v8/test/cctest/compiler/test-run-machops.cc

4688 lines
131 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cmath>
#include <functional>
#include <limits>
#include "src/base/bits.h"
#include "src/codegen.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/value-helper.h"
#if V8_TURBOFAN_TARGET
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
typedef RawMachineAssembler::Label MLabel;
TEST(RunInt32Add) {
RawMachineAssemblerTester<int32_t> m;
Node* add = m.Int32Add(m.Int32Constant(0), m.Int32Constant(1));
m.Return(add);
CHECK_EQ(1, m.Call());
}
static Node* Int32Input(RawMachineAssemblerTester<int32_t>* m, int index) {
switch (index) {
case 0:
return m->Parameter(0);
case 1:
return m->Parameter(1);
case 2:
return m->Int32Constant(0);
case 3:
return m->Int32Constant(1);
case 4:
return m->Int32Constant(-1);
case 5:
return m->Int32Constant(0xff);
case 6:
return m->Int32Constant(0x01234567);
case 7:
return m->Load(kMachInt32, m->PointerConstant(NULL));
default:
return NULL;
}
}
TEST(CodeGenInt32Binop) {
RawMachineAssemblerTester<void> m;
const Operator* kOps[] = {
m.machine()->Word32And(), m.machine()->Word32Or(),
m.machine()->Word32Xor(), m.machine()->Word32Shl(),
m.machine()->Word32Shr(), m.machine()->Word32Sar(),
m.machine()->Word32Equal(), m.machine()->Int32Add(),
m.machine()->Int32Sub(), m.machine()->Int32Mul(),
m.machine()->Int32MulHigh(), m.machine()->Int32Div(),
m.machine()->Uint32Div(), m.machine()->Int32Mod(),
m.machine()->Uint32Mod(), m.machine()->Uint32MulHigh(),
m.machine()->Int32LessThan(), m.machine()->Int32LessThanOrEqual(),
m.machine()->Uint32LessThan(), m.machine()->Uint32LessThanOrEqual()};
for (size_t i = 0; i < arraysize(kOps); ++i) {
for (int j = 0; j < 8; j++) {
for (int k = 0; k < 8; k++) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32);
Node* a = Int32Input(&m, j);
Node* b = Int32Input(&m, k);
m.Return(m.NewNode(kOps[i], a, b));
m.GenerateCode();
}
}
}
}
TEST(RunGoto) {
RawMachineAssemblerTester<int32_t> m;
int constant = 99999;
MLabel next;
m.Goto(&next);
m.Bind(&next);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunGotoMultiple) {
RawMachineAssemblerTester<int32_t> m;
int constant = 9999977;
MLabel labels[10];
for (size_t i = 0; i < arraysize(labels); i++) {
m.Goto(&labels[i]);
m.Bind(&labels[i]);
}
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunBranch) {
RawMachineAssemblerTester<int32_t> m;
int constant = 999777;
MLabel blocka, blockb;
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(0 - constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunDiamond2) {
RawMachineAssemblerTester<int32_t> m;
int constant = 995666;
MLabel blocka, blockb, end;
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
TEST(RunLoop) {
RawMachineAssemblerTester<int32_t> m;
int constant = 999555;
MLabel header, body, exit;
m.Goto(&header);
m.Bind(&header);
m.Branch(m.Int32Constant(0), &body, &exit);
m.Bind(&body);
m.Goto(&header);
m.Bind(&exit);
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
template <typename R>
static void BuildDiamondPhi(RawMachineAssemblerTester<R>* m, Node* cond_node,
MachineType type, Node* true_node,
Node* false_node) {
MLabel blocka, blockb;
MLabel* end = m->Exit();
m->Branch(cond_node, &blocka, &blockb);
m->Bind(&blocka);
m->Goto(end);
m->Bind(&blockb);
m->Goto(end);
m->Bind(end);
Node* phi = m->Phi(type, true_node, false_node);
m->Return(phi);
}
TEST(RunDiamondPhiConst) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
int false_val = 0xFF666;
int true_val = 0x00DDD;
Node* true_node = m.Int32Constant(true_val);
Node* false_node = m.Int32Constant(false_val);
BuildDiamondPhi(&m, m.Parameter(0), kMachInt32, true_node, false_node);
CHECK_EQ(false_val, m.Call(0));
CHECK_EQ(true_val, m.Call(1));
}
TEST(RunDiamondPhiNumber) {
RawMachineAssemblerTester<Object*> m(kMachInt32);
double false_val = -11.1;
double true_val = 200.1;
Node* true_node = m.NumberConstant(true_val);
Node* false_node = m.NumberConstant(false_val);
BuildDiamondPhi(&m, m.Parameter(0), kMachAnyTagged, true_node, false_node);
m.CheckNumber(false_val, m.Call(0));
m.CheckNumber(true_val, m.Call(1));
}
TEST(RunDiamondPhiString) {
RawMachineAssemblerTester<Object*> m(kMachInt32);
const char* false_val = "false";
const char* true_val = "true";
Node* true_node = m.StringConstant(true_val);
Node* false_node = m.StringConstant(false_val);
BuildDiamondPhi(&m, m.Parameter(0), kMachAnyTagged, true_node, false_node);
m.CheckString(false_val, m.Call(0));
m.CheckString(true_val, m.Call(1));
}
TEST(RunDiamondPhiParam) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
BuildDiamondPhi(&m, m.Parameter(0), kMachInt32, m.Parameter(1),
m.Parameter(2));
int32_t c1 = 0x260cb75a;
int32_t c2 = 0xcd3e9c8b;
int result = m.Call(0, c1, c2);
CHECK_EQ(c2, result);
result = m.Call(1, c1, c2);
CHECK_EQ(c1, result);
}
TEST(RunLoopPhiConst) {
RawMachineAssemblerTester<int32_t> m;
int true_val = 0x44000;
int false_val = 0x00888;
Node* cond_node = m.Int32Constant(0);
Node* true_node = m.Int32Constant(true_val);
Node* false_node = m.Int32Constant(false_val);
// x = false_val; while(false) { x = true_val; } return x;
MLabel body, header;
MLabel* end = m.Exit();
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachInt32, false_node, true_node);
m.Branch(cond_node, &body, end);
m.Bind(&body);
m.Goto(&header);
m.Bind(end);
m.Return(phi);
CHECK_EQ(false_val, m.Call());
}
TEST(RunLoopPhiParam) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
MLabel blocka, blockb;
MLabel* end = m.Exit();
m.Goto(&blocka);
m.Bind(&blocka);
Node* phi = m.Phi(kMachInt32, m.Parameter(1), m.Parameter(2));
Node* cond = m.Phi(kMachInt32, m.Parameter(0), m.Int32Constant(0));
m.Branch(cond, &blockb, end);
m.Bind(&blockb);
m.Goto(&blocka);
m.Bind(end);
m.Return(phi);
int32_t c1 = 0xa81903b4;
int32_t c2 = 0x5a1207da;
int result = m.Call(0, c1, c2);
CHECK_EQ(c1, result);
result = m.Call(1, c1, c2);
CHECK_EQ(c2, result);
}
TEST(RunLoopPhiInduction) {
RawMachineAssemblerTester<int32_t> m;
int false_val = 0x10777;
// x = false_val; while(false) { x++; } return x;
MLabel header, body;
MLabel* end = m.Exit();
Node* false_node = m.Int32Constant(false_val);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachInt32, false_node, false_node);
m.Branch(m.Int32Constant(0), &body, end);
m.Bind(&body);
Node* add = m.Int32Add(phi, m.Int32Constant(1));
phi->ReplaceInput(1, add);
m.Goto(&header);
m.Bind(end);
m.Return(phi);
CHECK_EQ(false_val, m.Call());
}
TEST(RunLoopIncrement) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = 0; while(x ^ param) { x++; } return x;
MLabel header, body;
MLabel* end = m.Exit();
Node* zero = m.Int32Constant(0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachInt32, zero, zero);
m.Branch(m.WordXor(phi, bt.param0), &body, end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(end);
bt.AddReturn(phi);
CHECK_EQ(11, bt.call(11, 0));
CHECK_EQ(110, bt.call(110, 0));
CHECK_EQ(176, bt.call(176, 0));
}
TEST(RunLoopIncrement2) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = 0; while(x < param) { x++; } return x;
MLabel header, body;
MLabel* end = m.Exit();
Node* zero = m.Int32Constant(0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachInt32, zero, zero);
m.Branch(m.Int32LessThan(phi, bt.param0), &body, end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(end);
bt.AddReturn(phi);
CHECK_EQ(11, bt.call(11, 0));
CHECK_EQ(110, bt.call(110, 0));
CHECK_EQ(176, bt.call(176, 0));
CHECK_EQ(0, bt.call(-200, 0));
}
TEST(RunLoopIncrement3) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = 0; while(x < param) { x++; } return x;
MLabel header, body;
MLabel* end = m.Exit();
Node* zero = m.Int32Constant(0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachInt32, zero, zero);
m.Branch(m.Uint32LessThan(phi, bt.param0), &body, end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Add(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(end);
bt.AddReturn(phi);
CHECK_EQ(11, bt.call(11, 0));
CHECK_EQ(110, bt.call(110, 0));
CHECK_EQ(176, bt.call(176, 0));
CHECK_EQ(200, bt.call(200, 0));
}
TEST(RunLoopDecrement) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
// x = param; while(x) { x--; } return x;
MLabel header, body;
MLabel* end = m.Exit();
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachInt32, bt.param0, m.Int32Constant(0));
m.Branch(phi, &body, end);
m.Bind(&body);
phi->ReplaceInput(1, m.Int32Sub(phi, m.Int32Constant(1)));
m.Goto(&header);
m.Bind(end);
bt.AddReturn(phi);
CHECK_EQ(0, bt.call(11, 0));
CHECK_EQ(0, bt.call(110, 0));
CHECK_EQ(0, bt.call(197, 0));
}
TEST(RunLoopIncrementFloat64) {
RawMachineAssemblerTester<int32_t> m;
// x = -3.0; while(x < 10) { x = x + 0.5; } return (int) x;
MLabel header, body;
MLabel* end = m.Exit();
Node* minus_3 = m.Float64Constant(-3.0);
Node* ten = m.Float64Constant(10.0);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachFloat64, minus_3, ten);
m.Branch(m.Float64LessThan(phi, ten), &body, end);
m.Bind(&body);
phi->ReplaceInput(1, m.Float64Add(phi, m.Float64Constant(0.5)));
m.Goto(&header);
m.Bind(end);
m.Return(m.ChangeFloat64ToInt32(phi));
CHECK_EQ(10, m.Call());
}
TEST(RunLoadInt32) {
RawMachineAssemblerTester<int32_t> m;
int32_t p1 = 0; // loads directly from this location.
m.Return(m.LoadFromPointer(&p1, kMachInt32));
FOR_INT32_INPUTS(i) {
p1 = *i;
CHECK_EQ(p1, m.Call());
}
}
TEST(RunLoadInt32Offset) {
int32_t p1 = 0; // loads directly from this location.
int32_t offsets[] = {-2000000, -100, -101, 1, 3,
7, 120, 2000, 2000000000, 0xff};
for (size_t i = 0; i < arraysize(offsets); i++) {
RawMachineAssemblerTester<int32_t> m;
int32_t offset = offsets[i];
byte* pointer = reinterpret_cast<byte*>(&p1) - offset;
// generate load [#base + #index]
m.Return(m.LoadFromPointer(pointer, kMachInt32, offset));
FOR_INT32_INPUTS(j) {
p1 = *j;
CHECK_EQ(p1, m.Call());
}
}
}
TEST(RunLoadStoreFloat64Offset) {
double p1 = 0; // loads directly from this location.
double p2 = 0; // and stores directly into this location.
FOR_INT32_INPUTS(i) {
int32_t magic = 0x2342aabb + *i * 3;
RawMachineAssemblerTester<int32_t> m;
int32_t offset = *i;
byte* from = reinterpret_cast<byte*>(&p1) - offset;
byte* to = reinterpret_cast<byte*>(&p2) - offset;
// generate load [#base + #index]
Node* load =
m.Load(kMachFloat64, m.PointerConstant(from), m.Int32Constant(offset));
m.Store(kMachFloat64, m.PointerConstant(to), m.Int32Constant(offset), load);
m.Return(m.Int32Constant(magic));
FOR_FLOAT64_INPUTS(j) {
p1 = *j;
p2 = *j - 5;
CHECK_EQ(magic, m.Call());
CheckDoubleEq(p1, p2);
}
}
}
TEST(RunInt32AddP) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
// Use uint32_t because signed overflow is UB in C.
int expected = static_cast<int32_t>(*i + *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32AddAndWord32EqualP) {
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Equal(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j == *k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Word32Equal(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i == *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32EqualImm) {
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Int32Constant(*i),
m.Word32Equal(m.Parameter(0), m.Parameter(1))));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j == *k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Word32Equal(m.Int32Constant(*i), m.Parameter(0)),
m.Parameter(1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i == *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32NotEqualP) {
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Parameter(0),
m.Word32NotEqual(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j != *k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Word32NotEqual(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i != *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*i, *j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32NotEqualImm) {
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Int32Constant(*i),
m.Word32NotEqual(m.Parameter(0), m.Parameter(1))));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>(bit_cast<uint32_t>(*i) + (*j != *k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Word32NotEqual(m.Int32Constant(*i), m.Parameter(0)),
m.Parameter(1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t const expected =
bit_cast<int32_t>((*i != *j) + bit_cast<uint32_t>(*k));
CHECK_EQ(expected, m.Call(*j, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32, kMachUint32);
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Sar(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = *i + (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachUint32, kMachUint32);
m.Return(m.Int32Add(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i >> shift) + *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32, kMachUint32);
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Shl(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = *i + (*j << shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachUint32, kMachUint32);
m.Return(m.Int32Add(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i << shift) + *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32AddAndWord32ShrP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachUint32, kMachUint32);
m.Return(m.Int32Add(m.Parameter(0),
m.Word32Shr(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = *i + (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachUint32, kMachUint32);
m.Return(m.Int32Add(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i >> shift) + *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32AddInBranch) {
static const int32_t constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i + *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i + *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32NotEqual(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32,
kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Add(m.Parameter(0),
m.NewNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i + right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32AddInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Add(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Int32Add(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Int32Add(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i + *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Int32Add(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j + *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32,
kMachUint32);
m.Return(m.Word32Equal(
m.Int32Add(m.Parameter(0),
m.NewNode(shops[n], m.Parameter(1), m.Parameter(2))),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = (*i + right) == 0;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32SubP) {
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
m.Return(m.Int32Sub(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = static_cast<int32_t>(*i - *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32SubImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i - *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Int32Sub(m.Parameter(0), m.Int32Constant(*i)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j - *i;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunInt32SubAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32, kMachUint32);
m.Return(m.Int32Sub(m.Parameter(0),
m.Word32Sar(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = *i - (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachUint32, kMachUint32);
m.Return(m.Int32Sub(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
int32_t expected = (*i >> shift) - *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32SubAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32, kMachUint32);
m.Return(m.Int32Sub(m.Parameter(0),
m.Word32Shl(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = *i - (*j << shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachUint32, kMachUint32);
m.Return(m.Int32Sub(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
int32_t expected = (*i << shift) - *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32SubAndWord32ShrP) {
{
RawMachineAssemblerTester<uint32_t> m(kMachUint32, kMachUint32,
kMachUint32);
m.Return(m.Int32Sub(m.Parameter(0),
m.Word32Shr(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
// Use uint32_t because signed overflow is UB in C.
uint32_t expected = *i - (*j >> shift);
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<uint32_t> m(kMachUint32, kMachUint32,
kMachUint32);
m.Return(m.Int32Sub(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
// Use uint32_t because signed overflow is UB in C.
uint32_t expected = (*i >> shift) - *k;
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunInt32SubInBranch) {
static const int constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i - *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i - *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32NotEqual(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i - *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32,
kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Int32Sub(m.Parameter(0),
m.NewNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i - right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32SubInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Sub(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Int32Sub(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Int32Sub(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i - *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Int32Sub(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j - *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32,
kMachUint32);
m.Return(m.Word32Equal(
m.Int32Sub(m.Parameter(0),
m.NewNode(shops[n], m.Parameter(1), m.Parameter(2))),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = (*i - right) == 0;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunInt32MulP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Mul(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int expected = static_cast<int32_t>(*i * *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Int32Mul(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i * *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunInt32MulHighP) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32MulHigh(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(
(static_cast<int64_t>(*i) * static_cast<int64_t>(*j)) >> 32);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32MulImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Int32Mul(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i * *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Int32Mul(m.Parameter(0), m.Int32Constant(*i)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j * *i;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunInt32MulAndInt32AddP) {
{
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
int32_t p0 = *i;
int32_t p1 = *j;
m.Return(m.Int32Add(m.Int32Constant(p0),
m.Int32Mul(m.Parameter(0), m.Int32Constant(p1))));
FOR_INT32_INPUTS(k) {
int32_t p2 = *k;
int expected = p0 + static_cast<int32_t>(p1 * p2);
CHECK_EQ(expected, m.Call(p2));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Int32Add(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *i;
int32_t p1 = *j;
int32_t p2 = *k;
int expected = p0 + static_cast<int32_t>(p1 * p2);
CHECK_EQ(expected, m.Call(p0, p1, p2));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Int32Add(m.Int32Mul(m.Parameter(0), m.Parameter(1)), m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *i;
int32_t p1 = *j;
int32_t p2 = *k;
int expected = static_cast<int32_t>(p0 * p1) + p2;
CHECK_EQ(expected, m.Call(p0, p1, p2));
}
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Int32Add(m.Int32Constant(*i), m.Int32Mul(bt.param0, bt.param1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *j;
int32_t p1 = *k;
int expected = *i + static_cast<int32_t>(p0 * p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunInt32MulAndInt32SubP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32, kMachInt32);
m.Return(
m.Int32Sub(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
uint32_t p0 = *i;
int32_t p1 = *j;
int32_t p2 = *k;
// Use uint32_t because signed overflow is UB in C.
int expected = p0 - static_cast<uint32_t>(p1 * p2);
CHECK_EQ(expected, m.Call(p0, p1, p2));
}
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Int32Sub(m.Int32Constant(*i), m.Int32Mul(bt.param0, bt.param1)));
FOR_INT32_INPUTS(j) {
FOR_INT32_INPUTS(k) {
int32_t p0 = *j;
int32_t p1 = *k;
// Use uint32_t because signed overflow is UB in C.
int expected = *i - static_cast<uint32_t>(p0 * p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunUint32MulHighP) {
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Uint32MulHigh(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = bit_cast<int32_t>(static_cast<uint32_t>(
(static_cast<uint64_t>(*i) * static_cast<uint64_t>(*j)) >> 32));
CHECK_EQ(expected, bt.call(bit_cast<int32_t>(*i), bit_cast<int32_t>(*j)));
}
}
}
TEST(RunInt32DivP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Div(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 / p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Int32Div(bt.param0, bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 + (p0 / p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunUint32DivP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Uint32Div(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
int32_t expected = bit_cast<int32_t>(p0 / p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Div(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
int32_t expected = bit_cast<int32_t>(p0 + (p0 / p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunInt32ModP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Mod(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 % p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Int32Mod(bt.param0, bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int p0 = *i;
int p1 = *j;
if (p1 != 0 && (static_cast<uint32_t>(p0) != 0x80000000 || p1 != -1)) {
int expected = static_cast<int32_t>(p0 + (p0 % p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunUint32ModP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Uint32Mod(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
uint32_t expected = static_cast<uint32_t>(p0 % p1);
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Int32Add(bt.param0, m.Uint32Mod(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t p0 = *i;
uint32_t p1 = *j;
if (p1 != 0) {
uint32_t expected = static_cast<uint32_t>(p0 + (p0 % p1));
CHECK_EQ(expected, bt.call(p0, p1));
}
}
}
}
}
TEST(RunWord32AndP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32And(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = *i & *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32And(bt.param0, m.Word32Not(bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = *i & ~(*j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32And(m.Word32Not(bt.param0), bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = ~(*i) & *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shl(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i << (*j & 0x1f);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shl(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i << (0x1f & *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndAndWord32ShrP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shr(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i >> (*j & 0x1f);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Shr(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i >> (0x1f & *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Sar(bt.param0, m.Word32And(bt.param1, m.Int32Constant(0x1f))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i >> (*j & 0x1f);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Sar(bt.param0, m.Word32And(m.Int32Constant(0x1f), bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i >> (0x1f & *j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32AndImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32And(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i & *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32And(m.Int32Constant(*i), m.Word32Not(m.Parameter(0))));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i & ~(*j);
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32AndInBranch) {
static const int constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32And(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32And(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i & *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32,
kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32And(m.Parameter(0),
m.NewNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i & right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunWord32AndInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32And(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i & *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32And(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i & *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Word32And(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i & *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Word32And(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j & *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32OrP) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Or(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Or(bt.param0, m.Word32Not(bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | ~(*j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Or(m.Word32Not(bt.param0), bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = ~(*i) | *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
}
TEST(RunWord32OrImm) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Or(m.Int32Constant(*i), m.Word32Not(m.Parameter(0))));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i | ~(*j);
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32OrInBranch) {
static const int constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_INT32_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
MLabel blocka, blockb;
m.Branch(m.Word32NotEqual(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_INT32_INPUTS(j) {
int32_t expected = (*i | *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32,
kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Or(m.Parameter(0),
m.NewNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i | right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunWord32OrInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Or(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Or(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
int32_t expected = (*i | *j) == 0;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Word32Or(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i | *j) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Equal(m.Word32Or(m.Parameter(0), m.Int32Constant(*i)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*j | *i) == 0;
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32XorP) {
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i ^ *j;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Xor(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i ^ *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32Xor(bt.param0, m.Word32Not(bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i ^ ~(*j);
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32Xor(m.Word32Not(bt.param0), bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = ~(*i) ^ *j;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Xor(m.Int32Constant(*i), m.Word32Not(m.Parameter(0))));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *i ^ ~(*j);
CHECK_EQ(expected, m.Call(*j));
}
}
}
}
TEST(RunWord32XorInBranch) {
static const uint32_t constant = 987654321;
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32Equal(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
MLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32Xor(bt.param0, bt.param1), m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
bt.AddReturn(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) == 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
FOR_UINT32_INPUTS(i) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
MLabel blocka, blockb;
m.Branch(
m.Word32NotEqual(m.Word32Xor(m.Int32Constant(*i), m.Parameter(0)),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i ^ *j) != 0 ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<void> m;
const Operator* shops[] = {m.machine()->Word32Sar(),
m.machine()->Word32Shl(),
m.machine()->Word32Shr()};
for (size_t n = 0; n < arraysize(shops); n++) {
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachInt32,
kMachUint32);
MLabel blocka, blockb;
m.Branch(m.Word32Equal(m.Word32Xor(m.Parameter(0),
m.NewNode(shops[n], m.Parameter(1),
m.Parameter(2))),
m.Int32Constant(0)),
&blocka, &blockb);
m.Bind(&blocka);
m.Return(m.Int32Constant(constant));
m.Bind(&blockb);
m.Return(m.Int32Constant(0 - constant));
FOR_UINT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t right;
switch (shops[n]->opcode()) {
default:
UNREACHABLE();
case IrOpcode::kWord32Sar:
right = *j >> shift;
break;
case IrOpcode::kWord32Shl:
right = *j << shift;
break;
case IrOpcode::kWord32Shr:
right = static_cast<uint32_t>(*j) >> shift;
break;
}
int32_t expected = ((*i ^ right) == 0) ? constant : 0 - constant;
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
}
}
TEST(RunWord32ShlP) {
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j << shift;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Shl(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = *i << shift;
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
}
TEST(RunWord32ShlInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Shl(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Shl(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Shl(m.Parameter(0), m.Int32Constant(shift))));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(
m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i << shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32ShrP) {
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)));
FOR_UINT32_INPUTS(j) {
uint32_t expected = *j >> shift;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Shr(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = *i >> shift;
CHECK_EQ(expected, bt.call(*i, shift));
}
}
CHECK_EQ(0x00010000u, bt.call(0x80000000, 15));
}
}
TEST(RunWord32ShrInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Shr(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Shr(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(
m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32SarP) {
{
FOR_INT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
m.Return(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)));
FOR_INT32_INPUTS(j) {
int32_t expected = *j >> shift;
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(m.Word32Sar(bt.param0, bt.param1));
FOR_INT32_INPUTS(i) {
FOR_INT32_SHIFTS(shift) {
int32_t expected = *i >> shift;
CHECK_EQ(expected, bt.call(*i, shift));
}
}
CHECK_EQ(bit_cast<int32_t>(0xFFFF0000), bt.call(0x80000000, 15));
}
}
TEST(RunWord32SarInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Sar(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_INT32_INPUTS(i) {
FOR_INT32_SHIFTS(shift) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Sar(bt.param0, bt.param1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_SHIFTS(shift) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_INT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Sar(m.Parameter(0), m.Int32Constant(shift))));
FOR_INT32_INPUTS(i) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_INT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
m.Return(
m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = 0 == (*i >> shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32RorP) {
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<int32_t> m(kMachUint32);
m.Return(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)));
FOR_UINT32_INPUTS(j) {
int32_t expected = bits::RotateRight32(*j, shift);
CHECK_EQ(expected, m.Call(*j));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(m.Word32Ror(bt.param0, bt.param1));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = bits::RotateRight32(*i, shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
}
TEST(RunWord32RorInComparison) {
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Word32Ror(bt.param0, bt.param1), m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == bits::RotateRight32(*i, shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Uint32BinopTester bt(&m);
bt.AddReturn(
m.Word32Equal(m.Int32Constant(0), m.Word32Ror(bt.param0, bt.param1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
uint32_t expected = 0 == bits::RotateRight32(*i, shift);
CHECK_EQ(expected, bt.call(*i, shift));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(
m.Word32Equal(m.Int32Constant(0),
m.Word32Ror(m.Parameter(0), m.Int32Constant(shift))));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == bits::RotateRight32(*i, shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
{
FOR_UINT32_SHIFTS(shift) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
m.Return(
m.Word32Equal(m.Word32Ror(m.Parameter(0), m.Int32Constant(shift)),
m.Int32Constant(0)));
FOR_UINT32_INPUTS(i) {
uint32_t expected = 0 == bits::RotateRight32(*i, shift);
CHECK_EQ(expected, m.Call(*i));
}
}
}
}
TEST(RunWord32NotP) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
m.Return(m.Word32Not(m.Parameter(0)));
FOR_INT32_INPUTS(i) {
int expected = ~(*i);
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunInt32NegP) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
m.Return(m.Int32Neg(m.Parameter(0)));
FOR_INT32_INPUTS(i) {
int expected = -*i;
CHECK_EQ(expected, m.Call(*i));
}
}
TEST(RunWord32EqualAndWord32SarP) {
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32, kMachUint32);
m.Return(m.Word32Equal(m.Parameter(0),
m.Word32Sar(m.Parameter(1), m.Parameter(2))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = (*i == (*j >> shift));
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachUint32, kMachInt32);
m.Return(m.Word32Equal(m.Word32Sar(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_INT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_INT32_INPUTS(k) {
int32_t expected = ((*i >> shift) == *k);
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunWord32EqualAndWord32ShlP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachUint32, kMachUint32);
m.Return(m.Word32Equal(m.Parameter(0),
m.Word32Shl(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = (*i == (*j << shift));
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachUint32, kMachUint32);
m.Return(m.Word32Equal(m.Word32Shl(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
int32_t expected = ((*i << shift) == *k);
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunWord32EqualAndWord32ShrP) {
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachUint32, kMachUint32);
m.Return(m.Word32Equal(m.Parameter(0),
m.Word32Shr(m.Parameter(1), m.Parameter(2))));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
FOR_UINT32_SHIFTS(shift) {
int32_t expected = (*i == (*j >> shift));
CHECK_EQ(expected, m.Call(*i, *j, shift));
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachUint32, kMachUint32, kMachUint32);
m.Return(m.Word32Equal(m.Word32Shr(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_SHIFTS(shift) {
FOR_UINT32_INPUTS(k) {
int32_t expected = ((*i >> shift) == *k);
CHECK_EQ(expected, m.Call(*i, shift, *k));
}
}
}
}
}
TEST(RunDeadNodes) {
for (int i = 0; true; i++) {
RawMachineAssemblerTester<int32_t> m(i == 5 ? kMachInt32 : kMachNone);
int constant = 0x55 + i;
switch (i) {
case 0:
m.Int32Constant(44);
break;
case 1:
m.StringConstant("unused");
break;
case 2:
m.NumberConstant(11.1);
break;
case 3:
m.PointerConstant(&constant);
break;
case 4:
m.LoadFromPointer(&constant, kMachInt32);
break;
case 5:
m.Parameter(0);
break;
default:
return;
}
m.Return(m.Int32Constant(constant));
if (i != 5) {
CHECK_EQ(constant, m.Call());
} else {
CHECK_EQ(constant, m.Call(0));
}
}
}
TEST(RunDeadInt32Binops) {
RawMachineAssemblerTester<int32_t> m;
const Operator* kOps[] = {
m.machine()->Word32And(), m.machine()->Word32Or(),
m.machine()->Word32Xor(), m.machine()->Word32Shl(),
m.machine()->Word32Shr(), m.machine()->Word32Sar(),
m.machine()->Word32Ror(), m.machine()->Word32Equal(),
m.machine()->Int32Add(), m.machine()->Int32Sub(),
m.machine()->Int32Mul(), m.machine()->Int32MulHigh(),
m.machine()->Int32Div(), m.machine()->Uint32Div(),
m.machine()->Int32Mod(), m.machine()->Uint32Mod(),
m.machine()->Uint32MulHigh(), m.machine()->Int32LessThan(),
m.machine()->Int32LessThanOrEqual(), m.machine()->Uint32LessThan(),
m.machine()->Uint32LessThanOrEqual()};
for (size_t i = 0; i < arraysize(kOps); ++i) {
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32);
int32_t constant = static_cast<int32_t>(0x55555 + i);
m.NewNode(kOps[i], m.Parameter(0), m.Parameter(1));
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call(1, 1));
}
}
template <typename Type>
static void RunLoadImmIndex(MachineType rep) {
const int kNumElems = 3;
Type buffer[kNumElems];
// initialize the buffer with raw data.
byte* raw = reinterpret_cast<byte*>(buffer);
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
}
// Test with various large and small offsets.
for (int offset = -1; offset <= 200000; offset *= -5) {
for (int i = 0; i < kNumElems; i++) {
RawMachineAssemblerTester<Type> m;
Node* base = m.PointerConstant(buffer - offset);
Node* index = m.Int32Constant((offset + i) * sizeof(buffer[0]));
m.Return(m.Load(rep, base, index));
Type expected = buffer[i];
Type actual = m.Call();
CHECK(expected == actual);
}
}
}
TEST(RunLoadImmIndex) {
RunLoadImmIndex<int8_t>(kMachInt8);
RunLoadImmIndex<uint8_t>(kMachUint8);
RunLoadImmIndex<int16_t>(kMachInt16);
RunLoadImmIndex<uint16_t>(kMachUint16);
RunLoadImmIndex<int32_t>(kMachInt32);
RunLoadImmIndex<uint32_t>(kMachUint32);
RunLoadImmIndex<int32_t*>(kMachAnyTagged);
// TODO(titzer): test kRepBit loads
// TODO(titzer): test kMachFloat64 loads
// TODO(titzer): test various indexing modes.
}
template <typename CType>
static void RunLoadStore(MachineType rep) {
const int kNumElems = 4;
CType buffer[kNumElems];
for (int32_t x = 0; x < kNumElems; x++) {
int32_t y = kNumElems - x - 1;
// initialize the buffer with raw data.
byte* raw = reinterpret_cast<byte*>(buffer);
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
}
RawMachineAssemblerTester<int32_t> m;
int32_t OK = 0x29000 + x;
Node* base = m.PointerConstant(buffer);
Node* index0 = m.Int32Constant(x * sizeof(buffer[0]));
Node* load = m.Load(rep, base, index0);
Node* index1 = m.Int32Constant(y * sizeof(buffer[0]));
m.Store(rep, base, index1, load);
m.Return(m.Int32Constant(OK));
CHECK(buffer[x] != buffer[y]);
CHECK_EQ(OK, m.Call());
CHECK(buffer[x] == buffer[y]);
}
}
TEST(RunLoadStore) {
RunLoadStore<int8_t>(kMachInt8);
RunLoadStore<uint8_t>(kMachUint8);
RunLoadStore<int16_t>(kMachInt16);
RunLoadStore<uint16_t>(kMachUint16);
RunLoadStore<int32_t>(kMachInt32);
RunLoadStore<uint32_t>(kMachUint32);
RunLoadStore<void*>(kMachAnyTagged);
RunLoadStore<float>(kMachFloat32);
RunLoadStore<double>(kMachFloat64);
}
TEST(RunFloat64Binop) {
RawMachineAssemblerTester<int32_t> m;
double result;
const Operator* ops[] = {m.machine()->Float64Add(), m.machine()->Float64Sub(),
m.machine()->Float64Mul(), m.machine()->Float64Div(),
m.machine()->Float64Mod(), NULL};
double inf = V8_INFINITY;
const Operator* inputs[] = {
m.common()->Float64Constant(0), m.common()->Float64Constant(1),
m.common()->Float64Constant(1), m.common()->Float64Constant(0),
m.common()->Float64Constant(0), m.common()->Float64Constant(-1),
m.common()->Float64Constant(-1), m.common()->Float64Constant(0),
m.common()->Float64Constant(0.22), m.common()->Float64Constant(-1.22),
m.common()->Float64Constant(-1.22), m.common()->Float64Constant(0.22),
m.common()->Float64Constant(inf), m.common()->Float64Constant(0.22),
m.common()->Float64Constant(inf), m.common()->Float64Constant(-inf),
NULL};
for (int i = 0; ops[i] != NULL; i++) {
for (int j = 0; inputs[j] != NULL; j += 2) {
RawMachineAssemblerTester<int32_t> m;
Node* a = m.NewNode(inputs[j]);
Node* b = m.NewNode(inputs[j + 1]);
Node* binop = m.NewNode(ops[i], a, b);
Node* base = m.PointerConstant(&result);
Node* zero = m.Int32Constant(0);
m.Store(kMachFloat64, base, zero, binop);
m.Return(m.Int32Constant(i + j));
CHECK_EQ(i + j, m.Call());
}
}
}
TEST(RunDeadFloat64Binops) {
RawMachineAssemblerTester<int32_t> m;
const Operator* ops[] = {m.machine()->Float64Add(), m.machine()->Float64Sub(),
m.machine()->Float64Mul(), m.machine()->Float64Div(),
m.machine()->Float64Mod(), NULL};
for (int i = 0; ops[i] != NULL; i++) {
RawMachineAssemblerTester<int32_t> m;
int constant = 0x53355 + i;
m.NewNode(ops[i], m.Float64Constant(0.1), m.Float64Constant(1.11));
m.Return(m.Int32Constant(constant));
CHECK_EQ(constant, m.Call());
}
}
TEST(RunFloat64AddP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Add(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
double expected = *pl + *pr;
CheckDoubleEq(expected, bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64SubP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Sub(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
double expected = *pl - *pr;
CheckDoubleEq(expected, bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64SubImm1) {
double input = 0.0;
double output = 0.0;
FOR_FLOAT64_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Node* t0 = m.LoadFromPointer(&input, kMachFloat64);
Node* t1 = m.Float64Sub(m.Float64Constant(*i), t0);
m.StoreToPointer(&output, kMachFloat64, t1);
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(j) {
input = *j;
double expected = *i - input;
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, output);
}
}
}
TEST(RunFloat64SubImm2) {
double input = 0.0;
double output = 0.0;
FOR_FLOAT64_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Node* t0 = m.LoadFromPointer(&input, kMachFloat64);
Node* t1 = m.Float64Sub(t0, m.Float64Constant(*i));
m.StoreToPointer(&output, kMachFloat64, t1);
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(j) {
input = *j;
double expected = input - *i;
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, output);
}
}
}
TEST(RunFloat64MulP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Mul(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
double expected = *pl * *pr;
CheckDoubleEq(expected, bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64MulAndFloat64AddP) {
double input_a = 0.0;
double input_b = 0.0;
double input_c = 0.0;
double output = 0.0;
{
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input_a, kMachFloat64);
Node* b = m.LoadFromPointer(&input_b, kMachFloat64);
Node* c = m.LoadFromPointer(&input_c, kMachFloat64);
m.StoreToPointer(&output, kMachFloat64,
m.Float64Add(m.Float64Mul(a, b), c));
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
FOR_FLOAT64_INPUTS(k) {
input_a = *i;
input_b = *j;
input_c = *k;
volatile double temp = input_a * input_b;
volatile double expected = temp + input_c;
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, output);
}
}
}
}
{
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input_a, kMachFloat64);
Node* b = m.LoadFromPointer(&input_b, kMachFloat64);
Node* c = m.LoadFromPointer(&input_c, kMachFloat64);
m.StoreToPointer(&output, kMachFloat64,
m.Float64Add(a, m.Float64Mul(b, c)));
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
FOR_FLOAT64_INPUTS(k) {
input_a = *i;
input_b = *j;
input_c = *k;
volatile double temp = input_b * input_c;
volatile double expected = input_a + temp;
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, output);
}
}
}
}
}
TEST(RunFloat64MulAndFloat64SubP) {
double input_a = 0.0;
double input_b = 0.0;
double input_c = 0.0;
double output = 0.0;
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input_a, kMachFloat64);
Node* b = m.LoadFromPointer(&input_b, kMachFloat64);
Node* c = m.LoadFromPointer(&input_c, kMachFloat64);
m.StoreToPointer(&output, kMachFloat64, m.Float64Sub(a, m.Float64Mul(b, c)));
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
FOR_FLOAT64_INPUTS(k) {
input_a = *i;
input_b = *j;
input_c = *k;
volatile double temp = input_b * input_c;
volatile double expected = input_a - temp;
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, output);
}
}
}
}
TEST(RunFloat64MulImm) {
double input = 0.0;
double output = 0.0;
{
FOR_FLOAT64_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Node* t0 = m.LoadFromPointer(&input, kMachFloat64);
Node* t1 = m.Float64Mul(m.Float64Constant(*i), t0);
m.StoreToPointer(&output, kMachFloat64, t1);
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(j) {
input = *j;
double expected = *i * input;
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, output);
}
}
}
{
FOR_FLOAT64_INPUTS(i) {
RawMachineAssemblerTester<int32_t> m;
Node* t0 = m.LoadFromPointer(&input, kMachFloat64);
Node* t1 = m.Float64Mul(t0, m.Float64Constant(*i));
m.StoreToPointer(&output, kMachFloat64, t1);
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(j) {
input = *j;
double expected = input * *i;
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, output);
}
}
}
}
TEST(RunFloat64DivP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Div(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
double expected = *pl / *pr;
CheckDoubleEq(expected, bt.call(*pl, *pr));
}
}
}
TEST(RunFloat64ModP) {
RawMachineAssemblerTester<int32_t> m;
Float64BinopTester bt(&m);
bt.AddReturn(m.Float64Mod(bt.param0, bt.param1));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double expected = modulo(*i, *j);
double found = bt.call(*i, *j);
CheckDoubleEq(expected, found);
}
}
}
TEST(RunChangeInt32ToFloat64_A) {
RawMachineAssemblerTester<int32_t> m;
int32_t magic = 0x986234;
double result = 0;
Node* convert = m.ChangeInt32ToFloat64(m.Int32Constant(magic));
m.Store(kMachFloat64, m.PointerConstant(&result), m.Int32Constant(0),
convert);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(static_cast<double>(magic), result);
}
TEST(RunChangeInt32ToFloat64_B) {
RawMachineAssemblerTester<int32_t> m(kMachInt32);
double output = 0;
Node* convert = m.ChangeInt32ToFloat64(m.Parameter(0));
m.Store(kMachFloat64, m.PointerConstant(&output), m.Int32Constant(0),
convert);
m.Return(m.Parameter(0));
FOR_INT32_INPUTS(i) {
int32_t expect = *i;
CHECK_EQ(expect, m.Call(expect));
CHECK_EQ(static_cast<double>(expect), output);
}
}
TEST(RunChangeUint32ToFloat64_B) {
RawMachineAssemblerTester<uint32_t> m(kMachUint32);
double output = 0;
Node* convert = m.ChangeUint32ToFloat64(m.Parameter(0));
m.Store(kMachFloat64, m.PointerConstant(&output), m.Int32Constant(0),
convert);
m.Return(m.Parameter(0));
FOR_UINT32_INPUTS(i) {
uint32_t expect = *i;
CHECK_EQ(expect, m.Call(expect));
CHECK_EQ(static_cast<double>(expect), output);
}
}
TEST(RunChangeUint32ToFloat64_spilled) {
RawMachineAssemblerTester<int32_t> m;
const int kNumInputs = 32;
int32_t magic = 0x786234;
uint32_t input[kNumInputs];
double result[kNumInputs];
Node* input_node[kNumInputs];
for (int i = 0; i < kNumInputs; i++) {
input_node[i] =
m.Load(kMachUint32, m.PointerConstant(&input), m.Int32Constant(i * 4));
}
for (int i = 0; i < kNumInputs; i++) {
m.Store(kMachFloat64, m.PointerConstant(&result), m.Int32Constant(i * 8),
m.ChangeUint32ToFloat64(input_node[i]));
}
m.Return(m.Int32Constant(magic));
for (int i = 0; i < kNumInputs; i++) {
input[i] = 100 + i;
}
CHECK_EQ(magic, m.Call());
for (int i = 0; i < kNumInputs; i++) {
CHECK_EQ(result[i], static_cast<double>(100 + i));
}
}
TEST(RunChangeFloat64ToInt32_A) {
RawMachineAssemblerTester<int32_t> m;
int32_t magic = 0x786234;
double input = 11.1;
int32_t result = 0;
m.Store(kMachInt32, m.PointerConstant(&result), m.Int32Constant(0),
m.ChangeFloat64ToInt32(m.Float64Constant(input)));
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(static_cast<int32_t>(input), result);
}
TEST(RunChangeFloat64ToInt32_B) {
RawMachineAssemblerTester<int32_t> m;
double input = 0;
int32_t output = 0;
Node* load =
m.Load(kMachFloat64, m.PointerConstant(&input), m.Int32Constant(0));
Node* convert = m.ChangeFloat64ToInt32(load);
m.Store(kMachInt32, m.PointerConstant(&output), m.Int32Constant(0), convert);
m.Return(convert);
{
FOR_INT32_INPUTS(i) {
input = *i;
int32_t expect = *i;
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
}
// Check various powers of 2.
for (int32_t n = 1; n < 31; ++n) {
{
input = 1 << n;
int32_t expect = static_cast<int32_t>(input);
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
{
input = 3 << n;
int32_t expect = static_cast<int32_t>(input);
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
}
// Note we don't check fractional inputs, because these Convert operators
// really should be Change operators.
}
TEST(RunChangeFloat64ToUint32_B) {
RawMachineAssemblerTester<int32_t> m;
double input = 0;
int32_t output = 0;
Node* load =
m.Load(kMachFloat64, m.PointerConstant(&input), m.Int32Constant(0));
Node* convert = m.ChangeFloat64ToUint32(load);
m.Store(kMachInt32, m.PointerConstant(&output), m.Int32Constant(0), convert);
m.Return(convert);
{
FOR_UINT32_INPUTS(i) {
input = *i;
// TODO(titzer): add a CheckEqualsHelper overload for uint32_t.
int32_t expect = static_cast<int32_t>(*i);
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
}
// Check various powers of 2.
for (int32_t n = 1; n < 31; ++n) {
{
input = 1u << n;
int32_t expect = static_cast<int32_t>(static_cast<uint32_t>(input));
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
{
input = 3u << n;
int32_t expect = static_cast<int32_t>(static_cast<uint32_t>(input));
CHECK_EQ(expect, m.Call());
CHECK_EQ(expect, output);
}
}
// Note we don't check fractional inputs, because these Convert operators
// really should be Change operators.
}
TEST(RunChangeFloat64ToInt32_spilled) {
RawMachineAssemblerTester<int32_t> m;
const int kNumInputs = 32;
int32_t magic = 0x786234;
double input[kNumInputs];
int32_t result[kNumInputs];
Node* input_node[kNumInputs];
for (int i = 0; i < kNumInputs; i++) {
input_node[i] =
m.Load(kMachFloat64, m.PointerConstant(&input), m.Int32Constant(i * 8));
}
for (int i = 0; i < kNumInputs; i++) {
m.Store(kMachInt32, m.PointerConstant(&result), m.Int32Constant(i * 4),
m.ChangeFloat64ToInt32(input_node[i]));
}
m.Return(m.Int32Constant(magic));
for (int i = 0; i < kNumInputs; i++) {
input[i] = 100.9 + i;
}
CHECK_EQ(magic, m.Call());
for (int i = 0; i < kNumInputs; i++) {
CHECK_EQ(result[i], 100 + i);
}
}
TEST(RunChangeFloat64ToUint32_spilled) {
RawMachineAssemblerTester<uint32_t> m;
const int kNumInputs = 32;
uint32_t magic = 0x786234;
double input[kNumInputs];
uint32_t result[kNumInputs];
Node* input_node[kNumInputs];
for (int i = 0; i < kNumInputs; i++) {
input_node[i] =
m.Load(kMachFloat64, m.PointerConstant(&input), m.Int32Constant(i * 8));
}
for (int i = 0; i < kNumInputs; i++) {
m.Store(kMachUint32, m.PointerConstant(&result), m.Int32Constant(i * 4),
m.ChangeFloat64ToUint32(input_node[i]));
}
m.Return(m.Int32Constant(magic));
for (int i = 0; i < kNumInputs; i++) {
if (i % 2) {
input[i] = 100 + i + 2147483648u;
} else {
input[i] = 100 + i;
}
}
CHECK_EQ(magic, m.Call());
for (int i = 0; i < kNumInputs; i++) {
if (i % 2) {
CHECK_EQ(result[i], static_cast<uint32_t>(100 + i + 2147483648u));
} else {
CHECK_EQ(result[i], static_cast<uint32_t>(100 + i));
}
}
}
TEST(RunTruncateFloat64ToFloat32_spilled) {
RawMachineAssemblerTester<uint32_t> m;
const int kNumInputs = 32;
uint32_t magic = 0x786234;
double input[kNumInputs];
float result[kNumInputs];
Node* input_node[kNumInputs];
for (int i = 0; i < kNumInputs; i++) {
input_node[i] =
m.Load(kMachFloat64, m.PointerConstant(&input), m.Int32Constant(i * 8));
}
for (int i = 0; i < kNumInputs; i++) {
m.Store(kMachFloat32, m.PointerConstant(&result), m.Int32Constant(i * 4),
m.TruncateFloat64ToFloat32(input_node[i]));
}
m.Return(m.Int32Constant(magic));
for (int i = 0; i < kNumInputs; i++) {
input[i] = 0.1 + i;
}
CHECK_EQ(magic, m.Call());
for (int i = 0; i < kNumInputs; i++) {
CHECK_EQ(result[i], DoubleToFloat32(input[i]));
}
}
TEST(RunDeadChangeFloat64ToInt32) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 0x88abcda4;
m.ChangeFloat64ToInt32(m.Float64Constant(999.78));
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
}
TEST(RunDeadChangeInt32ToFloat64) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 0x8834abcd;
m.ChangeInt32ToFloat64(m.Int32Constant(magic - 6888));
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
}
TEST(RunLoopPhiInduction2) {
RawMachineAssemblerTester<int32_t> m;
int false_val = 0x10777;
// x = false_val; while(false) { x++; } return x;
MLabel header, body, end;
Node* false_node = m.Int32Constant(false_val);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachInt32, false_node, false_node);
m.Branch(m.Int32Constant(0), &body, &end);
m.Bind(&body);
Node* add = m.Int32Add(phi, m.Int32Constant(1));
phi->ReplaceInput(1, add);
m.Goto(&header);
m.Bind(&end);
m.Return(phi);
CHECK_EQ(false_val, m.Call());
}
TEST(RunDoubleDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99645;
double buffer = 0.1;
double constant = 99.99;
MLabel blocka, blockb, end;
Node* k1 = m.Float64Constant(constant);
Node* k2 = m.Float64Constant(0 - constant);
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* phi = m.Phi(kMachFloat64, k2, k1);
m.Store(kMachFloat64, m.PointerConstant(&buffer), m.Int32Constant(0), phi);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(constant, buffer);
}
TEST(RunRefDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99644;
Handle<String> rexpected =
CcTest::i_isolate()->factory()->InternalizeUtf8String("A");
String* buffer;
MLabel blocka, blockb, end;
Node* k1 = m.StringConstant("A");
Node* k2 = m.StringConstant("B");
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* phi = m.Phi(kMachAnyTagged, k2, k1);
m.Store(kMachAnyTagged, m.PointerConstant(&buffer), m.Int32Constant(0), phi);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK(rexpected->SameValue(buffer));
}
TEST(RunDoubleRefDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99648;
double dbuffer = 0.1;
double dconstant = 99.99;
Handle<String> rexpected =
CcTest::i_isolate()->factory()->InternalizeUtf8String("AX");
String* rbuffer;
MLabel blocka, blockb, end;
Node* d1 = m.Float64Constant(dconstant);
Node* d2 = m.Float64Constant(0 - dconstant);
Node* r1 = m.StringConstant("AX");
Node* r2 = m.StringConstant("BX");
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* dphi = m.Phi(kMachFloat64, d2, d1);
Node* rphi = m.Phi(kMachAnyTagged, r2, r1);
m.Store(kMachFloat64, m.PointerConstant(&dbuffer), m.Int32Constant(0), dphi);
m.Store(kMachAnyTagged, m.PointerConstant(&rbuffer), m.Int32Constant(0),
rphi);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(dconstant, dbuffer);
CHECK(rexpected->SameValue(rbuffer));
}
TEST(RunDoubleRefDoubleDiamond) {
RawMachineAssemblerTester<int32_t> m;
const int magic = 99649;
double dbuffer = 0.1;
double dconstant = 99.997;
Handle<String> rexpected =
CcTest::i_isolate()->factory()->InternalizeUtf8String("AD");
String* rbuffer;
MLabel blocka, blockb, mid, blockd, blocke, end;
Node* d1 = m.Float64Constant(dconstant);
Node* d2 = m.Float64Constant(0 - dconstant);
Node* r1 = m.StringConstant("AD");
Node* r2 = m.StringConstant("BD");
m.Branch(m.Int32Constant(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&mid);
m.Bind(&blockb);
m.Goto(&mid);
m.Bind(&mid);
Node* dphi1 = m.Phi(kMachFloat64, d2, d1);
Node* rphi1 = m.Phi(kMachAnyTagged, r2, r1);
m.Branch(m.Int32Constant(0), &blockd, &blocke);
m.Bind(&blockd);
m.Goto(&end);
m.Bind(&blocke);
m.Goto(&end);
m.Bind(&end);
Node* dphi2 = m.Phi(kMachFloat64, d1, dphi1);
Node* rphi2 = m.Phi(kMachAnyTagged, r1, rphi1);
m.Store(kMachFloat64, m.PointerConstant(&dbuffer), m.Int32Constant(0), dphi2);
m.Store(kMachAnyTagged, m.PointerConstant(&rbuffer), m.Int32Constant(0),
rphi2);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
CHECK_EQ(dconstant, dbuffer);
CHECK(rexpected->SameValue(rbuffer));
}
TEST(RunDoubleLoopPhi) {
RawMachineAssemblerTester<int32_t> m;
MLabel header, body, end;
int magic = 99773;
double buffer = 0.99;
double dconstant = 777.1;
Node* zero = m.Int32Constant(0);
Node* dk = m.Float64Constant(dconstant);
m.Goto(&header);
m.Bind(&header);
Node* phi = m.Phi(kMachFloat64, dk, dk);
phi->ReplaceInput(1, phi);
m.Branch(zero, &body, &end);
m.Bind(&body);
m.Goto(&header);
m.Bind(&end);
m.Store(kMachFloat64, m.PointerConstant(&buffer), m.Int32Constant(0), phi);
m.Return(m.Int32Constant(magic));
CHECK_EQ(magic, m.Call());
}
TEST(RunCountToTenAccRaw) {
RawMachineAssemblerTester<int32_t> m;
Node* zero = m.Int32Constant(0);
Node* ten = m.Int32Constant(10);
Node* one = m.Int32Constant(1);
MLabel header, body, body_cont, end;
m.Goto(&header);
m.Bind(&header);
Node* i = m.Phi(kMachInt32, zero, zero);
Node* j = m.Phi(kMachInt32, zero, zero);
m.Goto(&body);
m.Bind(&body);
Node* next_i = m.Int32Add(i, one);
Node* next_j = m.Int32Add(j, one);
m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont);
m.Bind(&body_cont);
i->ReplaceInput(1, next_i);
j->ReplaceInput(1, next_j);
m.Goto(&header);
m.Bind(&end);
m.Return(ten);
CHECK_EQ(10, m.Call());
}
TEST(RunCountToTenAccRaw2) {
RawMachineAssemblerTester<int32_t> m;
Node* zero = m.Int32Constant(0);
Node* ten = m.Int32Constant(10);
Node* one = m.Int32Constant(1);
MLabel header, body, body_cont, end;
m.Goto(&header);
m.Bind(&header);
Node* i = m.Phi(kMachInt32, zero, zero);
Node* j = m.Phi(kMachInt32, zero, zero);
Node* k = m.Phi(kMachInt32, zero, zero);
m.Goto(&body);
m.Bind(&body);
Node* next_i = m.Int32Add(i, one);
Node* next_j = m.Int32Add(j, one);
Node* next_k = m.Int32Add(j, one);
m.Branch(m.Word32Equal(next_i, ten), &end, &body_cont);
m.Bind(&body_cont);
i->ReplaceInput(1, next_i);
j->ReplaceInput(1, next_j);
k->ReplaceInput(1, next_k);
m.Goto(&header);
m.Bind(&end);
m.Return(ten);
CHECK_EQ(10, m.Call());
}
TEST(RunAddTree) {
RawMachineAssemblerTester<int32_t> m;
int32_t inputs[] = {11, 12, 13, 14, 15, 16, 17, 18};
Node* base = m.PointerConstant(inputs);
Node* n0 = m.Load(kMachInt32, base, m.Int32Constant(0 * sizeof(int32_t)));
Node* n1 = m.Load(kMachInt32, base, m.Int32Constant(1 * sizeof(int32_t)));
Node* n2 = m.Load(kMachInt32, base, m.Int32Constant(2 * sizeof(int32_t)));
Node* n3 = m.Load(kMachInt32, base, m.Int32Constant(3 * sizeof(int32_t)));
Node* n4 = m.Load(kMachInt32, base, m.Int32Constant(4 * sizeof(int32_t)));
Node* n5 = m.Load(kMachInt32, base, m.Int32Constant(5 * sizeof(int32_t)));
Node* n6 = m.Load(kMachInt32, base, m.Int32Constant(6 * sizeof(int32_t)));
Node* n7 = m.Load(kMachInt32, base, m.Int32Constant(7 * sizeof(int32_t)));
Node* i1 = m.Int32Add(n0, n1);
Node* i2 = m.Int32Add(n2, n3);
Node* i3 = m.Int32Add(n4, n5);
Node* i4 = m.Int32Add(n6, n7);
Node* i5 = m.Int32Add(i1, i2);
Node* i6 = m.Int32Add(i3, i4);
Node* i7 = m.Int32Add(i5, i6);
m.Return(i7);
CHECK_EQ(116, m.Call());
}
static const int kFloat64CompareHelperTestCases = 15;
static const int kFloat64CompareHelperNodeType = 4;
static int Float64CompareHelper(RawMachineAssemblerTester<int32_t>* m,
int test_case, int node_type, double x,
double y) {
static double buffer[2];
buffer[0] = x;
buffer[1] = y;
CHECK(0 <= test_case && test_case < kFloat64CompareHelperTestCases);
CHECK(0 <= node_type && node_type < kFloat64CompareHelperNodeType);
CHECK(x < y);
bool load_a = node_type / 2 == 1;
bool load_b = node_type % 2 == 1;
Node* a = load_a ? m->Load(kMachFloat64, m->PointerConstant(&buffer[0]))
: m->Float64Constant(x);
Node* b = load_b ? m->Load(kMachFloat64, m->PointerConstant(&buffer[1]))
: m->Float64Constant(y);
Node* cmp = NULL;
bool expected = false;
switch (test_case) {
// Equal tests.
case 0:
cmp = m->Float64Equal(a, b);
expected = false;
break;
case 1:
cmp = m->Float64Equal(a, a);
expected = true;
break;
// LessThan tests.
case 2:
cmp = m->Float64LessThan(a, b);
expected = true;
break;
case 3:
cmp = m->Float64LessThan(b, a);
expected = false;
break;
case 4:
cmp = m->Float64LessThan(a, a);
expected = false;
break;
// LessThanOrEqual tests.
case 5:
cmp = m->Float64LessThanOrEqual(a, b);
expected = true;
break;
case 6:
cmp = m->Float64LessThanOrEqual(b, a);
expected = false;
break;
case 7:
cmp = m->Float64LessThanOrEqual(a, a);
expected = true;
break;
// NotEqual tests.
case 8:
cmp = m->Float64NotEqual(a, b);
expected = true;
break;
case 9:
cmp = m->Float64NotEqual(b, a);
expected = true;
break;
case 10:
cmp = m->Float64NotEqual(a, a);
expected = false;
break;
// GreaterThan tests.
case 11:
cmp = m->Float64GreaterThan(a, a);
expected = false;
break;
case 12:
cmp = m->Float64GreaterThan(a, b);
expected = false;
break;
// GreaterThanOrEqual tests.
case 13:
cmp = m->Float64GreaterThanOrEqual(a, a);
expected = true;
break;
case 14:
cmp = m->Float64GreaterThanOrEqual(b, a);
expected = true;
break;
default:
UNREACHABLE();
}
m->Return(cmp);
return expected;
}
TEST(RunFloat64Compare) {
double inf = V8_INFINITY;
// All pairs (a1, a2) are of the form a1 < a2.
double inputs[] = {0.0, 1.0, -1.0, 0.22, -1.22, 0.22,
-inf, 0.22, 0.22, inf, -inf, inf};
for (int test = 0; test < kFloat64CompareHelperTestCases; test++) {
for (int node_type = 0; node_type < kFloat64CompareHelperNodeType;
node_type++) {
for (size_t input = 0; input < arraysize(inputs); input += 2) {
RawMachineAssemblerTester<int32_t> m;
int expected = Float64CompareHelper(&m, test, node_type, inputs[input],
inputs[input + 1]);
CHECK_EQ(expected, m.Call());
}
}
}
}
TEST(RunFloat64UnorderedCompare) {
RawMachineAssemblerTester<int32_t> m;
const Operator* operators[] = {m.machine()->Float64Equal(),
m.machine()->Float64LessThan(),
m.machine()->Float64LessThanOrEqual()};
double nan = std::numeric_limits<double>::quiet_NaN();
FOR_FLOAT64_INPUTS(i) {
for (size_t o = 0; o < arraysize(operators); ++o) {
for (int j = 0; j < 2; j++) {
RawMachineAssemblerTester<int32_t> m;
Node* a = m.Float64Constant(*i);
Node* b = m.Float64Constant(nan);
if (j == 1) std::swap(a, b);
m.Return(m.NewNode(operators[o], a, b));
CHECK_EQ(0, m.Call());
}
}
}
}
TEST(RunFloat64Equal) {
double input_a = 0.0;
double input_b = 0.0;
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input_a, kMachFloat64);
Node* b = m.LoadFromPointer(&input_b, kMachFloat64);
m.Return(m.Float64Equal(a, b));
CompareWrapper cmp(IrOpcode::kFloat64Equal);
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
input_a = *pl;
input_b = *pr;
int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0;
CHECK_EQ(expected, m.Call());
}
}
}
TEST(RunFloat64LessThan) {
double input_a = 0.0;
double input_b = 0.0;
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input_a, kMachFloat64);
Node* b = m.LoadFromPointer(&input_b, kMachFloat64);
m.Return(m.Float64LessThan(a, b));
CompareWrapper cmp(IrOpcode::kFloat64LessThan);
FOR_FLOAT64_INPUTS(pl) {
FOR_FLOAT64_INPUTS(pr) {
input_a = *pl;
input_b = *pr;
int32_t expected = cmp.Float64Compare(input_a, input_b) ? 1 : 0;
CHECK_EQ(expected, m.Call());
}
}
}
template <typename IntType, MachineType kRepresentation>
static void LoadStoreTruncation() {
IntType input;
RawMachineAssemblerTester<int32_t> m;
Node* a = m.LoadFromPointer(&input, kRepresentation);
Node* ap1 = m.Int32Add(a, m.Int32Constant(1));
m.StoreToPointer(&input, kRepresentation, ap1);
m.Return(ap1);
const IntType max = std::numeric_limits<IntType>::max();
const IntType min = std::numeric_limits<IntType>::min();
// Test upper bound.
input = max;
CHECK_EQ(max + 1, m.Call());
CHECK_EQ(min, input);
// Test lower bound.
input = min;
CHECK_EQ(static_cast<IntType>(max + 2), m.Call());
CHECK_EQ(min + 1, input);
// Test all one byte values that are not one byte bounds.
for (int i = -127; i < 127; i++) {
input = i;
int expected = i >= 0 ? i + 1 : max + (i - min) + 2;
CHECK_EQ(static_cast<IntType>(expected), m.Call());
CHECK_EQ(static_cast<IntType>(i + 1), input);
}
}
TEST(RunLoadStoreTruncation) {
LoadStoreTruncation<int8_t, kMachInt8>();
LoadStoreTruncation<int16_t, kMachInt16>();
}
static void IntPtrCompare(intptr_t left, intptr_t right) {
for (int test = 0; test < 7; test++) {
RawMachineAssemblerTester<bool> m(kMachPtr, kMachPtr);
Node* p0 = m.Parameter(0);
Node* p1 = m.Parameter(1);
Node* res = NULL;
bool expected = false;
switch (test) {
case 0:
res = m.IntPtrLessThan(p0, p1);
expected = true;
break;
case 1:
res = m.IntPtrLessThanOrEqual(p0, p1);
expected = true;
break;
case 2:
res = m.IntPtrEqual(p0, p1);
expected = false;
break;
case 3:
res = m.IntPtrGreaterThanOrEqual(p0, p1);
expected = false;
break;
case 4:
res = m.IntPtrGreaterThan(p0, p1);
expected = false;
break;
case 5:
res = m.IntPtrEqual(p0, p0);
expected = true;
break;
case 6:
res = m.IntPtrNotEqual(p0, p1);
expected = true;
break;
default:
UNREACHABLE();
break;
}
m.Return(res);
CHECK_EQ(expected, m.Call(reinterpret_cast<int32_t*>(left),
reinterpret_cast<int32_t*>(right)));
}
}
TEST(RunIntPtrCompare) {
intptr_t min = std::numeric_limits<intptr_t>::min();
intptr_t max = std::numeric_limits<intptr_t>::max();
// An ascending chain of intptr_t
intptr_t inputs[] = {min, min / 2, -1, 0, 1, max / 2, max};
for (size_t i = 0; i < arraysize(inputs) - 1; i++) {
IntPtrCompare(inputs[i], inputs[i + 1]);
}
}
TEST(RunTestIntPtrArithmetic) {
static const int kInputSize = 10;
int32_t inputs[kInputSize];
int32_t outputs[kInputSize];
for (int i = 0; i < kInputSize; i++) {
inputs[i] = i;
outputs[i] = -1;
}
RawMachineAssemblerTester<int32_t*> m;
Node* input = m.PointerConstant(&inputs[0]);
Node* output = m.PointerConstant(&outputs[kInputSize - 1]);
Node* elem_size = m.ConvertInt32ToIntPtr(m.Int32Constant(sizeof(inputs[0])));
for (int i = 0; i < kInputSize; i++) {
m.Store(kMachInt32, output, m.Load(kMachInt32, input));
input = m.IntPtrAdd(input, elem_size);
output = m.IntPtrSub(output, elem_size);
}
m.Return(input);
CHECK_EQ(&inputs[kInputSize], m.Call());
for (int i = 0; i < kInputSize; i++) {
CHECK_EQ(i, inputs[i]);
CHECK_EQ(kInputSize - i - 1, outputs[i]);
}
}
TEST(RunSpillLotsOfThings) {
static const int kInputSize = 1000;
RawMachineAssemblerTester<void> m;
Node* accs[kInputSize];
int32_t outputs[kInputSize];
Node* one = m.Int32Constant(1);
Node* acc = one;
for (int i = 0; i < kInputSize; i++) {
acc = m.Int32Add(acc, one);
accs[i] = acc;
}
for (int i = 0; i < kInputSize; i++) {
m.StoreToPointer(&outputs[i], kMachInt32, accs[i]);
}
m.Return(one);
m.Call();
for (int i = 0; i < kInputSize; i++) {
CHECK_EQ(outputs[i], i + 2);
}
}
TEST(RunSpillConstantsAndParameters) {
static const int kInputSize = 1000;
static const int32_t kBase = 987;
RawMachineAssemblerTester<int32_t> m(kMachInt32, kMachInt32);
int32_t outputs[kInputSize];
Node* csts[kInputSize];
Node* accs[kInputSize];
Node* acc = m.Int32Constant(0);
for (int i = 0; i < kInputSize; i++) {
csts[i] = m.Int32Constant(static_cast<int32_t>(kBase + i));
}
for (int i = 0; i < kInputSize; i++) {
acc = m.Int32Add(acc, csts[i]);
accs[i] = acc;
}
for (int i = 0; i < kInputSize; i++) {
m.StoreToPointer(&outputs[i], kMachInt32, accs[i]);
}
m.Return(m.Int32Add(acc, m.Int32Add(m.Parameter(0), m.Parameter(1))));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = *i + *j;
for (int k = 0; k < kInputSize; k++) {
expected += kBase + k;
}
CHECK_EQ(expected, m.Call(*i, *j));
expected = 0;
for (int k = 0; k < kInputSize; k++) {
expected += kBase + k;
CHECK_EQ(expected, outputs[k]);
}
}
}
}
TEST(RunNewSpaceConstantsInPhi) {
RawMachineAssemblerTester<Object*> m(kMachInt32);
Isolate* isolate = CcTest::i_isolate();
Handle<HeapNumber> true_val = isolate->factory()->NewHeapNumber(11.2);
Handle<HeapNumber> false_val = isolate->factory()->NewHeapNumber(11.3);
Node* true_node = m.HeapConstant(true_val);
Node* false_node = m.HeapConstant(false_val);
MLabel blocka, blockb, end;
m.Branch(m.Parameter(0), &blocka, &blockb);
m.Bind(&blocka);
m.Goto(&end);
m.Bind(&blockb);
m.Goto(&end);
m.Bind(&end);
Node* phi = m.Phi(kMachAnyTagged, true_node, false_node);
m.Return(phi);
CHECK_EQ(*false_val, m.Call(0));
CHECK_EQ(*true_val, m.Call(1));
}
TEST(RunInt32AddWithOverflowP) {
int32_t actual_val = -1;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1);
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
bt.AddReturn(ovf);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected_val;
int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, bt.call(*i, *j));
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32AddWithOverflowImm) {
int32_t actual_val = -1, expected_val = 0;
FOR_INT32_INPUTS(i) {
{
RawMachineAssemblerTester<int32_t> m(kMachInt32);
Node* add = m.Int32AddWithOverflow(m.Int32Constant(*i), m.Parameter(0));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32);
Node* add = m.Int32AddWithOverflow(m.Parameter(0), m.Int32Constant(*i));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
FOR_INT32_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m;
Node* add =
m.Int32AddWithOverflow(m.Int32Constant(*i), m.Int32Constant(*j));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
m.Return(ovf);
int expected_ovf = bits::SignedAddOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call());
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32AddWithOverflowInBranchP) {
int constant = 911777;
MLabel blocka, blockb;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32AddWithOverflow(bt.param0, bt.param1);
Node* ovf = m.Projection(1, add);
m.Branch(ovf, &blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
Node* val = m.Projection(0, add);
bt.AddReturn(val);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected;
if (bits::SignedAddOverflow32(*i, *j, &expected)) expected = constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunInt32SubWithOverflowP) {
int32_t actual_val = -1;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* add = m.Int32SubWithOverflow(bt.param0, bt.param1);
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
bt.AddReturn(ovf);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected_val;
int expected_ovf = bits::SignedSubOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, bt.call(*i, *j));
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32SubWithOverflowImm) {
int32_t actual_val = -1, expected_val = 0;
FOR_INT32_INPUTS(i) {
{
RawMachineAssemblerTester<int32_t> m(kMachInt32);
Node* add = m.Int32SubWithOverflow(m.Int32Constant(*i), m.Parameter(0));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf = bits::SignedSubOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
{
RawMachineAssemblerTester<int32_t> m(kMachInt32);
Node* add = m.Int32SubWithOverflow(m.Parameter(0), m.Int32Constant(*i));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
m.Return(ovf);
FOR_INT32_INPUTS(j) {
int expected_ovf = bits::SignedSubOverflow32(*j, *i, &expected_val);
CHECK_EQ(expected_ovf, m.Call(*j));
CHECK_EQ(expected_val, actual_val);
}
}
FOR_INT32_INPUTS(j) {
RawMachineAssemblerTester<int32_t> m;
Node* add =
m.Int32SubWithOverflow(m.Int32Constant(*i), m.Int32Constant(*j));
Node* val = m.Projection(0, add);
Node* ovf = m.Projection(1, add);
m.StoreToPointer(&actual_val, kMachInt32, val);
m.Return(ovf);
int expected_ovf = bits::SignedSubOverflow32(*i, *j, &expected_val);
CHECK_EQ(expected_ovf, m.Call());
CHECK_EQ(expected_val, actual_val);
}
}
}
TEST(RunInt32SubWithOverflowInBranchP) {
int constant = 911999;
MLabel blocka, blockb;
RawMachineAssemblerTester<int32_t> m;
Int32BinopTester bt(&m);
Node* sub = m.Int32SubWithOverflow(bt.param0, bt.param1);
Node* ovf = m.Projection(1, sub);
m.Branch(ovf, &blocka, &blockb);
m.Bind(&blocka);
bt.AddReturn(m.Int32Constant(constant));
m.Bind(&blockb);
Node* val = m.Projection(0, sub);
bt.AddReturn(val);
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected;
if (bits::SignedSubOverflow32(*i, *j, &expected)) expected = constant;
CHECK_EQ(expected, bt.call(*i, *j));
}
}
}
TEST(RunChangeInt32ToInt64P) {
if (kPointerSize < 8) return;
int64_t actual = -1;
RawMachineAssemblerTester<int32_t> m(kMachInt32);
m.StoreToPointer(&actual, kMachInt64, m.ChangeInt32ToInt64(m.Parameter(0)));
m.Return(m.Int32Constant(0));
FOR_INT32_INPUTS(i) {
int64_t expected = *i;
CHECK_EQ(0, m.Call(*i));
CHECK_EQ(expected, actual);
}
}
TEST(RunChangeUint32ToUint64P) {
if (kPointerSize < 8) return;
int64_t actual = -1;
RawMachineAssemblerTester<int32_t> m(kMachUint32);
m.StoreToPointer(&actual, kMachUint64,
m.ChangeUint32ToUint64(m.Parameter(0)));
m.Return(m.Int32Constant(0));
FOR_UINT32_INPUTS(i) {
int64_t expected = static_cast<uint64_t>(*i);
CHECK_EQ(0, m.Call(*i));
CHECK_EQ(expected, actual);
}
}
TEST(RunTruncateInt64ToInt32P) {
if (kPointerSize < 8) return;
int64_t expected = -1;
RawMachineAssemblerTester<int32_t> m;
m.Return(m.TruncateInt64ToInt32(m.LoadFromPointer(&expected, kMachInt64)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
expected = (static_cast<uint64_t>(*j) << 32) | *i;
CHECK_EQ(static_cast<int32_t>(expected), m.Call());
}
}
}
TEST(RunTruncateFloat64ToInt32P) {
struct {
double from;
double raw;
} kValues[] = {{0, 0},
{0.5, 0},
{-0.5, 0},
{1.5, 1},
{-1.5, -1},
{5.5, 5},
{-5.0, -5},
{std::numeric_limits<double>::quiet_NaN(), 0},
{std::numeric_limits<double>::infinity(), 0},
{-std::numeric_limits<double>::quiet_NaN(), 0},
{-std::numeric_limits<double>::infinity(), 0},
{4.94065645841e-324, 0},
{-4.94065645841e-324, 0},
{0.9999999999999999, 0},
{-0.9999999999999999, 0},
{4294967296.0, 0},
{-4294967296.0, 0},
{9223372036854775000.0, 4294966272.0},
{-9223372036854775000.0, -4294966272.0},
{4.5036e+15, 372629504},
{-4.5036e+15, -372629504},
{287524199.5377777, 0x11234567},
{-287524199.5377777, -0x11234567},
{2300193596.302222, 2300193596.0},
{-2300193596.302222, -2300193596.0},
{4600387192.604444, 305419896},
{-4600387192.604444, -305419896},
{4823855600872397.0, 1737075661},
{-4823855600872397.0, -1737075661},
{4503603922337791.0, -1},
{-4503603922337791.0, 1},
{4503601774854143.0, 2147483647},
{-4503601774854143.0, -2147483647},
{9007207844675582.0, -2},
{-9007207844675582.0, 2},
{2.4178527921507624e+24, -536870912},
{-2.4178527921507624e+24, 536870912},
{2.417853945072267e+24, -536870912},
{-2.417853945072267e+24, 536870912},
{4.8357055843015248e+24, -1073741824},
{-4.8357055843015248e+24, 1073741824},
{4.8357078901445341e+24, -1073741824},
{-4.8357078901445341e+24, 1073741824},
{2147483647.0, 2147483647.0},
{-2147483648.0, -2147483648.0},
{9.6714111686030497e+24, -2147483648.0},
{-9.6714111686030497e+24, -2147483648.0},
{9.6714157802890681e+24, -2147483648.0},
{-9.6714157802890681e+24, -2147483648.0},
{1.9342813113834065e+25, 2147483648.0},
{-1.9342813113834065e+25, 2147483648.0},
{3.868562622766813e+25, 0},
{-3.868562622766813e+25, 0},
{1.7976931348623157e+308, 0},
{-1.7976931348623157e+308, 0}};
double input = -1.0;
RawMachineAssemblerTester<int32_t> m;
m.Return(m.TruncateFloat64ToInt32(m.LoadFromPointer(&input, kMachFloat64)));
for (size_t i = 0; i < arraysize(kValues); ++i) {
input = kValues[i].from;
uint64_t expected = static_cast<int64_t>(kValues[i].raw);
CHECK_EQ(static_cast<int>(expected), m.Call());
}
}
TEST(RunChangeFloat32ToFloat64) {
double actual = 0.0f;
float expected = 0.0;
RawMachineAssemblerTester<int32_t> m;
m.StoreToPointer(
&actual, kMachFloat64,
m.ChangeFloat32ToFloat64(m.LoadFromPointer(&expected, kMachFloat32)));
m.Return(m.Int32Constant(0));
FOR_FLOAT32_INPUTS(i) {
expected = *i;
CHECK_EQ(0, m.Call());
CHECK_EQ(expected, actual);
}
}
TEST(RunChangeFloat32ToFloat64_spilled) {
RawMachineAssemblerTester<int32_t> m;
const int kNumInputs = 32;
int32_t magic = 0x786234;
float input[kNumInputs];
double result[kNumInputs];
Node* input_node[kNumInputs];
for (int i = 0; i < kNumInputs; i++) {
input_node[i] =
m.Load(kMachFloat32, m.PointerConstant(&input), m.Int32Constant(i * 4));
}
for (int i = 0; i < kNumInputs; i++) {
m.Store(kMachFloat64, m.PointerConstant(&result), m.Int32Constant(i * 8),
m.ChangeFloat32ToFloat64(input_node[i]));
}
m.Return(m.Int32Constant(magic));
for (int i = 0; i < kNumInputs; i++) {
input[i] = 100.9f + i;
}
CHECK_EQ(magic, m.Call());
for (int i = 0; i < kNumInputs; i++) {
CHECK_EQ(result[i], static_cast<double>(input[i]));
}
}
TEST(RunTruncateFloat64ToFloat32) {
float actual = 0.0f;
double input = 0.0;
RawMachineAssemblerTester<int32_t> m;
m.StoreToPointer(
&actual, kMachFloat32,
m.TruncateFloat64ToFloat32(m.LoadFromPointer(&input, kMachFloat64)));
m.Return(m.Int32Constant(0));
FOR_FLOAT64_INPUTS(i) {
input = *i;
volatile double expected = DoubleToFloat32(input);
CHECK_EQ(0, m.Call());
CheckDoubleEq(expected, actual);
}
}
TEST(RunFloat32Constant) {
FOR_FLOAT32_INPUTS(i) {
float expected = *i;
float actual = *i;
RawMachineAssemblerTester<int32_t> m;
m.StoreToPointer(&actual, kMachFloat32, m.Float32Constant(expected));
m.Return(m.Int32Constant(0));
CHECK_EQ(0, m.Call());
CHECK_EQ(expected, actual);
}
}
static double two_30 = 1 << 30; // 2^30 is a smi boundary.
static double two_52 = two_30 * (1 << 22); // 2^52 is a precision boundary.
static double kValues[] = {0.1,
0.2,
0.49999999999999994,
0.5,
0.7,
1.0 - std::numeric_limits<double>::epsilon(),
-0.1,
-0.49999999999999994,
-0.5,
-0.7,
1.1,
1.0 + std::numeric_limits<double>::epsilon(),
1.5,
1.7,
-1,
-1 + std::numeric_limits<double>::epsilon(),
-1 - std::numeric_limits<double>::epsilon(),
-1.1,
-1.5,
-1.7,
std::numeric_limits<double>::min(),
-std::numeric_limits<double>::min(),
std::numeric_limits<double>::max(),
-std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity(),
two_30,
two_30 + 0.1,
two_30 + 0.5,
two_30 + 0.7,
two_30 - 1,
two_30 - 1 + 0.1,
two_30 - 1 + 0.5,
two_30 - 1 + 0.7,
-two_30,
-two_30 + 0.1,
-two_30 + 0.5,
-two_30 + 0.7,
-two_30 + 1,
-two_30 + 1 + 0.1,
-two_30 + 1 + 0.5,
-two_30 + 1 + 0.7,
two_52,
two_52 + 0.1,
two_52 + 0.5,
two_52 + 0.5,
two_52 + 0.7,
two_52 + 0.7,
two_52 - 1,
two_52 - 1 + 0.1,
two_52 - 1 + 0.5,
two_52 - 1 + 0.7,
-two_52,
-two_52 + 0.1,
-two_52 + 0.5,
-two_52 + 0.7,
-two_52 + 1,
-two_52 + 1 + 0.1,
-two_52 + 1 + 0.5,
-two_52 + 1 + 0.7,
two_30,
two_30 - 0.1,
two_30 - 0.5,
two_30 - 0.7,
two_30 - 1,
two_30 - 1 - 0.1,
two_30 - 1 - 0.5,
two_30 - 1 - 0.7,
-two_30,
-two_30 - 0.1,
-two_30 - 0.5,
-two_30 - 0.7,
-two_30 + 1,
-two_30 + 1 - 0.1,
-two_30 + 1 - 0.5,
-two_30 + 1 - 0.7,
two_52,
two_52 - 0.1,
two_52 - 0.5,
two_52 - 0.5,
two_52 - 0.7,
two_52 - 0.7,
two_52 - 1,
two_52 - 1 - 0.1,
two_52 - 1 - 0.5,
two_52 - 1 - 0.7,
-two_52,
-two_52 - 0.1,
-two_52 - 0.5,
-two_52 - 0.7,
-two_52 + 1,
-two_52 + 1 - 0.1,
-two_52 + 1 - 0.5,
-two_52 + 1 - 0.7};
TEST(RunFloat64Floor) {
double input = -1.0;
double result = 0.0;
RawMachineAssemblerTester<int32_t> m;
if (!m.machine()->HasFloat64Floor()) return;
m.StoreToPointer(&result, kMachFloat64,
m.Float64Floor(m.LoadFromPointer(&input, kMachFloat64)));
m.Return(m.Int32Constant(0));
for (size_t i = 0; i < arraysize(kValues); ++i) {
input = kValues[i];
CHECK_EQ(0, m.Call());
double expected = std::floor(kValues[i]);
CHECK_EQ(expected, result);
}
}
TEST(RunFloat64Ceil) {
double input = -1.0;
double result = 0.0;
RawMachineAssemblerTester<int32_t> m;
if (!m.machine()->HasFloat64Ceil()) return;
m.StoreToPointer(&result, kMachFloat64,
m.Float64Ceil(m.LoadFromPointer(&input, kMachFloat64)));
m.Return(m.Int32Constant(0));
for (size_t i = 0; i < arraysize(kValues); ++i) {
input = kValues[i];
CHECK_EQ(0, m.Call());
double expected = std::ceil(kValues[i]);
CHECK_EQ(expected, result);
}
}
TEST(RunFloat64RoundTruncate) {
double input = -1.0;
double result = 0.0;
RawMachineAssemblerTester<int32_t> m;
if (!m.machine()->HasFloat64Ceil()) return;
m.StoreToPointer(
&result, kMachFloat64,
m.Float64RoundTruncate(m.LoadFromPointer(&input, kMachFloat64)));
m.Return(m.Int32Constant(0));
for (size_t i = 0; i < arraysize(kValues); ++i) {
input = kValues[i];
CHECK_EQ(0, m.Call());
double expected = trunc(kValues[i]);
CHECK_EQ(expected, result);
}
}
TEST(RunFloat64RoundTiesAway) {
double input = -1.0;
double result = 0.0;
RawMachineAssemblerTester<int32_t> m;
if (!m.machine()->HasFloat64RoundTiesAway()) return;
m.StoreToPointer(
&result, kMachFloat64,
m.Float64RoundTiesAway(m.LoadFromPointer(&input, kMachFloat64)));
m.Return(m.Int32Constant(0));
for (size_t i = 0; i < arraysize(kValues); ++i) {
input = kValues[i];
CHECK_EQ(0, m.Call());
double expected = round(kValues[i]);
CHECK_EQ(expected, result);
}
}
#endif // V8_TURBOFAN_TARGET