v8/test/unittests/heap/heap-unittest.cc

169 lines
5.6 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/heap.h"
#include <cmath>
#include <iostream>
#include <limits>
#include "src/handles/handles-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces-inl.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
using HeapTest = TestWithContext;
TEST(Heap, YoungGenerationSizeFromOldGenerationSize) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
ASSERT_EQ(3 * 512u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(128u * hlm * MB));
ASSERT_EQ(3 * 2048u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(256u * hlm * MB));
ASSERT_EQ(3 * 4096u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(512u * hlm * MB));
ASSERT_EQ(
3 * 8192u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(1024u * hlm * MB));
}
TEST(Heap, GenerationSizesFromHeapSize) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
size_t old, young;
i::Heap::GenerationSizesFromHeapSize(1 * KB, &young, &old);
ASSERT_EQ(0u, old);
ASSERT_EQ(0u, young);
i::Heap::GenerationSizesFromHeapSize(1 * KB + 3 * 512u * pm * KB, &young,
&old);
ASSERT_EQ(1u * KB, old);
ASSERT_EQ(3 * 512u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(128 * hlm * MB + 3 * 512 * pm * KB,
&young, &old);
ASSERT_EQ(128u * hlm * MB, old);
ASSERT_EQ(3 * 512u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(256u * hlm * MB + 3 * 2048 * pm * KB,
&young, &old);
ASSERT_EQ(256u * hlm * MB, old);
ASSERT_EQ(3 * 2048u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(512u * hlm * MB + 3 * 4096 * pm * KB,
&young, &old);
ASSERT_EQ(512u * hlm * MB, old);
ASSERT_EQ(3 * 4096u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(1024u * hlm * MB + 3 * 8192 * pm * KB,
&young, &old);
ASSERT_EQ(1024u * hlm * MB, old);
ASSERT_EQ(3 * 8192u * pm * KB, young);
}
TEST(Heap, HeapSizeFromPhysicalMemory) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
// The expected value is old_generation_size + 3 * semi_space_size.
ASSERT_EQ(128 * hlm * MB + 3 * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(0u));
ASSERT_EQ(128 * hlm * MB + 3 * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(512u * MB));
ASSERT_EQ(256 * hlm * MB + 3 * 2048 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(1024u * MB));
ASSERT_EQ(512 * hlm * MB + 3 * 4096 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(2048u * MB));
ASSERT_EQ(
1024 * hlm * MB + 3 * 8192 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(4096u) * MB));
ASSERT_EQ(
1024 * hlm * MB + 3 * 8192 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(8192u) * MB));
}
TEST_F(HeapTest, ASLR) {
#if V8_TARGET_ARCH_X64
#if V8_OS_MACOSX
Heap* heap = i_isolate()->heap();
std::set<void*> hints;
for (int i = 0; i < 1000; i++) {
hints.insert(heap->GetRandomMmapAddr());
}
if (hints.size() == 1) {
EXPECT_TRUE((*hints.begin()) == nullptr);
EXPECT_TRUE(i::GetRandomMmapAddr() == nullptr);
} else {
// It is unlikely that 1000 random samples will collide to less then 500
// values.
EXPECT_GT(hints.size(), 500u);
const uintptr_t kRegionMask = 0xFFFFFFFFu;
void* first = *hints.begin();
for (void* hint : hints) {
uintptr_t diff = reinterpret_cast<uintptr_t>(first) ^
reinterpret_cast<uintptr_t>(hint);
EXPECT_LE(diff, kRegionMask);
}
}
#endif // V8_OS_MACOSX
#endif // V8_TARGET_ARCH_X64
}
TEST_F(HeapTest, ExternalLimitDefault) {
Heap* heap = i_isolate()->heap();
EXPECT_EQ(kExternalAllocationSoftLimit, heap->external_memory_limit());
}
TEST_F(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling) {
v8_isolate()->AdjustAmountOfExternalAllocatedMemory(+10 * MB);
v8_isolate()->AdjustAmountOfExternalAllocatedMemory(-10 * MB);
Heap* heap = i_isolate()->heap();
EXPECT_GE(heap->external_memory_limit(), kExternalAllocationSoftLimit);
}
#ifdef V8_COMPRESS_POINTERS
TEST_F(HeapTest, HeapLayout) {
// Produce some garbage.
RunJS(
"let ar = [];"
"for (let i = 0; i < 100; i++) {"
" ar.push(Array(i));"
"}"
"ar.push(Array(32 * 1024 * 1024));");
Address cage_base = i_isolate()->cage_base();
EXPECT_TRUE(IsAligned(cage_base, size_t{4} * GB));
#ifdef V8_COMPRESS_POINTERS_IN_ISOLATE_CAGE
Address isolate_root = i_isolate()->isolate_root();
EXPECT_EQ(cage_base, isolate_root);
#endif
// Check that all memory chunks belong this region.
base::AddressRegion heap_reservation(cage_base, size_t{4} * GB);
SafepointScope scope(i_isolate()->heap());
OldGenerationMemoryChunkIterator iter(i_isolate()->heap());
for (;;) {
MemoryChunk* chunk = iter.next();
if (chunk == nullptr) break;
Address address = chunk->address();
size_t size = chunk->area_end() - address;
EXPECT_TRUE(heap_reservation.contains(address, size));
}
}
#endif // V8_COMPRESS_POINTERS
} // namespace internal
} // namespace v8