v8/src/stub-cache.cc

1940 lines
73 KiB
C++
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "arguments.h"
#include "ast.h"
#include "code-stubs.h"
#include "gdb-jit.h"
#include "ic-inl.h"
#include "stub-cache.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------
// StubCache implementation.
StubCache::StubCache(Isolate* isolate) : isolate_(isolate) {
ASSERT(isolate == Isolate::Current());
memset(primary_, 0, sizeof(primary_[0]) * StubCache::kPrimaryTableSize);
memset(secondary_, 0, sizeof(secondary_[0]) * StubCache::kSecondaryTableSize);
}
void StubCache::Initialize(bool create_heap_objects) {
ASSERT(IsPowerOf2(kPrimaryTableSize));
ASSERT(IsPowerOf2(kSecondaryTableSize));
if (create_heap_objects) {
HandleScope scope;
Code* empty = isolate_->builtins()->builtin(Builtins::kIllegal);
for (int i = 0; i < kPrimaryTableSize; i++) {
primary_[i].key = heap()->empty_string();
primary_[i].value = empty;
}
for (int j = 0; j < kSecondaryTableSize; j++) {
secondary_[j].key = heap()->empty_string();
secondary_[j].value = empty;
}
}
}
Code* StubCache::Set(String* name, Map* map, Code* code) {
// Get the flags from the code.
Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
// Validate that the name does not move on scavenge, and that we
// can use identity checks instead of string equality checks.
ASSERT(!heap()->InNewSpace(name));
ASSERT(name->IsSymbol());
// The state bits are not important to the hash function because
// the stub cache only contains monomorphic stubs. Make sure that
// the bits are the least significant so they will be the ones
// masked out.
ASSERT(Code::ExtractICStateFromFlags(flags) == MONOMORPHIC);
STATIC_ASSERT((Code::ICStateField::kMask & 1) == 1);
// Make sure that the code type is not included in the hash.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Compute the primary entry.
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary = entry(primary_, primary_offset);
Code* hit = primary->value;
// If the primary entry has useful data in it, we retire it to the
// secondary cache before overwriting it.
if (hit != isolate_->builtins()->builtin(Builtins::kIllegal)) {
Code::Flags primary_flags = Code::RemoveTypeFromFlags(hit->flags());
int secondary_offset =
SecondaryOffset(primary->key, primary_flags, primary_offset);
Entry* secondary = entry(secondary_, secondary_offset);
*secondary = *primary;
}
// Update primary cache.
primary->key = name;
primary->value = code;
return code;
}
Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> last) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadNonexistent(*name, *object, *last)),
Code);
}
Handle<Code> StubCache::ComputeLoadNonexistent(Handle<String> name,
Handle<JSObject> receiver) {
ASSERT(receiver->IsGlobalObject() || receiver->HasFastProperties());
// If no global objects are present in the prototype chain, the load
// nonexistent IC stub can be shared for all names for a given map
// and we use the empty string for the map cache in that case. If
// there are global objects involved, we need to check global
// property cells in the stub and therefore the stub will be
// specific to the name.
Handle<String> cache_name = factory()->empty_string();
if (receiver->IsGlobalObject()) cache_name = name;
Handle<JSObject> last = receiver;
while (last->GetPrototype() != heap()->null_value()) {
last = Handle<JSObject>(JSObject::cast(last->GetPrototype()));
if (last->IsGlobalObject()) cache_name = name;
}
// Compile the stub that is either shared for all names or
// name specific if there are global objects involved.
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::LOAD_IC, NONEXISTENT);
Handle<Object> probe(receiver->map()->FindInCodeCache(*cache_name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
LoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadNonexistent(cache_name, receiver, last);
PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, *code, *cache_name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *cache_name, *code));
JSObject::UpdateMapCodeCache(receiver, cache_name, code);
return code;
}
Handle<Code> LoadStubCompiler::CompileLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
int index,
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadField(*object, *holder, index, *name)),
Code);
}
Handle<Code> StubCache::ComputeLoadField(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
int field_index) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, FIELD);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
LoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadField(receiver, holder, field_index, name);
PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadCallback(*name, *object, *holder, *callback)),
Code);
}
Handle<Code> StubCache::ComputeLoadCallback(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
ASSERT(v8::ToCData<Address>(callback->getter()) != 0);
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, CALLBACKS);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
LoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadCallback(name, receiver, holder, callback);
PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> LoadStubCompiler::CompileLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Object> value,
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadConstant(*object, *holder, *value, *name)),
Code);
}
Handle<Code> StubCache::ComputeLoadConstant(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<Object> value) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::LOAD_IC, CONSTANT_FUNCTION);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
LoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadConstant(receiver, holder, value, name);
PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> LoadStubCompiler::CompileLoadInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadInterceptor(*object, *holder, *name)),
Code);
}
Handle<Code> StubCache::ComputeLoadInterceptor(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, INTERCEPTOR);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
LoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadInterceptor(receiver, holder, name);
PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> StubCache::ComputeLoadNormal() {
return isolate_->builtins()->LoadIC_Normal();
}
Handle<Code> LoadStubCompiler::CompileLoadGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<String> name,
bool is_dont_delete) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadGlobal(
*object, *holder, *cell, *name, is_dont_delete)),
Code);
}
Handle<Code> StubCache::ComputeLoadGlobal(Handle<String> name,
Handle<JSObject> receiver,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
bool is_dont_delete) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, NORMAL);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
LoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadGlobal(receiver, holder, cell, name, is_dont_delete);
PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadField(Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> holder,
int index) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadField(*name, *object, *holder, index)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadField(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
int field_index) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, FIELD);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadField(name, receiver, holder, field_index);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadConstant(Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Object> value) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadConstant(*name, *object, *holder, *value)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadConstant(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<Object> value) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CONSTANT_FUNCTION);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadConstant(name, receiver, holder, value);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadInterceptor(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadInterceptor(*object, *holder, *name)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadInterceptor(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, INTERCEPTOR);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileLoadInterceptor(receiver, holder, name);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadCallback(*name, *object, *holder, *callback)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadCallback(
Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
ASSERT(IC::GetCodeCacheForObject(*receiver, *holder) == OWN_MAP);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate_);
Handle<Code> code =
compiler.CompileLoadCallback(name, receiver, holder, callback);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadArrayLength(
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadArrayLength(*name)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadArrayLength(Handle<String> name,
Handle<JSArray> receiver) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileLoadArrayLength(name);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadStringLength(
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadStringLength(*name)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadStringLength(Handle<String> name,
Handle<String> receiver) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
Handle<Map> map(receiver->map());
Handle<Object> probe(map->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileLoadStringLength(name);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, *name, *code));
Map::UpdateCodeCache(map, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadFunctionPrototype(
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileLoadFunctionPrototype(*name)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadFunctionPrototype(
Handle<String> name,
Handle<JSFunction> receiver) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileLoadFunctionPrototype(name);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
CALL_HEAP_FUNCTION(
isolate(),
(set_failure(NULL),
CompileStoreField(*object, index,
transition.is_null() ? NULL : *transition,
*name)),
Code);
}
Handle<Code> StubCache::ComputeStoreField(Handle<String> name,
Handle<JSObject> receiver,
int field_index,
Handle<Map> transition,
StrictModeFlag strict_mode) {
PropertyType type = (transition.is_null()) ? FIELD : MAP_TRANSITION;
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, type, strict_mode);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
StoreStubCompiler compiler(isolate_, strict_mode);
Handle<Code> code =
compiler.CompileStoreField(receiver, field_index, transition, name);
PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(Handle<Map> map) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL), CompileLoadElement(*map)),
Code);
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElement(Handle<Map> map) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileStoreElement(*map)),
Code);
}
Handle<Code> StubCache::ComputeKeyedLoadOrStoreElement(
Handle<JSObject> receiver,
KeyedIC::StubKind stub_kind,
StrictModeFlag strict_mode) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(
stub_kind == KeyedIC::LOAD ? Code::KEYED_LOAD_IC
: Code::KEYED_STORE_IC,
NORMAL,
strict_mode);
Handle<String> name;
switch (stub_kind) {
case KeyedIC::LOAD:
name = isolate()->factory()->KeyedLoadElementMonomorphic_symbol();
break;
case KeyedIC::STORE_NO_TRANSITION:
name = isolate()->factory()->KeyedStoreElementMonomorphic_symbol();
break;
default:
UNREACHABLE();
break;
}
Handle<Map> receiver_map(receiver->map());
Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
Handle<Code> code;
switch (stub_kind) {
case KeyedIC::LOAD: {
KeyedLoadStubCompiler compiler(isolate_);
code = compiler.CompileLoadElement(receiver_map);
break;
}
case KeyedIC::STORE_NO_TRANSITION: {
KeyedStoreStubCompiler compiler(isolate_, strict_mode);
code = compiler.CompileStoreElement(receiver_map);
break;
}
default:
UNREACHABLE();
break;
}
ASSERT(!code.is_null());
if (stub_kind == KeyedIC::LOAD) {
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, *code, 0));
} else {
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_STORE_IC_TAG, *code, 0));
}
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadPolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_stubs) {
MapList raw_receiver_maps(receiver_maps->length());
CodeList raw_handler_stubs(handler_stubs->length());
CALL_HEAP_FUNCTION(
isolate(),
(set_failure(NULL),
raw_receiver_maps.Clear(),
raw_handler_stubs.Clear(),
CompileLoadPolymorphic(UnwrapHandleList(&raw_receiver_maps,
receiver_maps),
UnwrapHandleList(&raw_handler_stubs,
handler_stubs))),
Code);
}
Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps) {
MapList raw_receiver_maps(receiver_maps->length());
CodeList raw_handler_stubs(handler_stubs->length());
MapList raw_transitioned_maps(transitioned_maps->length());
CALL_HEAP_FUNCTION(
isolate(),
(set_failure(NULL),
raw_receiver_maps.Clear(),
raw_handler_stubs.Clear(),
raw_transitioned_maps.Clear(),
CompileStorePolymorphic(UnwrapHandleList(&raw_receiver_maps,
receiver_maps),
UnwrapHandleList(&raw_handler_stubs,
handler_stubs),
UnwrapHandleList(&raw_transitioned_maps,
transitioned_maps))),
Code);
}
Handle<Code> StubCache::ComputeStoreNormal(StrictModeFlag strict_mode) {
return (strict_mode == kStrictMode)
? isolate_->builtins()->Builtins::StoreIC_Normal_Strict()
: isolate_->builtins()->Builtins::StoreIC_Normal();
}
Handle<Code> StoreStubCompiler::CompileStoreGlobal(
Handle<GlobalObject> object,
Handle<JSGlobalPropertyCell> holder,
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileStoreGlobal(*object, *holder, *name)),
Code);
}
Handle<Code> StubCache::ComputeStoreGlobal(Handle<String> name,
Handle<GlobalObject> receiver,
Handle<JSGlobalPropertyCell> cell,
StrictModeFlag strict_mode) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, NORMAL, strict_mode);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
StoreStubCompiler compiler(isolate_, strict_mode);
Handle<Code> code = compiler.CompileStoreGlobal(receiver, cell, name);
PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<AccessorInfo> callback,
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileStoreCallback(*object, *callback, *name)),
Code);
}
Handle<Code> StubCache::ComputeStoreCallback(Handle<String> name,
Handle<JSObject> receiver,
Handle<AccessorInfo> callback,
StrictModeFlag strict_mode) {
ASSERT(v8::ToCData<Address>(callback->setter()) != 0);
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, CALLBACKS, strict_mode);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
StoreStubCompiler compiler(isolate_, strict_mode);
Handle<Code> code = compiler.CompileStoreCallback(receiver, callback, name);
PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> StoreStubCompiler::CompileStoreInterceptor(Handle<JSObject> object,
Handle<String> name) {
CALL_HEAP_FUNCTION(isolate(),
(set_failure(NULL),
CompileStoreInterceptor(*object, *name)),
Code);
}
Handle<Code> StubCache::ComputeStoreInterceptor(Handle<String> name,
Handle<JSObject> receiver,
StrictModeFlag strict_mode) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::STORE_IC, INTERCEPTOR, strict_mode);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
StoreStubCompiler compiler(isolate_, strict_mode);
Handle<Code> code = compiler.CompileStoreInterceptor(receiver, name);
PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
CALL_HEAP_FUNCTION(
isolate(),
(set_failure(NULL),
CompileStoreField(*object, index,
transition.is_null() ? NULL : *transition,
*name)),
Code);
}
Handle<Code> StubCache::ComputeKeyedStoreField(Handle<String> name,
Handle<JSObject> receiver,
int field_index,
Handle<Map> transition,
StrictModeFlag strict_mode) {
PropertyType type = (transition.is_null()) ? FIELD : MAP_TRANSITION;
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::KEYED_STORE_IC, type, strict_mode);
Handle<Object> probe(receiver->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedStoreStubCompiler compiler(isolate(), strict_mode);
Handle<Code> code =
compiler.CompileStoreField(receiver, field_index, transition, name);
PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_STORE_IC_TAG, *code, *name));
GDBJIT(AddCode(GDBJITInterface::KEYED_STORE_IC, *name, *code));
JSObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
#define CALL_LOGGER_TAG(kind, type) \
(kind == Code::CALL_IC ? Logger::type : Logger::KEYED_##type)
Handle<Code> CallStubCompiler::CompileCallConstant(Handle<Object> object,
Handle<JSObject> holder,
Handle<JSFunction> function,
Handle<String> name,
CheckType check) {
CALL_HEAP_FUNCTION(
isolate(),
(set_failure(NULL),
CompileCallConstant(*object, *holder, *function, *name, check)),
Code);
}
Handle<Code> StubCache::ComputeCallConstant(int argc,
Code::Kind kind,
Code::ExtraICState extra_state,
Handle<String> name,
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSFunction> function) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(*object, *holder);
Handle<JSObject> map_holder(IC::GetCodeCacheHolder(*object, cache_holder));
// Compute check type based on receiver/holder.
CheckType check = RECEIVER_MAP_CHECK;
if (object->IsString()) {
check = STRING_CHECK;
} else if (object->IsNumber()) {
check = NUMBER_CHECK;
} else if (object->IsBoolean()) {
check = BOOLEAN_CHECK;
}
Code::Flags flags =
Code::ComputeMonomorphicFlags(kind, CONSTANT_FUNCTION, extra_state,
cache_holder, argc);
Handle<Object> probe(map_holder->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate_, argc, kind, extra_state, cache_holder);
Handle<Code> code =
compiler.CompileCallConstant(object, holder, function, name, check);
code->set_check_type(check);
ASSERT_EQ(flags, code->flags());
PROFILE(isolate_,
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
JSObject::UpdateMapCodeCache(map_holder, name, code);
return code;
}
Handle<Code> StubCache::ComputeCallField(int argc,
Code::Kind kind,
Code::ExtraICState extra_state,
Handle<String> name,
Handle<Object> object,
Handle<JSObject> holder,
int index) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(*object, *holder);
Handle<JSObject> map_holder(IC::GetCodeCacheHolder(*object, cache_holder));
// TODO(1233596): We cannot do receiver map check for non-JS objects
// because they may be represented as immediates without a
// map. Instead, we check against the map in the holder.
if (object->IsNumber() || object->IsBoolean() || object->IsString()) {
object = holder;
}
Code::Flags flags =
Code::ComputeMonomorphicFlags(kind, FIELD, extra_state,
cache_holder, argc);
Handle<Object> probe(map_holder->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate_, argc, kind, extra_state, cache_holder);
Handle<Code> code =
compiler.CompileCallField(Handle<JSObject>::cast(object),
holder, index, name);
ASSERT_EQ(flags, code->flags());
PROFILE(isolate_,
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
JSObject::UpdateMapCodeCache(map_holder, name, code);
return code;
}
Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name) {
CALL_HEAP_FUNCTION(
isolate(),
(set_failure(NULL), CompileCallInterceptor(*object, *holder, *name)),
Code);
}
Handle<Code> StubCache::ComputeCallInterceptor(int argc,
Code::Kind kind,
Code::ExtraICState extra_state,
Handle<String> name,
Handle<Object> object,
Handle<JSObject> holder) {
// Compute the check type and the map.
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(*object, *holder);
Handle<JSObject> map_holder(IC::GetCodeCacheHolder(*object, cache_holder));
// TODO(1233596): We cannot do receiver map check for non-JS objects
// because they may be represented as immediates without a
// map. Instead, we check against the map in the holder.
if (object->IsNumber() || object->IsBoolean() || object->IsString()) {
object = holder;
}
Code::Flags flags =
Code::ComputeMonomorphicFlags(kind, INTERCEPTOR, extra_state,
cache_holder, argc);
Handle<Object> probe(map_holder->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate(), argc, kind, extra_state, cache_holder);
Handle<Code> code =
compiler.CompileCallInterceptor(Handle<JSObject>::cast(object),
holder, name);
ASSERT_EQ(flags, code->flags());
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
JSObject::UpdateMapCodeCache(map_holder, name, code);
return code;
}
Handle<Code> CallStubCompiler::CompileCallGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
CALL_HEAP_FUNCTION(
isolate(),
(set_failure(NULL),
CompileCallGlobal(*object, *holder, *cell, *function, *name)),
Code);
}
Handle<Code> StubCache::ComputeCallGlobal(int argc,
Code::Kind kind,
Code::ExtraICState extra_state,
Handle<String> name,
Handle<JSObject> receiver,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function) {
InlineCacheHolderFlag cache_holder =
IC::GetCodeCacheForObject(*receiver, *holder);
Handle<JSObject> map_holder(IC::GetCodeCacheHolder(*receiver, cache_holder));
Code::Flags flags =
Code::ComputeMonomorphicFlags(kind, NORMAL, extra_state,
cache_holder, argc);
Handle<Object> probe(map_holder->map()->FindInCodeCache(*name, flags));
if (probe->IsCode()) return Handle<Code>::cast(probe);
CallStubCompiler compiler(isolate(), argc, kind, extra_state, cache_holder);
Handle<Code> code =
compiler.CompileCallGlobal(receiver, holder, cell, function, name);
ASSERT_EQ(flags, code->flags());
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), *code, *name));
GDBJIT(AddCode(GDBJITInterface::CALL_IC, *name, *code));
JSObject::UpdateMapCodeCache(map_holder, name, code);
return code;
}
static void FillCache(Isolate* isolate, Handle<Code> code) {
Handle<NumberDictionary> dictionary =
NumberDictionarySet(isolate->factory()->non_monomorphic_cache(),
code->flags(),
code,
PropertyDetails(NONE, NORMAL));
isolate->heap()->public_set_non_monomorphic_cache(*dictionary);
}
Code* StubCache::FindCallInitialize(int argc,
RelocInfo::Mode mode,
Code::Kind kind) {
Code::ExtraICState extra_state =
CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) |
CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT);
Code::Flags flags =
Code::ComputeFlags(kind, UNINITIALIZED, extra_state, NORMAL, argc);
// Use raw_unchecked... so we don't get assert failures during GC.
NumberDictionary* dictionary =
isolate()->heap()->raw_unchecked_non_monomorphic_cache();
int entry = dictionary->FindEntry(isolate(), flags);
ASSERT(entry != -1);
Object* code = dictionary->ValueAt(entry);
// This might be called during the marking phase of the collector
// hence the unchecked cast.
return reinterpret_cast<Code*>(code);
}
Handle<Code> StubCache::ComputeCallInitialize(int argc,
RelocInfo::Mode mode,
Code::Kind kind) {
Code::ExtraICState extra_state =
CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) |
CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT);
Code::Flags flags =
Code::ComputeFlags(kind, UNINITIALIZED, extra_state, NORMAL, argc);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallInitialize(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallInitialize(int argc, RelocInfo::Mode mode) {
return ComputeCallInitialize(argc, mode, Code::CALL_IC);
}
Handle<Code> StubCache::ComputeKeyedCallInitialize(int argc) {
return ComputeCallInitialize(argc, RelocInfo::CODE_TARGET,
Code::KEYED_CALL_IC);
}
Handle<Code> StubCache::ComputeCallPreMonomorphic(
int argc,
Code::Kind kind,
Code::ExtraICState extra_state) {
Code::Flags flags =
Code::ComputeFlags(kind, PREMONOMORPHIC, extra_state, NORMAL, argc);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallPreMonomorphic(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallNormal(int argc,
Code::Kind kind,
Code::ExtraICState extra_state) {
Code::Flags flags =
Code::ComputeFlags(kind, MONOMORPHIC, extra_state, NORMAL, argc);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallNormal(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallArguments(int argc, Code::Kind kind) {
ASSERT(kind == Code::KEYED_CALL_IC);
Code::Flags flags =
Code::ComputeFlags(kind, MEGAMORPHIC, Code::kNoExtraICState,
NORMAL, argc);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallArguments(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallMegamorphic(
int argc,
Code::Kind kind,
Code::ExtraICState extra_state) {
Code::Flags flags =
Code::ComputeFlags(kind, MEGAMORPHIC, extra_state,
NORMAL, argc);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallMegamorphic(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallMiss(int argc,
Code::Kind kind,
Code::ExtraICState extra_state) {
// MONOMORPHIC_PROTOTYPE_FAILURE state is used to make sure that miss stubs
// and monomorphic stubs are not mixed up together in the stub cache.
Code::Flags flags =
Code::ComputeFlags(kind, MONOMORPHIC_PROTOTYPE_FAILURE, extra_state,
NORMAL, argc, OWN_MAP);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallMiss(flags);
FillCache(isolate_, code);
return code;
}
// The CallStubCompiler needs a version of ComputeCallMiss that does not
// perform GC. This function is temporary, because the stub cache but not
// yet the stub compiler uses handles.
MaybeObject* StubCache::TryComputeCallMiss(int argc,
Code::Kind kind,
Code::ExtraICState extra_state) {
Code::Flags flags =
Code::ComputeFlags(kind, MONOMORPHIC_PROTOTYPE_FAILURE, extra_state,
NORMAL, argc, OWN_MAP);
NumberDictionary* cache = isolate_->heap()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return cache->ValueAt(entry);
StubCompiler compiler(isolate_);
Code* code = NULL;
MaybeObject* maybe_code = compiler.TryCompileCallMiss(flags);
if (!maybe_code->To(&code)) return maybe_code;
NumberDictionary* new_cache = NULL;
MaybeObject* maybe_new_cache = cache->AtNumberPut(flags, code);
if (!maybe_new_cache->To(&new_cache)) return maybe_new_cache;
isolate_->heap()->public_set_non_monomorphic_cache(new_cache);
return code;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Handle<Code> StubCache::ComputeCallDebugBreak(int argc,
Code::Kind kind) {
// Extra IC state is irrelevant for debug break ICs. They jump to
// the actual call ic to carry out the work.
Code::Flags flags =
Code::ComputeFlags(kind, DEBUG_BREAK, Code::kNoExtraICState,
NORMAL, argc);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallDebugBreak(flags);
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCallDebugPrepareStepIn(int argc,
Code::Kind kind) {
// Extra IC state is irrelevant for debug break ICs. They jump to
// the actual call ic to carry out the work.
Code::Flags flags =
Code::ComputeFlags(kind, DEBUG_PREPARE_STEP_IN, Code::kNoExtraICState,
NORMAL, argc);
Handle<NumberDictionary> cache = isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code = compiler.CompileCallDebugPrepareStepIn(flags);
FillCache(isolate_, code);
return code;
}
#endif
void StubCache::Clear() {
Code* empty = isolate_->builtins()->builtin(Builtins::kIllegal);
for (int i = 0; i < kPrimaryTableSize; i++) {
primary_[i].key = heap()->empty_string();
primary_[i].value = empty;
}
for (int j = 0; j < kSecondaryTableSize; j++) {
secondary_[j].key = heap()->empty_string();
secondary_[j].value = empty;
}
}
void StubCache::CollectMatchingMaps(SmallMapList* types,
String* name,
Code::Flags flags) {
for (int i = 0; i < kPrimaryTableSize; i++) {
if (primary_[i].key == name) {
Map* map = primary_[i].value->FindFirstMap();
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
int offset = PrimaryOffset(name, flags, map);
if (entry(primary_, offset) == &primary_[i]) {
types->Add(Handle<Map>(map));
}
}
}
for (int i = 0; i < kSecondaryTableSize; i++) {
if (secondary_[i].key == name) {
Map* map = secondary_[i].value->FindFirstMap();
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
// Lookup in primary table and skip duplicates.
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary_entry = entry(primary_, primary_offset);
if (primary_entry->key == name) {
Map* primary_map = primary_entry->value->FindFirstMap();
if (map == primary_map) continue;
}
// Lookup in secondary table and add matches.
int offset = SecondaryOffset(name, flags, primary_offset);
if (entry(secondary_, offset) == &secondary_[i]) {
types->Add(Handle<Map>(map));
}
}
}
}
// ------------------------------------------------------------------------
// StubCompiler implementation.
RUNTIME_FUNCTION(MaybeObject*, LoadCallbackProperty) {
ASSERT(args[0]->IsJSObject());
ASSERT(args[1]->IsJSObject());
AccessorInfo* callback = AccessorInfo::cast(args[3]);
Address getter_address = v8::ToCData<Address>(callback->getter());
v8::AccessorGetter fun = FUNCTION_CAST<v8::AccessorGetter>(getter_address);
ASSERT(fun != NULL);
v8::AccessorInfo info(&args[0]);
HandleScope scope(isolate);
v8::Handle<v8::Value> result;
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
ExternalCallbackScope call_scope(isolate, getter_address);
result = fun(v8::Utils::ToLocal(args.at<String>(4)), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (result.IsEmpty()) return HEAP->undefined_value();
return *v8::Utils::OpenHandle(*result);
}
RUNTIME_FUNCTION(MaybeObject*, StoreCallbackProperty) {
JSObject* recv = JSObject::cast(args[0]);
AccessorInfo* callback = AccessorInfo::cast(args[1]);
Address setter_address = v8::ToCData<Address>(callback->setter());
v8::AccessorSetter fun = FUNCTION_CAST<v8::AccessorSetter>(setter_address);
ASSERT(fun != NULL);
Handle<String> name = args.at<String>(2);
Handle<Object> value = args.at<Object>(3);
HandleScope scope(isolate);
LOG(isolate, ApiNamedPropertyAccess("store", recv, *name));
CustomArguments custom_args(isolate, callback->data(), recv, recv);
v8::AccessorInfo info(custom_args.end());
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
ExternalCallbackScope call_scope(isolate, setter_address);
fun(v8::Utils::ToLocal(name), v8::Utils::ToLocal(value), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return *value;
}
static const int kAccessorInfoOffsetInInterceptorArgs = 2;
/**
* Attempts to load a property with an interceptor (which must be present),
* but doesn't search the prototype chain.
*
* Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
* provide any value for the given name.
*/
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorOnly) {
Handle<String> name_handle = args.at<String>(0);
Handle<InterceptorInfo> interceptor_info = args.at<InterceptorInfo>(1);
ASSERT(kAccessorInfoOffsetInInterceptorArgs == 2);
ASSERT(args[2]->IsJSObject()); // Receiver.
ASSERT(args[3]->IsJSObject()); // Holder.
ASSERT(args.length() == 5); // Last arg is data object.
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetter getter =
FUNCTION_CAST<v8::NamedPropertyGetter>(getter_address);
ASSERT(getter != NULL);
{
// Use the interceptor getter.
v8::AccessorInfo info(args.arguments() -
kAccessorInfoOffsetInInterceptorArgs);
HandleScope scope(isolate);
v8::Handle<v8::Value> r;
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
r = getter(v8::Utils::ToLocal(name_handle), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!r.IsEmpty()) {
return *v8::Utils::OpenHandle(*r);
}
}
return isolate->heap()->no_interceptor_result_sentinel();
}
static MaybeObject* ThrowReferenceError(String* name) {
// If the load is non-contextual, just return the undefined result.
// Note that both keyed and non-keyed loads may end up here, so we
// can't use either LoadIC or KeyedLoadIC constructors.
IC ic(IC::NO_EXTRA_FRAME, Isolate::Current());
ASSERT(ic.target()->is_load_stub() || ic.target()->is_keyed_load_stub());
if (!ic.SlowIsContextual()) return HEAP->undefined_value();
// Throw a reference error.
HandleScope scope;
Handle<String> name_handle(name);
Handle<Object> error =
FACTORY->NewReferenceError("not_defined",
HandleVector(&name_handle, 1));
return Isolate::Current()->Throw(*error);
}
static MaybeObject* LoadWithInterceptor(Arguments* args,
PropertyAttributes* attrs) {
Handle<String> name_handle = args->at<String>(0);
Handle<InterceptorInfo> interceptor_info = args->at<InterceptorInfo>(1);
ASSERT(kAccessorInfoOffsetInInterceptorArgs == 2);
Handle<JSObject> receiver_handle = args->at<JSObject>(2);
Handle<JSObject> holder_handle = args->at<JSObject>(3);
ASSERT(args->length() == 5); // Last arg is data object.
Isolate* isolate = receiver_handle->GetIsolate();
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetter getter =
FUNCTION_CAST<v8::NamedPropertyGetter>(getter_address);
ASSERT(getter != NULL);
{
// Use the interceptor getter.
v8::AccessorInfo info(args->arguments() -
kAccessorInfoOffsetInInterceptorArgs);
HandleScope scope(isolate);
v8::Handle<v8::Value> r;
{
// Leaving JavaScript.
VMState state(isolate, EXTERNAL);
r = getter(v8::Utils::ToLocal(name_handle), info);
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!r.IsEmpty()) {
*attrs = NONE;
return *v8::Utils::OpenHandle(*r);
}
}
MaybeObject* result = holder_handle->GetPropertyPostInterceptor(
*receiver_handle,
*name_handle,
attrs);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
/**
* Loads a property with an interceptor performing post interceptor
* lookup if interceptor failed.
*/
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForLoad) {
PropertyAttributes attr = NONE;
Object* result;
{ MaybeObject* maybe_result = LoadWithInterceptor(&args, &attr);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// If the property is present, return it.
if (attr != ABSENT) return result;
return ThrowReferenceError(String::cast(args[0]));
}
RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForCall) {
PropertyAttributes attr;
MaybeObject* result = LoadWithInterceptor(&args, &attr);
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
// This is call IC. In this case, we simply return the undefined result which
// will lead to an exception when trying to invoke the result as a
// function.
return result;
}
RUNTIME_FUNCTION(MaybeObject*, StoreInterceptorProperty) {
ASSERT(args.length() == 4);
JSObject* recv = JSObject::cast(args[0]);
String* name = String::cast(args[1]);
Object* value = args[2];
StrictModeFlag strict_mode = static_cast<StrictModeFlag>(args.smi_at(3));
ASSERT(strict_mode == kStrictMode || strict_mode == kNonStrictMode);
ASSERT(recv->HasNamedInterceptor());
PropertyAttributes attr = NONE;
MaybeObject* result = recv->SetPropertyWithInterceptor(
name, value, attr, strict_mode);
return result;
}
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadPropertyWithInterceptor) {
JSObject* receiver = JSObject::cast(args[0]);
ASSERT(args.smi_at(1) >= 0);
uint32_t index = args.smi_at(1);
return receiver->GetElementWithInterceptor(receiver, index);
}
Handle<Code> StubCompiler::CompileCallInitialize(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateInitialize(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateInitialize(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallInitialize");
isolate()->counters()->call_initialize_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_INITIALIZE_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_INITIALIZE, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallPreMonomorphic(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
// The code of the PreMonomorphic stub is the same as the code
// of the Initialized stub. They just differ on the code object flags.
Code::Kind kind = Code::ExtractKindFromFlags(flags);
Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateInitialize(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateInitialize(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallPreMonomorphic");
isolate()->counters()->call_premonomorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_PRE_MONOMORPHIC_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_PRE_MONOMORPHIC, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallNormal(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
// Call normal is always with a explict receiver.
ASSERT(!CallIC::Contextual::decode(
Code::ExtractExtraICStateFromFlags(flags)));
CallIC::GenerateNormal(masm(), argc);
} else {
KeyedCallIC::GenerateNormal(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallNormal");
isolate()->counters()->call_normal_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_NORMAL_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_NORMAL, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallMegamorphic(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMegamorphic(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateMegamorphic(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallMegamorphic");
isolate()->counters()->call_megamorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MEGAMORPHIC_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallArguments(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
KeyedCallIC::GenerateNonStrictArguments(masm(), argc);
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallArguments");
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(Code::ExtractKindFromFlags(flags),
CALL_MEGAMORPHIC_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, *code));
return code;
}
Handle<Code> StubCompiler::CompileCallMiss(Code::Flags flags) {
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMiss(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateMiss(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallMiss");
isolate()->counters()->call_megamorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MISS_TAG),
*code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MISS, *code));
return code;
}
// TODO(kmillikin): This annoying raw pointer implementation should be
// eliminated when the stub compiler no longer needs it.
MaybeObject* StubCompiler::TryCompileCallMiss(Code::Flags flags) {
HandleScope scope(isolate());
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
Code::ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
if (kind == Code::CALL_IC) {
CallIC::GenerateMiss(masm(), argc, extra_state);
} else {
KeyedCallIC::GenerateMiss(masm(), argc);
}
Object* result;
{ MaybeObject* maybe_result = TryGetCodeWithFlags(flags, "CompileCallMiss");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
isolate()->counters()->call_megamorphic_stubs()->Increment();
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MISS_TAG),
code, code->arguments_count()));
GDBJIT(AddCode(GDBJITInterface::CALL_MISS, Code::cast(code)));
return result;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Handle<Code> StubCompiler::CompileCallDebugBreak(Code::Flags flags) {
Debug::GenerateCallICDebugBreak(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallDebugBreak");
PROFILE(isolate(),
CodeCreateEvent(CALL_LOGGER_TAG(Code::ExtractKindFromFlags(flags),
CALL_DEBUG_BREAK_TAG),
*code, code->arguments_count()));
return code;
}
Handle<Code> StubCompiler::CompileCallDebugPrepareStepIn(Code::Flags flags) {
// Use the same code for the the step in preparations as we do for the
// miss case.
int argc = Code::ExtractArgumentsCountFromFlags(flags);
Code::Kind kind = Code::ExtractKindFromFlags(flags);
if (kind == Code::CALL_IC) {
// For the debugger extra ic state is irrelevant.
CallIC::GenerateMiss(masm(), argc, Code::kNoExtraICState);
} else {
KeyedCallIC::GenerateMiss(masm(), argc);
}
Handle<Code> code = GetCodeWithFlags(flags, "CompileCallDebugPrepareStepIn");
PROFILE(isolate(),
CodeCreateEvent(
CALL_LOGGER_TAG(kind, CALL_DEBUG_PREPARE_STEP_IN_TAG),
*code,
code->arguments_count()));
return code;
}
#endif // ENABLE_DEBUGGER_SUPPORT
#undef CALL_LOGGER_TAG
Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags,
const char* name) {
// Create code object in the heap.
CodeDesc desc;
masm_.GetCode(&desc);
Handle<Code> code = factory()->NewCode(desc, flags, masm_.CodeObject());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code_stubs) code->Disassemble(name);
#endif
return code;
}
Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags,
Handle<String> name) {
return (FLAG_print_code_stubs && !name.is_null())
? GetCodeWithFlags(flags, *name->ToCString())
: GetCodeWithFlags(flags, reinterpret_cast<char*>(NULL));
}
MaybeObject* StubCompiler::TryGetCodeWithFlags(Code::Flags flags,
const char* name) {
// Check for allocation failures during stub compilation.
if (failure_->IsFailure()) return failure_;
// Create code object in the heap.
CodeDesc desc;
masm_.GetCode(&desc);
MaybeObject* result = heap()->CreateCode(desc, flags, masm_.CodeObject());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code_stubs && !result->IsFailure()) {
Code::cast(result->ToObjectUnchecked())->Disassemble(name);
}
#endif
return result;
}
MaybeObject* StubCompiler::TryGetCodeWithFlags(Code::Flags flags,
String* name) {
if (FLAG_print_code_stubs && name != NULL) {
return TryGetCodeWithFlags(flags, *name->ToCString());
}
return TryGetCodeWithFlags(flags, reinterpret_cast<char*>(NULL));
}
void StubCompiler::LookupPostInterceptor(JSObject* holder,
String* name,
LookupResult* lookup) {
holder->LocalLookupRealNamedProperty(name, lookup);
if (!lookup->IsProperty()) {
lookup->NotFound();
Object* proto = holder->GetPrototype();
if (!proto->IsNull()) {
proto->Lookup(name, lookup);
}
}
}
MaybeObject* LoadStubCompiler::GetCode(PropertyType type, String* name) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, type);
MaybeObject* result = TryGetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
MaybeObject* KeyedLoadStubCompiler::GetCode(PropertyType type,
String* name,
InlineCacheState state) {
Code::Flags flags = Code::ComputeFlags(
Code::KEYED_LOAD_IC, state, Code::kNoExtraICState, type);
MaybeObject* result = TryGetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
MaybeObject* StoreStubCompiler::GetCode(PropertyType type, String* name) {
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::STORE_IC, type, strict_mode_);
MaybeObject* result = TryGetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::STORE_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
MaybeObject* KeyedStoreStubCompiler::GetCode(PropertyType type,
String* name,
InlineCacheState state) {
Code::Flags flags =
Code::ComputeFlags(Code::KEYED_STORE_IC, state, strict_mode_, type);
MaybeObject* result = TryGetCodeWithFlags(flags, name);
if (!result->IsFailure()) {
PROFILE(isolate(),
CodeCreateEvent(Logger::KEYED_STORE_IC_TAG,
Code::cast(result->ToObjectUnchecked()),
name));
GDBJIT(AddCode(GDBJITInterface::KEYED_STORE_IC,
name,
Code::cast(result->ToObjectUnchecked())));
}
return result;
}
void KeyedStoreStubCompiler::GenerateStoreDictionaryElement(
MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
CallStubCompiler::CallStubCompiler(Isolate* isolate,
int argc,
Code::Kind kind,
Code::ExtraICState extra_state,
InlineCacheHolderFlag cache_holder)
: StubCompiler(isolate),
arguments_(argc),
kind_(kind),
extra_state_(extra_state),
cache_holder_(cache_holder) {
}
bool CallStubCompiler::HasCustomCallGenerator(JSFunction* function) {
SharedFunctionInfo* info = function->shared();
if (info->HasBuiltinFunctionId()) {
BuiltinFunctionId id = info->builtin_function_id();
#define CALL_GENERATOR_CASE(name) if (id == k##name) return true;
CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE)
#undef CALL_GENERATOR_CASE
}
CallOptimization optimization(function);
if (optimization.is_simple_api_call()) {
return true;
}
return false;
}
MaybeObject* CallStubCompiler::CompileCustomCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* fname) {
ASSERT(HasCustomCallGenerator(function));
SharedFunctionInfo* info = function->shared();
if (info->HasBuiltinFunctionId()) {
BuiltinFunctionId id = info->builtin_function_id();
#define CALL_GENERATOR_CASE(name) \
if (id == k##name) { \
return CallStubCompiler::Compile##name##Call(object, \
holder, \
cell, \
function, \
fname); \
}
CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE)
#undef CALL_GENERATOR_CASE
}
CallOptimization optimization(function);
ASSERT(optimization.is_simple_api_call());
return CompileFastApiCall(optimization,
object,
holder,
cell,
function,
fname);
}
Handle<Code> CallStubCompiler::GetCode(PropertyType type, Handle<String> name) {
int argc = arguments_.immediate();
Code::Flags flags = Code::ComputeMonomorphicFlags(kind_,
type,
extra_state_,
cache_holder_,
argc);
return GetCodeWithFlags(flags, name);
}
Handle<Code> CallStubCompiler::GetCode(Handle<JSFunction> function) {
Handle<String> function_name;
if (function->shared()->name()->IsString()) {
function_name = Handle<String>(String::cast(function->shared()->name()));
}
return GetCode(CONSTANT_FUNCTION, function_name);
}
// TODO(kmillikin): Eliminate this function when the stub cache is fully
// handlified.
MaybeObject* CallStubCompiler::TryGetCode(PropertyType type, String* name) {
int argc = arguments_.immediate();
Code::Flags flags = Code::ComputeMonomorphicFlags(kind_,
type,
extra_state_,
cache_holder_,
argc);
return TryGetCodeWithFlags(flags, name);
}
// TODO(kmillikin): Eliminate this function when the stub cache is fully
// handlified.
MaybeObject* CallStubCompiler::TryGetCode(JSFunction* function) {
String* function_name = NULL;
if (function->shared()->name()->IsString()) {
function_name = String::cast(function->shared()->name());
}
return TryGetCode(CONSTANT_FUNCTION, function_name);
}
MaybeObject* ConstructStubCompiler::GetCode() {
Code::Flags flags = Code::ComputeFlags(Code::STUB);
Object* result;
{ MaybeObject* maybe_result = TryGetCodeWithFlags(flags, "ConstructStub");
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Code* code = Code::cast(result);
USE(code);
PROFILE(isolate(), CodeCreateEvent(Logger::STUB_TAG, code, "ConstructStub"));
GDBJIT(AddCode(GDBJITInterface::STUB, "ConstructStub", Code::cast(code)));
return result;
}
CallOptimization::CallOptimization(LookupResult* lookup) {
if (!lookup->IsProperty() || !lookup->IsCacheable() ||
lookup->type() != CONSTANT_FUNCTION) {
Initialize(NULL);
} else {
// We only optimize constant function calls.
Initialize(lookup->GetConstantFunction());
}
}
CallOptimization::CallOptimization(JSFunction* function) {
Initialize(function);
}
int CallOptimization::GetPrototypeDepthOfExpectedType(JSObject* object,
JSObject* holder) const {
ASSERT(is_simple_api_call_);
if (expected_receiver_type_ == NULL) return 0;
int depth = 0;
while (object != holder) {
if (object->IsInstanceOf(expected_receiver_type_)) return depth;
object = JSObject::cast(object->GetPrototype());
++depth;
}
if (holder->IsInstanceOf(expected_receiver_type_)) return depth;
return kInvalidProtoDepth;
}
void CallOptimization::Initialize(JSFunction* function) {
constant_function_ = NULL;
is_simple_api_call_ = false;
expected_receiver_type_ = NULL;
api_call_info_ = NULL;
if (function == NULL || !function->is_compiled()) return;
constant_function_ = function;
AnalyzePossibleApiFunction(function);
}
void CallOptimization::AnalyzePossibleApiFunction(JSFunction* function) {
SharedFunctionInfo* sfi = function->shared();
if (!sfi->IsApiFunction()) return;
FunctionTemplateInfo* info = sfi->get_api_func_data();
// Require a C++ callback.
if (info->call_code()->IsUndefined()) return;
api_call_info_ = CallHandlerInfo::cast(info->call_code());
// Accept signatures that either have no restrictions at all or
// only have restrictions on the receiver.
if (!info->signature()->IsUndefined()) {
SignatureInfo* signature = SignatureInfo::cast(info->signature());
if (!signature->args()->IsUndefined()) return;
if (!signature->receiver()->IsUndefined()) {
expected_receiver_type_ =
FunctionTemplateInfo::cast(signature->receiver());
}
}
is_simple_api_call_ = true;
}
} } // namespace v8::internal