v8/src/assembler-ia32.h

808 lines
24 KiB
C
Raw Normal View History

// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2006-2008 Google Inc. All Rights Reserved.
// A light-weight IA32 Assembler.
#ifndef V8_ASSEMBLER_IA32_H_
#define V8_ASSEMBLER_IA32_H_
namespace v8 { namespace internal {
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
//
struct Register {
bool is_valid() const { return 0 <= code_ && code_ < 8; }
bool is(Register reg) const { return code_ == reg.code_; }
int code() const {
ASSERT(is_valid());
return code_;
}
int bit() const {
ASSERT(is_valid());
return 1 << code_;
}
// (unfortunately we can't make this private in a struct)
int code_;
};
extern Register eax;
extern Register ecx;
extern Register edx;
extern Register ebx;
extern Register esp;
extern Register ebp;
extern Register esi;
extern Register edi;
extern Register no_reg;
struct XMMRegister {
bool is_valid() const { return 0 <= code_ && code_ < 2; } // currently
int code() const {
ASSERT(is_valid());
return code_;
}
int code_;
};
extern XMMRegister xmm0;
extern XMMRegister xmm1;
extern XMMRegister xmm2;
extern XMMRegister xmm3;
extern XMMRegister xmm4;
extern XMMRegister xmm5;
extern XMMRegister xmm6;
extern XMMRegister xmm7;
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
overflow = 0,
no_overflow = 1,
below = 2,
above_equal = 3,
equal = 4,
not_equal = 5,
below_equal = 6,
above = 7,
sign = 8,
not_sign = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
// aliases
zero = equal,
not_zero = not_equal,
negative = sign,
positive = not_sign
};
// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc);
// Corresponds to transposing the operands of a comparison.
inline Condition ReverseCondition(Condition cc) {
switch (cc) {
case below:
return above;
case above:
return below;
case above_equal:
return below_equal;
case below_equal:
return above_equal;
case less:
return greater;
case greater:
return less;
case greater_equal:
return less_equal;
case less_equal:
return greater_equal;
default:
return cc;
};
}
enum Hint {
no_hint = 0,
not_taken = 0x2e,
taken = 0x3e
};
// -----------------------------------------------------------------------------
// Machine instruction Immediates
class Immediate BASE_EMBEDDED {
public:
inline explicit Immediate(int x);
inline explicit Immediate(const char* s);
inline explicit Immediate(const ExternalReference& ext);
inline explicit Immediate(Handle<Object> handle);
inline explicit Immediate(Smi* value);
bool is_zero() const { return x_ == 0 && rmode_ == no_reloc; }
bool is_int8() const { return -128 <= x_ && x_ < 128 && rmode_ == no_reloc; }
private:
int x_;
RelocMode rmode_;
friend class Assembler;
};
// -----------------------------------------------------------------------------
// Machine instruction Operands
enum ScaleFactor {
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3
};
class Operand BASE_EMBEDDED {
public:
// reg
INLINE(explicit Operand(Register reg));
// [disp/r]
INLINE(explicit Operand(int32_t disp, RelocMode rmode));
// disp only must always be relocated
// [base + disp/r]
explicit Operand(Register base, int32_t disp, RelocMode rmode = no_reloc);
// [base + index*scale + disp/r]
explicit Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp,
RelocMode rmode = no_reloc);
// [index*scale + disp/r]
explicit Operand(Register index,
ScaleFactor scale,
int32_t disp,
RelocMode rmode = no_reloc);
static Operand StaticVariable(const ExternalReference& ext) {
return Operand(reinterpret_cast<int32_t>(ext.address()),
external_reference);
}
static Operand StaticArray(Register index,
ScaleFactor scale,
const ExternalReference& arr) {
return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
external_reference);
}
// Returns true if this Operand is a wrapper for the specified register.
bool is_reg(Register reg) const;
private:
// Mutable because reg in ModR/M byte is set by Assembler via set_reg().
mutable byte buf_[6];
// The number of bytes in buf_.
unsigned int len_;
// Only valid if len_ > 4.
RelocMode rmode_;
inline void set_modrm(int mod, // reg == 0
Register rm);
inline void set_sib(ScaleFactor scale, Register index, Register base);
inline void set_disp8(int8_t disp);
inline void set_dispr(int32_t disp, RelocMode rmode);
inline void set_reg(Register reg) const;
friend class Assembler;
};
// -----------------------------------------------------------------------------
// A Displacement describes the 32bit immediate field of an instruction which
// may be used together with a Label in order to refer to a yet unknown code
// position. Displacements stored in the instruction stream are used to describe
// the instruction and to chain a list of instructions using the same Label.
// A Displacement contains 2 different fields:
//
// next field: position of next displacement in the chain (0 = end of list)
// type field: instruction type
//
// A next value of null (0) indicates the end of a chain (note that there can
// be no displacement at position zero, because there is always at least one
// instruction byte before the displacement).
//
// Displacement _data field layout
//
// |31.....1|.......0|
// [ next | type |
class Displacement BASE_EMBEDDED {
public:
enum Type {
UNCONDITIONAL_JUMP,
OTHER
};
int data() const { return data_; }
Type type() const { return TypeField::decode(data_); }
void next(Label* L) const {
int n = NextField::decode(data_);
n > 0 ? L->link_to(n) : L->Unuse();
}
void link_to(Label* L) { init(L, type()); }
explicit Displacement(int data) { data_ = data; }
Displacement(Label* L, Type type) { init(L, type); }
void print() {
PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
NextField::decode(data_));
}
private:
int data_;
class TypeField: public BitField<Type, 0, 1> {};
class NextField: public BitField<int, 1, 32-1> {};
void init(Label* L, Type type);
};
// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a Scope before use.
// Example:
// if (CpuFeatures::IsSupported(SSE2)) {
// CpuFeatures::Scope fscope(SSE2);
// // Generate SSE2 floating point code.
// } else {
// // Generate standard x87 floating point code.
// }
class CpuFeatures : public AllStatic {
public:
// Feature flags bit positions. They are mostly based on the CPUID spec.
// (We assign CPUID itself to one of the currently reserved bits --
// feel free to change this if needed.)
enum Feature { SSE2 = 26, CMOV = 15, RDTSC = 4, CPUID = 10 };
// Detect features of the target CPU. Set safe defaults if the serializer
// is enabled (snapshots must be portable).
static void Probe();
// Check whether a feature is supported by the target CPU.
static bool IsSupported(Feature f) { return supported_ & (1 << f); }
// Check whether a feature is currently enabled.
static bool IsEnabled(Feature f) { return enabled_ & (1 << f); }
// Enable a specified feature within a scope.
class Scope BASE_EMBEDDED {
#ifdef DEBUG
public:
explicit Scope(Feature f) {
ASSERT(CpuFeatures::IsSupported(f));
old_enabled_ = CpuFeatures::enabled_;
CpuFeatures::enabled_ |= (1 << f);
}
~Scope() { CpuFeatures::enabled_ = old_enabled_; }
private:
uint32_t old_enabled_;
#else
public:
explicit Scope(Feature f) {}
#endif
};
private:
static uint32_t supported_;
static uint32_t enabled_;
};
class Assembler : public Malloced {
private:
// The relocation writer's position is kGap bytes below the end of
// the generated instructions. This leaves enough space for the
// longest possible ia32 instruction (17 bytes as of 9/26/06) and
// allows for a single, fast space check per instruction.
static const int kGap = 32;
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(void* buffer, int buffer_size);
~Assembler();
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked inbetween GetCode() calls.
void GetCode(CodeDesc* desc);
// Read/Modify the code target in the branch/call instruction at pc.
inline static Address target_address_at(Address pc);
inline static void set_target_address_at(Address pc, Address target);
// Distance between the address of the code target in the call instruction
// and the return address
static const int kTargetAddrToReturnAddrDist = kPointerSize;
// ---------------------------------------------------------------------------
// Code generation
//
// - function names correspond one-to-one to ia32 instruction mnemonics
// - unless specified otherwise, instructions operate on 32bit operands
// - instructions on 8bit (byte) operands/registers have a trailing '_b'
// - instructions on 16bit (word) operands/registers have a trailing '_w'
// - naming conflicts with C++ keywords are resolved via a trailing '_'
// NOTE ON INTERFACE: Currently, the interface is not very consistent
// in the sense that some operations (e.g. mov()) can be called in more
// the one way to generate the same instruction: The Register argument
// can in some cases be replaced with an Operand(Register) argument.
// This should be cleaned up and made more othogonal. The questions
// is: should we always use Operands instead of Registers where an
// Operand is possible, or should we have a Register (overloaded) form
// instead? We must be carefull to make sure that the selected instruction
// is obvious from the parameters to avoid hard-to-find code generation
// bugs.
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2.
void Align(int m);
// Stack
void pushad();
void popad();
void pushfd();
void popfd();
void push(const Immediate& x);
void push(Register src);
void push(const Operand& src);
void pop(Register dst);
void pop(const Operand& dst);
// Moves
void mov_b(Register dst, const Operand& src);
void mov_b(const Operand& dst, int8_t imm8);
void mov_b(const Operand& dst, Register src);
void mov_w(Register dst, const Operand& src);
void mov_w(const Operand& dst, Register src);
void mov(Register dst, int32_t imm32);
void mov(Register dst, Handle<Object> handle);
void mov(Register dst, const Operand& src);
void mov(const Operand& dst, const Immediate& x);
void mov(const Operand& dst, Handle<Object> handle);
void mov(const Operand& dst, Register src);
void movsx_b(Register dst, const Operand& src);
void movsx_w(Register dst, const Operand& src);
void movzx_b(Register dst, const Operand& src);
void movzx_w(Register dst, const Operand& src);
// Conditional moves
void cmov(Condition cc, Register dst, int32_t imm32);
void cmov(Condition cc, Register dst, Handle<Object> handle);
void cmov(Condition cc, Register dst, const Operand& src);
// Arithmetics
void adc(Register dst, int32_t imm32);
void adc(Register dst, const Operand& src);
void add(Register dst, const Operand& src);
void add(const Operand& dst, const Immediate& x);
void and_(Register dst, int32_t imm32);
void and_(Register dst, const Operand& src);
void and_(const Operand& src, Register dst);
void and_(const Operand& dst, const Immediate& x);
void cmp(Register reg, int32_t imm32);
void cmp(Register reg, Handle<Object> handle);
void cmp(Register reg, const Operand& op);
void cmp(const Operand& op, const Immediate& imm);
void dec_b(Register dst);
void dec(Register dst);
void dec(const Operand& dst);
void cdq();
void idiv(Register src);
void imul(Register dst, const Operand& src);
void imul(Register dst, Register src, int32_t imm32);
void inc(Register dst);
void inc(const Operand& dst);
void lea(Register dst, const Operand& src);
void mul(Register src);
void neg(Register dst);
void not_(Register dst);
void or_(Register dst, int32_t imm32);
void or_(Register dst, const Operand& src);
void or_(const Operand& dst, Register src);
void or_(const Operand& dst, const Immediate& x);
void rcl(Register dst, uint8_t imm8);
void sar(Register dst, uint8_t imm8);
void sar(Register dst);
void sbb(Register dst, const Operand& src);
void shld(Register dst, const Operand& src);
void shl(Register dst, uint8_t imm8);
void shl(Register dst);
void shrd(Register dst, const Operand& src);
void shr(Register dst, uint8_t imm8);
void shr(Register dst);
void sub(const Operand& dst, const Immediate& x);
void sub(Register dst, const Operand& src);
void sub(const Operand& dst, Register src);
void test(Register reg, const Immediate& imm);
void test(Register reg, const Operand& op);
void test(const Operand& op, const Immediate& imm);
void xor_(Register dst, int32_t imm32);
void xor_(Register dst, const Operand& src);
void xor_(const Operand& src, Register dst);
void xor_(const Operand& dst, const Immediate& x);
// Bit operations.
void bts(const Operand& dst, Register src);
// Miscellaneous
void hlt();
void int3();
void nop();
void rdtsc();
void ret(int imm16);
void leave();
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Calls
void call(Label* L);
void call(byte* entry, RelocMode rmode);
void call(const Operand& adr);
void call(Handle<Code> code, RelocMode rmode);
// Jumps
void jmp(Label* L); // unconditional jump to L
void jmp(byte* entry, RelocMode rmode);
void jmp(const Operand& adr);
void jmp(Handle<Code> code, RelocMode rmode);
// Conditional jumps
void j(Condition cc, Label* L, Hint hint = no_hint);
void j(Condition cc, byte* entry, RelocMode rmode, Hint hint = no_hint);
void j(Condition cc, Handle<Code> code, Hint hint = no_hint);
// Floating-point operations
void fld(int i);
void fld1();
void fldz();
void fld_s(const Operand& adr);
void fld_d(const Operand& adr);
void fstp_s(const Operand& adr);
void fstp_d(const Operand& adr);
void fild_s(const Operand& adr);
void fild_d(const Operand& adr);
void fist_s(const Operand& adr);
void fistp_s(const Operand& adr);
void fistp_d(const Operand& adr);
void fabs();
void fchs();
void fadd(int i);
void fsub(int i);
void fmul(int i);
void fdiv(int i);
void fisub_s(const Operand& adr);
void faddp(int i = 1);
void fsubp(int i = 1);
void fsubrp(int i = 1);
void fmulp(int i = 1);
void fdivp(int i = 1);
void fprem();
void fprem1();
void fxch(int i = 1);
void fincstp();
void ffree(int i = 0);
void ftst();
void fucomp(int i);
void fucompp();
void fcompp();
void fnstsw_ax();
void fwait();
void frndint();
void sahf();
void cpuid();
// SSE2 instructions
void cvttss2si(Register dst, const Operand& src);
void cvttsd2si(Register dst, const Operand& src);
void cvtsi2sd(XMMRegister dst, const Operand& src);
void addsd(XMMRegister dst, XMMRegister src);
void subsd(XMMRegister dst, XMMRegister src);
void mulsd(XMMRegister dst, XMMRegister src);
void divsd(XMMRegister dst, XMMRegister src);
// Use either movsd or movlpd.
void movdbl(XMMRegister dst, const Operand& src);
void movdbl(const Operand& dst, XMMRegister src);
// Debugging
void Print();
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
// Mark address of the ExitJSFrame code.
void RecordJSReturn();
// Record a comment relocation entry that can be used by a disassembler.
// Use --debug_code to enable.
void RecordComment(const char* msg);
void RecordPosition(int pos);
void RecordStatementPosition(int pos);
int pc_offset() const { return pc_ - buffer_; }
int last_position() const { return last_position_; }
bool last_position_is_statement() const {
return last_position_is_statement_;
}
// Check if there is less than kGap bytes available in the buffer.
// If this is the case, we need to grow the buffer before emitting
// an instruction or relocation information.
inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
// Get the number of bytes available in the buffer.
inline int available_space() const { return reloc_info_writer.pos() - pc_; }
// Avoid overflows for displacements etc.
static const int kMaximalBufferSize = 512*MB;
static const int kMinimalBufferSize = 4*KB;
protected:
void movsd(XMMRegister dst, const Operand& src);
void movsd(const Operand& dst, XMMRegister src);
void emit_sse_operand(XMMRegister reg, const Operand& adr);
void emit_sse_operand(XMMRegister dst, XMMRegister src);
private:
// Code buffer:
// The buffer into which code and relocation info are generated.
byte* buffer_;
int buffer_size_;
// True if the assembler owns the buffer, false if buffer is external.
bool own_buffer_;
// code generation
byte* pc_; // the program counter; moves forward
RelocInfoWriter reloc_info_writer;
// push-pop elimination
byte* last_pc_;
// Jump-to-jump elimination:
// The last label to be bound to _binding_pos, if unbound.
Label unbound_label_;
// The position to which _unbound_label has to be bound, if present.
int binding_pos_;
// The position before which jumps cannot be eliminated.
int last_bound_pos_;
// source position information
int last_position_;
bool last_position_is_statement_;
byte* addr_at(int pos) { return buffer_ + pos; }
byte byte_at(int pos) { return buffer_[pos]; }
uint32_t long_at(int pos) {
return *reinterpret_cast<uint32_t*>(addr_at(pos));
}
void long_at_put(int pos, uint32_t x) {
*reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
}
// code emission
void GrowBuffer();
inline void emit(uint32_t x);
inline void emit(Handle<Object> handle);
inline void emit(uint32_t x, RelocMode rmode);
inline void emit(const Immediate& x);
// instruction generation
void emit_arith_b(int op1, int op2, Register dst, int imm8);
// Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
// with a given destination expression and an immediate operand. It attempts
// to use the shortest encoding possible.
// sel specifies the /n in the modrm byte (see the Intel PRM).
void emit_arith(int sel, Operand dst, const Immediate& x);
void emit_operand(Register reg, const Operand& adr);
void emit_operand(const Operand& adr, Register reg);
void emit_farith(int b1, int b2, int i);
// labels
void print(Label* L);
void bind_to(Label* L, int pos);
void link_to(Label* L, Label* appendix);
// displacements
inline Displacement disp_at(Label* L);
inline void disp_at_put(Label* L, Displacement disp);
inline void emit_disp(Label* L, Displacement::Type type);
// record reloc info for current pc_
void RecordRelocInfo(RelocMode rmode, intptr_t data = 0);
friend class CodePatcher;
friend class EnsureSpace;
};
// Helper class that ensures that there is enough space for generating
// instructions and relocation information. The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
if (assembler_->overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
space_before_ = assembler_->available_space();
#endif
}
#ifdef DEBUG
~EnsureSpace() {
int bytes_generated = space_before_ - assembler_->available_space();
ASSERT(bytes_generated < assembler_->kGap);
}
#endif
private:
Assembler* assembler_;
#ifdef DEBUG
int space_before_;
#endif
};
} } // namespace v8::internal
#endif // V8_ASSEMBLER_IA32_H_