);
__ cmpq(rsi, Immediate(6));
__ j(not_equal, &fail);
__ movq(rax, Immediate(42));
__ popq(rsi);
__ popq(rdi);
__ popq(rdx);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
__ bind(&fail);
__ movq(rax, Immediate(13));
__ popq(rsi);
__ popq(rdi);
__ popq(rdx);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F0 f = FUNCTION_CAST<F0>(code->entry());
int res = f();
CHECK_EQ(42, res);
}
#ifdef __GNUC__
#define ELEMENT_COUNT 4u
void DoSSE2(const v8::FunctionCallbackInfo<v8::Value>& args) {
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
byte buffer[1024];
CHECK(args[0]->IsArray());
v8::Local<v8::Array> vec = v8::Local<v8::Array>::Cast(args[0]);
CHECK_EQ(ELEMENT_COUNT, vec->Length());
Isolate* isolate = CcTest::i_isolate();
Assembler assm(isolate, buffer, sizeof(buffer));
// Remove return address from the stack for fix stack frame alignment.
__ popq(rcx);
// Store input vector on the stack.
for (unsigned i = 0; i < ELEMENT_COUNT; i++) {
__ movl(rax, Immediate(vec->Get(context, i)
.ToLocalChecked()
->Int32Value(context)
.FromJust()));
__ shlq(rax, Immediate(0x20));
__ orq(rax, Immediate(vec->Get(context, ++i)
.ToLocalChecked()
->Int32Value(context)
.FromJust()));
__ pushq(rax);
}
// Read vector into a xmm register.
__ xorps(xmm0, xmm0);
__ movdqa(xmm0, Operand(rsp, 0));
// Create mask and store it in the return register.
__ movmskps(rax, xmm0);
// Remove unused data from the stack.
__ addq(rsp, Immediate(ELEMENT_COUNT * sizeof(int32_t)));
// Restore return address.
__ pushq(rcx);
__ ret(0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F0 f = FUNCTION_CAST<F0>(code->entry());
int res = f();
args.GetReturnValue().Set(v8::Integer::New(CcTest::isolate(), res));
}
TEST(StackAlignmentForSSE2) {
CcTest::InitializeVM();
CHECK_EQ(0, v8::base::OS::ActivationFrameAlignment() % 16);
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope handle_scope(isolate);
v8::Local<v8::ObjectTemplate> global_template =
v8::ObjectTemplate::New(isolate);
global_template->Set(v8_str("do_sse2"),
v8::FunctionTemplate::New(isolate, DoSSE2));
LocalContext env(NULL, global_template);
CompileRun(
"function foo(vec) {"
" return do_sse2(vec);"
"}");
v8::Local<v8::Object> global_object = env->Global();
v8::Local<v8::Function> foo = v8::Local<v8::Function>::Cast(
global_object->Get(env.local(), v8_str("foo")).ToLocalChecked());
int32_t vec[ELEMENT_COUNT] = { -1, 1, 1, 1 };
v8::Local<v8::Array> v8_vec = v8::Array::New(isolate, ELEMENT_COUNT);
for (unsigned i = 0; i < ELEMENT_COUNT; i++) {
v8_vec->Set(env.local(), i, v8_num(vec[i])).FromJust();
}
v8::Local<v8::Value> args[] = { v8_vec };
v8::Local<v8::Value> result =
foo->Call(env.local(), global_object, 1, args).ToLocalChecked();
// The mask should be 0b1000.
CHECK_EQ(8, result->Int32Value(env.local()).FromJust());
}
#undef ELEMENT_COUNT
#endif // __GNUC__
TEST(AssemblerX64Extractps) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(SSE4_1)) return;
v8::HandleScope scope(CcTest::isolate());
byte buffer[256];
Isolate* isolate = CcTest::i_isolate();
Assembler assm(isolate, buffer, sizeof(buffer));
{ CpuFeatureScope fscope2(&assm, SSE4_1);
__ extractps(rax, xmm0, 0x1);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F3 f = FUNCTION_CAST<F3>(code->entry());
uint64_t value1 = V8_2PART_UINT64_C(0x12345678, 87654321);
CHECK_EQ(0x12345678u, f(uint64_to_double(value1)));
uint64_t value2 = V8_2PART_UINT64_C(0x87654321, 12345678);
CHECK_EQ(0x87654321u, f(uint64_to_double(value2)));
}
typedef int (*F6)(float x, float y);
TEST(AssemblerX64SSE) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
__ shufps(xmm0, xmm0, 0x0); // brocast first argument
__ shufps(xmm1, xmm1, 0x0); // brocast second argument
__ movaps(xmm2, xmm1);
__ addps(xmm2, xmm0);
__ mulps(xmm2, xmm1);
__ subps(xmm2, xmm0);
__ divps(xmm2, xmm1);
__ cvttss2si(rax, xmm2);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc,
Code::ComputeFlags(Code::STUB),
Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F6 f = FUNCTION_CAST<F6>(code->entry());
CHECK_EQ(2, f(1.0, 2.0));
}
typedef int (*F7)(double x, double y, double z);
TEST(AssemblerX64FMA_sd) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(FMA3)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&assm, FMA3);
Label exit;
// argument in xmm0, xmm1 and xmm2
// xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ addsd(xmm3, xmm2); // Expected result in xmm3
__ subq(rsp, Immediate(kDoubleSize)); // For memory operand
// vfmadd132sd
__ movl(rax, Immediate(1)); // Test number
__ movaps(xmm8, xmm0);
__ vfmadd132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmadd213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmadd231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmadd132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfmadd213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmadd231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ subsd(xmm3, xmm2); // Expected result in xmm3
// vfmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfmsub132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmsub213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmsub231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmsub132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfmsub213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfmsub231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ Move(xmm4, (uint64_t)1 << 63);
__ xorpd(xmm3, xmm4);
__ addsd(xmm3, xmm2); // Expected result in xmm3
// vfnmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmadd132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmadd213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmadd231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmadd132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfnmadd213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmadd231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulsd(xmm3, xmm1);
__ Move(xmm4, (uint64_t)1 << 63);
__ xorpd(xmm3, xmm4);
__ subsd(xmm3, xmm2); // Expected result in xmm3
// vfnmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmsub132sd(xmm8, xmm2, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmsub213sd(xmm8, xmm0, xmm2);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmsub231sd(xmm8, xmm0, xmm1);
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub132sd
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmsub132sd(xmm8, xmm2, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub213sd
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movsd(Operand(rsp, 0), xmm2);
__ vfnmsub213sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231sd
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movsd(Operand(rsp, 0), xmm1);
__ vfnmsub231sd(xmm8, xmm0, Operand(rsp, 0));
__ ucomisd(xmm8, xmm3);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize));
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F7 f = FUNCTION_CAST<F7>(code->entry());
CHECK_EQ(0, f(0.000092662107262076, -2.460774966188315, -1.0958787393627414));
}
typedef int (*F8)(float x, float y, float z);
TEST(AssemblerX64FMA_ss) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(FMA3)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&assm, FMA3);
Label exit;
// arguments in xmm0, xmm1 and xmm2
// xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ addss(xmm3, xmm2); // Expected result in xmm3
__ subq(rsp, Immediate(kDoubleSize)); // For memory operand
// vfmadd132ss
__ movl(rax, Immediate(1)); // Test number
__ movaps(xmm8, xmm0);
__ vfmadd132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmadd213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmadd231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfmadd132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfmadd213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfmadd231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ subss(xmm3, xmm2); // Expected result in xmm3
// vfmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfmsub132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfmsub213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfmsub231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfmsub132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfmsub213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfmsub231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 + xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ Move(xmm4, (uint32_t)1 << 31);
__ xorps(xmm3, xmm4);
__ addss(xmm3, xmm2); // Expected result in xmm3
// vfnmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmadd132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmadd213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmadd231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmadd132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfnmadd213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmadd231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmadd231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// - xmm0 * xmm1 - xmm2
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ Move(xmm4, (uint32_t)1 << 31);
__ xorps(xmm3, xmm4);
__ subss(xmm3, xmm2); // Expected result in xmm3
// vfnmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ vfnmsub132ss(xmm8, xmm2, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ vfnmsub213ss(xmm8, xmm0, xmm2);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ vfnmsub231ss(xmm8, xmm0, xmm1);
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub132ss
__ incq(rax);
__ movaps(xmm8, xmm0);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmsub132ss(xmm8, xmm2, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub213ss
__ incq(rax);
__ movaps(xmm8, xmm1);
__ movss(Operand(rsp, 0), xmm2);
__ vfnmsub213ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
// vfnmsub231ss
__ incq(rax);
__ movaps(xmm8, xmm2);
__ movss(Operand(rsp, 0), xmm1);
__ vfnmsub231ss(xmm8, xmm0, Operand(rsp, 0));
__ ucomiss(xmm8, xmm3);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize));
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F8 f = FUNCTION_CAST<F8>(code->entry());
CHECK_EQ(0, f(9.26621069e-05f, -2.4607749f, -1.09587872f));
}
TEST(AssemblerX64SSE_ss) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
Assembler assm(isolate, buffer, sizeof(buffer));
{
Label exit;
// arguments in xmm0, xmm1 and xmm2
__ movl(rax, Immediate(0));
__ movaps(xmm3, xmm0);
__ maxss(xmm3, xmm1);
__ ucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(1));
__ movaps(xmm3, xmm1);
__ minss(xmm3, xmm2);
__ ucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(2));
__ movaps(xmm3, xmm2);
__ subss(xmm3, xmm1);
__ ucomiss(xmm3, xmm0);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(3));
__ movaps(xmm3, xmm0);
__ addss(xmm3, xmm1);
__ ucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(4));
__ movaps(xmm3, xmm0);
__ mulss(xmm3, xmm1);
__ ucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(5));
__ movaps(xmm3, xmm0);
__ divss(xmm3, xmm1);
__ mulss(xmm3, xmm2);
__ mulss(xmm3, xmm1);
__ ucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(6));
// result in eax
__ bind(&exit);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F8 f = FUNCTION_CAST<F8>(code->entry());
int res = f(1.0f, 2.0f, 3.0f);
PrintF("f(1,2,3) = %d\n", res);
CHECK_EQ(6, res);
}
TEST(AssemblerX64AVX_ss) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(AVX)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
Assembler assm(isolate, buffer, sizeof(buffer));
{
CpuFeatureScope avx_scope(&assm, AVX);
Label exit;
// arguments in xmm0, xmm1 and xmm2
__ subq(rsp, Immediate(kDoubleSize * 2)); // For memory operand
__ movl(rdx, Immediate(0xc2f64000)); // -123.125
__ vmovd(xmm4, rdx);
__ vmovss(Operand(rsp, 0), xmm4);
__ vmovss(xmm5, Operand(rsp, 0));
__ vmovaps(xmm6, xmm5);
__ vmovd(rcx, xmm6);
__ cmpl(rcx, rdx);
__ movl(rax, Immediate(9));
__ j(not_equal, &exit);
__ movl(rax, Immediate(0));
__ vmaxss(xmm3, xmm0, xmm1);
__ vucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(1));
__ vminss(xmm3, xmm1, xmm2);
__ vucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(2));
__ vsubss(xmm3, xmm2, xmm1);
__ vucomiss(xmm3, xmm0);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(3));
__ vaddss(xmm3, xmm0, xmm1);
__ vucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(4));
__ vmulss(xmm3, xmm0, xmm1);
__ vucomiss(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(5));
__ vdivss(xmm3, xmm0, xmm1);
__ vmulss(xmm3, xmm3, xmm2);
__ vmulss(xmm3, xmm3, xmm1);
__ vucomiss(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(6));
// result in eax
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize * 2));
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F8 f = FUNCTION_CAST<F8>(code->entry());
int res = f(1.0f, 2.0f, 3.0f);
PrintF("f(1,2,3) = %d\n", res);
CHECK_EQ(6, res);
}
TEST(AssemblerX64AVX_sd) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(AVX)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
Assembler assm(isolate, buffer, sizeof(buffer));
{
CpuFeatureScope avx_scope(&assm, AVX);
Label exit;
// arguments in xmm0, xmm1 and xmm2
__ subq(rsp, Immediate(kDoubleSize * 2)); // For memory operand
__ movl(rax, Immediate(0));
__ vmaxsd(xmm4, xmm0, xmm1);
__ vmovsd(Operand(rsp, kDoubleSize), xmm4);
__ vmovsd(xmm5, Operand(rsp, kDoubleSize));
__ vmovsd(xmm6, xmm6, xmm5);
__ vmovapd(xmm3, xmm6);
// Test vcvtss2sd & vcvtsd2ss
__ movl(rax, Immediate(9));
__ movq(rdx, V8_INT64_C(0x426D1A0000000000));
__ movq(Operand(rsp, 0), rdx);
__ vcvtsd2ss(xmm6, xmm6, Operand(rsp, 0));
__ vcvtss2sd(xmm7, xmm6, xmm6);
__ vcvtsd2ss(xmm8, xmm7, xmm7);
__ vmovss(Operand(rsp, 0), xmm8);
__ vcvtss2sd(xmm9, xmm8, Operand(rsp, 0));
__ vmovq(rcx, xmm9);
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test vcvttsd2si
__ movl(rax, Immediate(10));
__ movl(rdx, Immediate(123));
__ vcvtlsi2sd(xmm6, xmm6, rdx);
__ vcvttsd2si(rcx, xmm6);
__ cmpl(rcx, rdx);
__ j(not_equal, &exit);
__ xorl(rcx, rcx);
__ vmovsd(Operand(rsp, 0), xmm6);
__ vcvttsd2si(rcx, Operand(rsp, 0));
__ cmpl(rcx, rdx);
__ j(not_equal, &exit);
// Test vcvttsd2siq
__ movl(rax, Immediate(11));
__ movq(rdx, V8_INT64_C(0x426D1A94A2000000)); // 1.0e12
__ vmovq(xmm6, rdx);
__ vcvttsd2siq(rcx, xmm6);
__ movq(rdx, V8_INT64_C(1000000000000));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ xorq(rcx, rcx);
__ vmovsd(Operand(rsp, 0), xmm6);
__ vcvttsd2siq(rcx, Operand(rsp, 0));
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test vmovmskpd
__ movl(rax, Immediate(12));
__ movq(rdx, V8_INT64_C(0x426D1A94A2000000)); // 1.0e12
__ vmovq(xmm6, rdx);
__ movq(rdx, V8_INT64_C(0xC26D1A94A2000000)); // -1.0e12
__ vmovq(xmm7, rdx);
__ shufps(xmm6, xmm7, 0x44);
__ vmovmskpd(rdx, xmm6);
__ cmpl(rdx, Immediate(2));
__ j(not_equal, &exit);
// Test vpcmpeqd
__ movq(rdx, V8_UINT64_C(0x0123456789abcdef));
__ movq(rcx, V8_UINT64_C(0x0123456788888888));
__ vmovq(xmm6, rdx);
__ vmovq(xmm7, rcx);
__ vpcmpeqd(xmm8, xmm6, xmm7);
__ vmovq(rdx, xmm8);
__ movq(rcx, V8_UINT64_C(0xffffffff00000000));
__ cmpq(rcx, rdx);
__ movl(rax, Immediate(13));
__ j(not_equal, &exit);
// Test vpsllq, vpsrlq
__ movl(rax, Immediate(13));
__ movq(rdx, V8_UINT64_C(0x0123456789abcdef));
__ vmovq(xmm6, rdx);
__ vpsrlq(xmm7, xmm6, 4);
__ vmovq(rdx, xmm7);
__ movq(rcx, V8_UINT64_C(0x00123456789abcde));
__ cmpq(rdx, rcx);
__ j(not_equal, &exit);
__ vpsllq(xmm7, xmm6, 12);
__ vmovq(rdx, xmm7);
__ movq(rcx, V8_UINT64_C(0x3456789abcdef000));
__ cmpq(rdx, rcx);
__ j(not_equal, &exit);
// Test vandpd, vorpd, vxorpd
__ movl(rax, Immediate(14));
__ movl(rdx, Immediate(0x00ff00ff));
__ movl(rcx, Immediate(0x0f0f0f0f));
__ vmovd(xmm4, rdx);
__ vmovd(xmm5, rcx);
__ vandpd(xmm6, xmm4, xmm5);
__ vmovd(rdx, xmm6);
__ cmpl(rdx, Immediate(0x000f000f));
__ j(not_equal, &exit);
__ vorpd(xmm6, xmm4, xmm5);
__ vmovd(rdx, xmm6);
__ cmpl(rdx, Immediate(0x0fff0fff));
__ j(not_equal, &exit);
__ vxorpd(xmm6, xmm4, xmm5);
__ vmovd(rdx, xmm6);
__ cmpl(rdx, Immediate(0x0ff00ff0));
__ j(not_equal, &exit);
// Test vsqrtsd
__ movl(rax, Immediate(15));
__ movq(rdx, V8_UINT64_C(0x4004000000000000)); // 2.5
__ vmovq(xmm4, rdx);
__ vmulsd(xmm5, xmm4, xmm4);
__ vmovsd(Operand(rsp, 0), xmm5);
__ vsqrtsd(xmm6, xmm5, xmm5);
__ vmovq(rcx, xmm6);
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ vsqrtsd(xmm7, xmm7, Operand(rsp, 0));
__ vmovq(rcx, xmm7);
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Test vroundsd
__ movl(rax, Immediate(16));
__ movq(rdx, V8_UINT64_C(0x4002000000000000)); // 2.25
__ vmovq(xmm4, rdx);
__ vroundsd(xmm5, xmm4, xmm4, kRoundUp);
__ movq(rcx, V8_UINT64_C(0x4008000000000000)); // 3.0
__ vmovq(xmm6, rcx);
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
// Test vcvtlsi2sd
__ movl(rax, Immediate(17));
__ movl(rdx, Immediate(6));
__ movq(rcx, V8_UINT64_C(0x4018000000000000)); // 6.0
__ vmovq(xmm5, rcx);
__ vcvtlsi2sd(xmm6, xmm6, rdx);
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
__ movl(Operand(rsp, 0), rdx);
__ vcvtlsi2sd(xmm7, xmm7, Operand(rsp, 0));
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
// Test vcvtqsi2sd
__ movl(rax, Immediate(18));
__ movq(rdx, V8_UINT64_C(0x2000000000000000)); // 2 << 0x3c
__ movq(rcx, V8_UINT64_C(0x43c0000000000000));
__ vmovq(xmm5, rcx);
__ vcvtqsi2sd(xmm6, xmm6, rdx);
__ vucomisd(xmm5, xmm6);
__ j(not_equal, &exit);
// Test vcvtsd2si
__ movl(rax, Immediate(19));
__ movq(rdx, V8_UINT64_C(0x4018000000000000)); // 6.0
__ vmovq(xmm5, rdx);
__ vcvtsd2si(rcx, xmm5);
__ cmpl(rcx, Immediate(6));
__ j(not_equal, &exit);
__ movq(rdx, V8_INT64_C(0x3ff0000000000000)); // 1.0
__ vmovq(xmm7, rdx);
__ vmulsd(xmm1, xmm1, xmm7);
__ movq(Operand(rsp, 0), rdx);
__ vmovq(xmm6, Operand(rsp, 0));
__ vmulsd(xmm1, xmm1, xmm6);
__ vucomisd(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(1));
__ vminsd(xmm3, xmm1, xmm2);
__ vucomisd(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(2));
__ vsubsd(xmm3, xmm2, xmm1);
__ vucomisd(xmm3, xmm0);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(3));
__ vaddsd(xmm3, xmm0, xmm1);
__ vucomisd(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(4));
__ vmulsd(xmm3, xmm0, xmm1);
__ vucomisd(xmm3, xmm1);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(5));
__ vdivsd(xmm3, xmm0, xmm1);
__ vmulsd(xmm3, xmm3, xmm2);
__ vmulsd(xmm3, xmm3, xmm1);
__ vucomisd(xmm3, xmm2);
__ j(parity_even, &exit);
__ j(not_equal, &exit);
__ movl(rax, Immediate(6));
// result in eax
__ bind(&exit);
__ addq(rsp, Immediate(kDoubleSize * 2));
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F7 f = FUNCTION_CAST<F7>(code->entry());
int res = f(1.0, 2.0, 3.0);
PrintF("f(1,2,3) = %d\n", res);
CHECK_EQ(6, res);
}
TEST(AssemblerX64BMI1) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(BMI1)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[1024];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&assm, BMI1);
Label exit;
__ movq(rcx, V8_UINT64_C(0x1122334455667788)); // source operand
__ pushq(rcx); // For memory operand
// andn
__ movq(rdx, V8_UINT64_C(0x1000000020000000));
__ movl(rax, Immediate(1)); // Test number
__ andnq(r8, rdx, rcx);
__ movq(r9, V8_UINT64_C(0x0122334455667788)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ andnq(r8, rdx, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0122334455667788)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ andnl(r8, rdx, rcx);
__ movq(r9, V8_UINT64_C(0x0000000055667788)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ andnl(r8, rdx, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000055667788)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// bextr
__ movq(rdx, V8_UINT64_C(0x0000000000002808));
__ incq(rax);
__ bextrq(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0000003344556677)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bextrq(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0000003344556677)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bextrl(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0000000000556677)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bextrl(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0000000000556677)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// blsi
__ incq(rax);
__ blsiq(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsiq(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsil(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsil(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000000000008)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// blsmsk
__ incq(rax);
__ blsmskq(r8, rcx);
__ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsmskq(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsmskl(r8, rcx);
__ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsmskl(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x000000000000000f)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// blsr
__ incq(rax);
__ blsrq(r8, rcx);
__ movq(r9, V8_UINT64_C(0x1122334455667780)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsrq(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x1122334455667780)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsrl(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000055667780)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ blsrl(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000055667780)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// tzcnt
__ incq(rax);
__ tzcntq(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ tzcntq(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ tzcntl(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ tzcntl(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F0 f = FUNCTION_CAST<F0>(code->entry());
CHECK_EQ(0, f());
}
TEST(AssemblerX64LZCNT) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(LZCNT)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&assm, LZCNT);
Label exit;
__ movq(rcx, V8_UINT64_C(0x1122334455667788)); // source operand
__ pushq(rcx); // For memory operand
__ movl(rax, Immediate(1)); // Test number
__ lzcntq(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ lzcntq(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000000000003)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ lzcntl(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000000000001)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ lzcntl(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000000000001)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F0 f = FUNCTION_CAST<F0>(code->entry());
CHECK_EQ(0, f());
}
TEST(AssemblerX64POPCNT) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(POPCNT)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&assm, POPCNT);
Label exit;
__ movq(rcx, V8_UINT64_C(0x1111111111111100)); // source operand
__ pushq(rcx); // For memory operand
__ movl(rax, Immediate(1)); // Test number
__ popcntq(r8, rcx);
__ movq(r9, V8_UINT64_C(0x000000000000000e)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ popcntq(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x000000000000000e)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ popcntl(r8, rcx);
__ movq(r9, V8_UINT64_C(0x0000000000000006)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ popcntl(r8, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000000000006)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F0 f = FUNCTION_CAST<F0>(code->entry());
CHECK_EQ(0, f());
}
TEST(AssemblerX64BMI2) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(BMI2)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[2048];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope fscope(&assm, BMI2);
Label exit;
__ pushq(rbx); // save rbx
__ movq(rcx, V8_UINT64_C(0x1122334455667788)); // source operand
__ pushq(rcx); // For memory operand
// bzhi
__ movq(rdx, V8_UINT64_C(0x0000000000000009));
__ movl(rax, Immediate(1)); // Test number
__ bzhiq(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bzhiq(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bzhil(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ bzhil(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0000000000000188)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// mulx
__ movq(rdx, V8_UINT64_C(0x0000000000001000));
__ incq(rax);
__ mulxq(r8, r9, rcx);
__ movq(rbx, V8_UINT64_C(0x0000000000000112)); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, V8_UINT64_C(0x2334455667788000)); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
__ incq(rax);
__ mulxq(r8, r9, Operand(rsp, 0));
__ movq(rbx, V8_UINT64_C(0x0000000000000112)); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, V8_UINT64_C(0x2334455667788000)); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
__ incq(rax);
__ mulxl(r8, r9, rcx);
__ movq(rbx, V8_UINT64_C(0x0000000000000556)); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, V8_UINT64_C(0x0000000067788000)); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
__ incq(rax);
__ mulxl(r8, r9, Operand(rsp, 0));
__ movq(rbx, V8_UINT64_C(0x0000000000000556)); // expected result
__ cmpq(r8, rbx);
__ j(not_equal, &exit);
__ movq(rbx, V8_UINT64_C(0x0000000067788000)); // expected result
__ cmpq(r9, rbx);
__ j(not_equal, &exit);
// pdep
__ movq(rdx, V8_UINT64_C(0xfffffffffffffff0));
__ incq(rax);
__ pdepq(r8, rdx, rcx);
__ movq(r9, V8_UINT64_C(0x1122334455667400)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pdepq(r8, rdx, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x1122334455667400)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pdepl(r8, rdx, rcx);
__ movq(r9, V8_UINT64_C(0x0000000055667400)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pdepl(r8, rdx, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000055667400)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// pext
__ movq(rdx, V8_UINT64_C(0xfffffffffffffff0));
__ incq(rax);
__ pextq(r8, rdx, rcx);
__ movq(r9, V8_UINT64_C(0x0000000003fffffe)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pextq(r8, rdx, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x0000000003fffffe)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pextl(r8, rdx, rcx);
__ movq(r9, V8_UINT64_C(0x000000000000fffe)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ pextl(r8, rdx, Operand(rsp, 0));
__ movq(r9, V8_UINT64_C(0x000000000000fffe)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// sarx
__ movq(rdx, V8_UINT64_C(0x0000000000000004));
__ incq(rax);
__ sarxq(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ sarxq(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ sarxl(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ sarxl(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// shlx
__ movq(rdx, V8_UINT64_C(0x0000000000000004));
__ incq(rax);
__ shlxq(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x1223344556677880)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shlxq(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x1223344556677880)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shlxl(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0000000056677880)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shlxl(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0000000056677880)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// shrx
__ movq(rdx, V8_UINT64_C(0x0000000000000004));
__ incq(rax);
__ shrxq(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shrxq(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0112233445566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shrxl(r8, rcx, rdx);
__ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ shrxl(r8, Operand(rsp, 0), rdx);
__ movq(r9, V8_UINT64_C(0x0000000005566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
// rorx
__ incq(rax);
__ rorxq(r8, rcx, 0x4);
__ movq(r9, V8_UINT64_C(0x8112233445566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ rorxq(r8, Operand(rsp, 0), 0x4);
__ movq(r9, V8_UINT64_C(0x8112233445566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ rorxl(r8, rcx, 0x4);
__ movq(r9, V8_UINT64_C(0x0000000085566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ incq(rax);
__ rorxl(r8, Operand(rsp, 0), 0x4);
__ movq(r9, V8_UINT64_C(0x0000000085566778)); // expected result
__ cmpq(r8, r9);
__ j(not_equal, &exit);
__ xorl(rax, rax);
__ bind(&exit);
__ popq(rcx);
__ popq(rbx);
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F0 f = FUNCTION_CAST<F0>(code->entry());
CHECK_EQ(0, f());
}
TEST(AssemblerX64JumpTables1) {
// Test jump tables with forward jumps.
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done, table;
__ leaq(arg2, Operand(&table));
__ jmp(Operand(arg2, arg1, times_8, 0));
__ ud2();
__ bind(&table);
for (int i = 0; i < kNumCases; ++i) {
__ dq(&labels[i]);
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ movq(rax, Immediate(values[i]));
__ jmp(&done);
}
__ bind(&done);
__ ret(0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res = f(i);
PrintF("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(AssemblerX64JumpTables2) {
// Test jump tables with backwards jumps.
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done, table;
__ leaq(arg2, Operand(&table));
__ jmp(Operand(arg2, arg1, times_8, 0));
__ ud2();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ movq(rax, Immediate(values[i]));
__ jmp(&done);
}
__ bind(&done);
__ ret(0);
__ bind(&table);
for (int i = 0; i < kNumCases; ++i) {
__ dq(&labels[i]);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res = f(i);
PrintF("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(AssemblerX64PslldWithXmm15) {
CcTest::InitializeVM();
// Allocate an executable page of memory.
size_t actual_size;
byte* buffer = static_cast<byte*>(v8::base::OS::Allocate(
Assembler::kMinimalBufferSize, &actual_size, true));
CHECK(buffer);
Assembler assm(CcTest::i_isolate(), buffer, static_cast<int>(actual_size));
__ movq(xmm15, arg1);
__ pslld(xmm15, 1);
__ movq(rax, xmm15);
__ ret(0);
CodeDesc desc;
assm.GetCode(CcTest::i_isolate(), &desc);
uint64_t result = FUNCTION_CAST<F5>(buffer)(V8_UINT64_C(0x1122334455667788));
CHECK_EQ(V8_UINT64_C(0x22446688aaccef10), result);
}
typedef float (*F9)(float x, float y);
TEST(AssemblerX64vmovups) {
CcTest::InitializeVM();
if (!CpuFeatures::IsSupported(AVX)) return;
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
HandleScope scope(isolate);
v8::internal::byte buffer[256];
MacroAssembler assm(isolate, buffer, sizeof(buffer),
v8::internal::CodeObjectRequired::kYes);
{
CpuFeatureScope avx_scope(&assm, AVX);
__ shufps(xmm0, xmm0, 0x0); // brocast first argument
__ shufps(xmm1, xmm1, 0x0); // brocast second argument
// copy xmm1 to xmm0 through the stack to test the "vmovups reg, mem".
__ subq(rsp, Immediate(kSimd128Size));
__ vmovups(Operand(rsp, 0), xmm1);
__ vmovups(xmm0, Operand(rsp, 0));
__ addq(rsp, Immediate(kSimd128Size));
__ ret(0);
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
OFStream os(stdout);
code->Print(os);
#endif
F9 f = FUNCTION_CAST<F9>(code->entry());
CHECK_EQ(-1.5, f(1.5, -1.5));
}
#undef __
} // namespace internal
} // namespace v8