2012-01-20 14:08:20 +00:00
|
|
|
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
|
// met:
|
|
|
|
|
//
|
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
|
// with the distribution.
|
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
|
//
|
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
|
|
#ifndef V8_UTILS_H_
|
|
|
|
|
#define V8_UTILS_H_
|
|
|
|
|
|
2008-11-30 00:19:08 +00:00
|
|
|
|
#include <stdlib.h>
|
2010-03-12 10:20:01 +00:00
|
|
|
|
#include <string.h>
|
2011-07-21 13:06:55 +00:00
|
|
|
|
#include <climits>
|
2008-11-30 00:19:08 +00:00
|
|
|
|
|
2010-11-15 13:23:30 +00:00
|
|
|
|
#include "globals.h"
|
2010-11-05 08:18:53 +00:00
|
|
|
|
#include "checks.h"
|
2010-11-15 13:23:30 +00:00
|
|
|
|
#include "allocation.h"
|
2010-11-05 08:18:53 +00:00
|
|
|
|
|
2009-05-25 10:05:56 +00:00
|
|
|
|
namespace v8 {
|
|
|
|
|
namespace internal {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// General helper functions
|
|
|
|
|
|
2010-06-07 09:36:30 +00:00
|
|
|
|
#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
|
|
|
|
|
|
2009-10-08 12:36:12 +00:00
|
|
|
|
// Returns true iff x is a power of 2 (or zero). Cannot be used with the
|
|
|
|
|
// maximally negative value of the type T (the -1 overflows).
|
2008-07-03 15:10:15 +00:00
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline bool IsPowerOf2(T x) {
|
2010-06-07 09:36:30 +00:00
|
|
|
|
return IS_POWER_OF_TWO(x);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-06-14 11:20:36 +00:00
|
|
|
|
// X must be a power of 2. Returns the number of trailing zeros.
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline int WhichPowerOf2(uint32_t x) {
|
2010-06-14 11:20:36 +00:00
|
|
|
|
ASSERT(IsPowerOf2(x));
|
|
|
|
|
ASSERT(x != 0);
|
|
|
|
|
int bits = 0;
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
|
int original_x = x;
|
|
|
|
|
#endif
|
|
|
|
|
if (x >= 0x10000) {
|
|
|
|
|
bits += 16;
|
|
|
|
|
x >>= 16;
|
|
|
|
|
}
|
|
|
|
|
if (x >= 0x100) {
|
|
|
|
|
bits += 8;
|
|
|
|
|
x >>= 8;
|
|
|
|
|
}
|
|
|
|
|
if (x >= 0x10) {
|
|
|
|
|
bits += 4;
|
|
|
|
|
x >>= 4;
|
|
|
|
|
}
|
|
|
|
|
switch (x) {
|
|
|
|
|
default: UNREACHABLE();
|
|
|
|
|
case 8: bits++; // Fall through.
|
|
|
|
|
case 4: bits++; // Fall through.
|
|
|
|
|
case 2: bits++; // Fall through.
|
|
|
|
|
case 1: break;
|
|
|
|
|
}
|
|
|
|
|
ASSERT_EQ(1 << bits, original_x);
|
|
|
|
|
return bits;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2012-04-24 15:59:07 +00:00
|
|
|
|
// Magic numbers for integer division.
|
|
|
|
|
// These are kind of 2's complement reciprocal of the divisors.
|
|
|
|
|
// Details and proofs can be found in:
|
|
|
|
|
// - Hacker's Delight, Henry S. Warren, Jr.
|
|
|
|
|
// - The PowerPC Compiler Writer’s Guide
|
|
|
|
|
// and probably many others.
|
|
|
|
|
// See details in the implementation of the algorithm in
|
|
|
|
|
// lithium-codegen-arm.cc : LCodeGen::TryEmitSignedIntegerDivisionByConstant().
|
|
|
|
|
struct DivMagicNumbers {
|
|
|
|
|
unsigned M;
|
|
|
|
|
unsigned s;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const DivMagicNumbers InvalidDivMagicNumber= {0, 0};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor3 = {0x55555556, 0};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor5 = {0x66666667, 1};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor7 = {0x92492493, 2};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor9 = {0x38e38e39, 1};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor11 = {0x2e8ba2e9, 1};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor25 = {0x51eb851f, 3};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor125 = {0x10624dd3, 3};
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor625 = {0x68db8bad, 8};
|
|
|
|
|
|
|
|
|
|
const DivMagicNumbers DivMagicNumberFor(int32_t divisor);
|
|
|
|
|
|
|
|
|
|
|
2008-08-06 10:02:49 +00:00
|
|
|
|
// The C++ standard leaves the semantics of '>>' undefined for
|
|
|
|
|
// negative signed operands. Most implementations do the right thing,
|
|
|
|
|
// though.
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline int ArithmeticShiftRight(int x, int s) {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
return x >> s;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute the 0-relative offset of some absolute value x of type T.
|
2008-08-06 10:02:49 +00:00
|
|
|
|
// This allows conversion of Addresses and integral types into
|
|
|
|
|
// 0-relative int offsets.
|
2008-07-03 15:10:15 +00:00
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline intptr_t OffsetFrom(T x) {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
return x - static_cast<T>(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Compute the absolute value of type T for some 0-relative offset x.
|
2008-08-06 10:02:49 +00:00
|
|
|
|
// This allows conversion of 0-relative int offsets into Addresses and
|
|
|
|
|
// integral types.
|
2008-07-03 15:10:15 +00:00
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline T AddressFrom(intptr_t x) {
|
2009-11-11 09:50:06 +00:00
|
|
|
|
return static_cast<T>(static_cast<T>(0) + x);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Return the largest multiple of m which is <= x.
|
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline T RoundDown(T x, intptr_t m) {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
ASSERT(IsPowerOf2(m));
|
|
|
|
|
return AddressFrom<T>(OffsetFrom(x) & -m);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Return the smallest multiple of m which is >= x.
|
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline T RoundUp(T x, intptr_t m) {
|
2011-09-19 18:36:47 +00:00
|
|
|
|
return RoundDown<T>(static_cast<T>(x + m - 1), m);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2008-11-25 11:07:48 +00:00
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
int Compare(const T& a, const T& b) {
|
2008-11-25 11:07:48 +00:00
|
|
|
|
if (a == b)
|
|
|
|
|
return 0;
|
|
|
|
|
else if (a < b)
|
|
|
|
|
return -1;
|
|
|
|
|
else
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
int PointerValueCompare(const T* a, const T* b) {
|
2008-11-26 08:03:55 +00:00
|
|
|
|
return Compare<T>(*a, *b);
|
2008-11-25 11:07:48 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2011-10-18 13:40:33 +00:00
|
|
|
|
// Compare function to compare the object pointer value of two
|
|
|
|
|
// handlified objects. The handles are passed as pointers to the
|
|
|
|
|
// handles.
|
|
|
|
|
template<typename T> class Handle; // Forward declaration.
|
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
|
2011-10-18 13:40:33 +00:00
|
|
|
|
return Compare<T*>(*(*a), *(*b));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2012-01-31 13:33:44 +00:00
|
|
|
|
// Returns the smallest power of two which is >= x. If you pass in a
|
|
|
|
|
// number that is already a power of two, it is returned as is.
|
|
|
|
|
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
|
|
|
|
|
// figure 3-3, page 48, where the function is called clp2.
|
|
|
|
|
inline uint32_t RoundUpToPowerOf2(uint32_t x) {
|
2010-11-05 08:18:53 +00:00
|
|
|
|
ASSERT(x <= 0x80000000u);
|
|
|
|
|
x = x - 1;
|
|
|
|
|
x = x | (x >> 1);
|
|
|
|
|
x = x | (x >> 2);
|
|
|
|
|
x = x | (x >> 4);
|
|
|
|
|
x = x | (x >> 8);
|
|
|
|
|
x = x | (x >> 16);
|
2012-01-31 13:33:44 +00:00
|
|
|
|
return x + 1;
|
2010-11-05 08:18:53 +00:00
|
|
|
|
}
|
|
|
|
|
|
2008-08-06 10:02:49 +00:00
|
|
|
|
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline uint32_t RoundDownToPowerOf2(uint32_t x) {
|
2011-09-19 18:36:47 +00:00
|
|
|
|
uint32_t rounded_up = RoundUpToPowerOf2(x);
|
|
|
|
|
if (rounded_up > x) return rounded_up >> 1;
|
|
|
|
|
return rounded_up;
|
|
|
|
|
}
|
2008-08-06 10:02:49 +00:00
|
|
|
|
|
2011-09-19 18:36:47 +00:00
|
|
|
|
|
|
|
|
|
template <typename T, typename U>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline bool IsAligned(T value, U alignment) {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
return (value & (alignment - 1)) == 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Returns true if (addr + offset) is aligned.
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline bool IsAddressAligned(Address addr,
|
|
|
|
|
intptr_t alignment,
|
|
|
|
|
int offset = 0) {
|
2009-08-24 11:56:29 +00:00
|
|
|
|
intptr_t offs = OffsetFrom(addr + offset);
|
2008-07-03 15:10:15 +00:00
|
|
|
|
return IsAligned(offs, alignment);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the maximum of the two parameters.
|
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
T Max(T a, T b) {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
return a < b ? b : a;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the minimum of the two parameters.
|
|
|
|
|
template <typename T>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
T Min(T a, T b) {
|
2008-07-03 15:10:15 +00:00
|
|
|
|
return a < b ? a : b;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2009-11-11 09:50:06 +00:00
|
|
|
|
inline int StrLength(const char* string) {
|
|
|
|
|
size_t length = strlen(string);
|
|
|
|
|
ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
|
|
|
|
|
return static_cast<int>(length);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// ----------------------------------------------------------------------------
|
2008-08-06 10:02:49 +00:00
|
|
|
|
// BitField is a help template for encoding and decode bitfield with
|
|
|
|
|
// unsigned content.
|
2008-07-03 15:10:15 +00:00
|
|
|
|
template<class T, int shift, int size>
|
|
|
|
|
class BitField {
|
|
|
|
|
public:
|
2011-09-12 10:50:50 +00:00
|
|
|
|
// A uint32_t mask of bit field. To use all bits of a uint32 in a
|
|
|
|
|
// bitfield without compiler warnings we have to compute 2^32 without
|
|
|
|
|
// using a shift count of 32.
|
|
|
|
|
static const uint32_t kMask = ((1U << shift) << size) - (1U << shift);
|
|
|
|
|
|
|
|
|
|
// Value for the field with all bits set.
|
|
|
|
|
static const T kMax = static_cast<T>((1U << size) - 1);
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// Tells whether the provided value fits into the bit field.
|
|
|
|
|
static bool is_valid(T value) {
|
2011-09-12 12:16:30 +00:00
|
|
|
|
return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0;
|
2008-07-03 15:10:15 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Returns a uint32_t with the bit field value encoded.
|
|
|
|
|
static uint32_t encode(T value) {
|
|
|
|
|
ASSERT(is_valid(value));
|
|
|
|
|
return static_cast<uint32_t>(value) << shift;
|
|
|
|
|
}
|
|
|
|
|
|
2011-05-24 14:01:36 +00:00
|
|
|
|
// Returns a uint32_t with the bit field value updated.
|
|
|
|
|
static uint32_t update(uint32_t previous, T value) {
|
2011-09-12 10:50:50 +00:00
|
|
|
|
return (previous & ~kMask) | encode(value);
|
2011-05-24 14:01:36 +00:00
|
|
|
|
}
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// Extracts the bit field from the value.
|
|
|
|
|
static T decode(uint32_t value) {
|
2011-09-12 10:50:50 +00:00
|
|
|
|
return static_cast<T>((value & kMask) >> shift);
|
2010-12-07 11:31:57 +00:00
|
|
|
|
}
|
2008-07-03 15:10:15 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
2009-05-18 13:14:37 +00:00
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// Hash function.
|
|
|
|
|
|
2012-01-10 12:58:41 +00:00
|
|
|
|
static const uint32_t kZeroHashSeed = 0;
|
|
|
|
|
|
2010-11-05 08:18:53 +00:00
|
|
|
|
// Thomas Wang, Integer Hash Functions.
|
|
|
|
|
// http://www.concentric.net/~Ttwang/tech/inthash.htm
|
2012-01-10 12:58:41 +00:00
|
|
|
|
inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
|
2010-11-05 08:18:53 +00:00
|
|
|
|
uint32_t hash = key;
|
2012-01-10 12:58:41 +00:00
|
|
|
|
hash = hash ^ seed;
|
2010-11-05 08:18:53 +00:00
|
|
|
|
hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
|
|
|
|
|
hash = hash ^ (hash >> 12);
|
|
|
|
|
hash = hash + (hash << 2);
|
|
|
|
|
hash = hash ^ (hash >> 4);
|
|
|
|
|
hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
|
|
|
|
|
hash = hash ^ (hash >> 16);
|
|
|
|
|
return hash;
|
|
|
|
|
}
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
|
|
|
|
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline uint32_t ComputeLongHash(uint64_t key) {
|
2011-10-25 14:14:56 +00:00
|
|
|
|
uint64_t hash = key;
|
|
|
|
|
hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1;
|
|
|
|
|
hash = hash ^ (hash >> 31);
|
|
|
|
|
hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4);
|
|
|
|
|
hash = hash ^ (hash >> 11);
|
|
|
|
|
hash = hash + (hash << 6);
|
|
|
|
|
hash = hash ^ (hash >> 22);
|
|
|
|
|
return (uint32_t) hash;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline uint32_t ComputePointerHash(void* ptr) {
|
2011-04-29 16:06:25 +00:00
|
|
|
|
return ComputeIntegerHash(
|
2012-01-10 12:58:41 +00:00
|
|
|
|
static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
|
|
|
|
|
v8::internal::kZeroHashSeed);
|
2011-04-29 16:06:25 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// Miscellaneous
|
|
|
|
|
|
|
|
|
|
// A static resource holds a static instance that can be reserved in
|
|
|
|
|
// a local scope using an instance of Access. Attempts to re-reserve
|
|
|
|
|
// the instance will cause an error.
|
|
|
|
|
template <typename T>
|
|
|
|
|
class StaticResource {
|
|
|
|
|
public:
|
|
|
|
|
StaticResource() : is_reserved_(false) {}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
template <typename S> friend class Access;
|
|
|
|
|
T instance_;
|
|
|
|
|
bool is_reserved_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Locally scoped access to a static resource.
|
|
|
|
|
template <typename T>
|
|
|
|
|
class Access {
|
|
|
|
|
public:
|
|
|
|
|
explicit Access(StaticResource<T>* resource)
|
|
|
|
|
: resource_(resource)
|
|
|
|
|
, instance_(&resource->instance_) {
|
|
|
|
|
ASSERT(!resource->is_reserved_);
|
|
|
|
|
resource->is_reserved_ = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
~Access() {
|
|
|
|
|
resource_->is_reserved_ = false;
|
|
|
|
|
resource_ = NULL;
|
|
|
|
|
instance_ = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
T* value() { return instance_; }
|
|
|
|
|
T* operator -> () { return instance_; }
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
StaticResource<T>* resource_;
|
|
|
|
|
T* instance_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class Vector {
|
|
|
|
|
public:
|
2008-07-30 08:49:36 +00:00
|
|
|
|
Vector() : start_(NULL), length_(0) {}
|
2008-07-03 15:10:15 +00:00
|
|
|
|
Vector(T* data, int length) : start_(data), length_(length) {
|
|
|
|
|
ASSERT(length == 0 || (length > 0 && data != NULL));
|
|
|
|
|
}
|
|
|
|
|
|
2008-09-11 14:34:48 +00:00
|
|
|
|
static Vector<T> New(int length) {
|
|
|
|
|
return Vector<T>(NewArray<T>(length), length);
|
|
|
|
|
}
|
|
|
|
|
|
2008-11-25 11:07:48 +00:00
|
|
|
|
// Returns a vector using the same backing storage as this one,
|
|
|
|
|
// spanning from and including 'from', to but not including 'to'.
|
|
|
|
|
Vector<T> SubVector(int from, int to) {
|
|
|
|
|
ASSERT(to <= length_);
|
|
|
|
|
ASSERT(from < to);
|
2010-08-27 08:26:29 +00:00
|
|
|
|
ASSERT(0 <= from);
|
2008-11-25 11:07:48 +00:00
|
|
|
|
return Vector<T>(start() + from, to - from);
|
|
|
|
|
}
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// Returns the length of the vector.
|
|
|
|
|
int length() const { return length_; }
|
|
|
|
|
|
|
|
|
|
// Returns whether or not the vector is empty.
|
|
|
|
|
bool is_empty() const { return length_ == 0; }
|
|
|
|
|
|
|
|
|
|
// Returns the pointer to the start of the data in the vector.
|
|
|
|
|
T* start() const { return start_; }
|
|
|
|
|
|
|
|
|
|
// Access individual vector elements - checks bounds in debug mode.
|
|
|
|
|
T& operator[](int index) const {
|
|
|
|
|
ASSERT(0 <= index && index < length_);
|
|
|
|
|
return start_[index];
|
|
|
|
|
}
|
|
|
|
|
|
2010-12-07 11:31:57 +00:00
|
|
|
|
const T& at(int index) const { return operator[](index); }
|
2010-11-22 14:00:40 +00:00
|
|
|
|
|
2008-11-25 11:07:48 +00:00
|
|
|
|
T& first() { return start_[0]; }
|
|
|
|
|
|
|
|
|
|
T& last() { return start_[length_ - 1]; }
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// Returns a clone of this vector with a new backing store.
|
|
|
|
|
Vector<T> Clone() const {
|
|
|
|
|
T* result = NewArray<T>(length_);
|
|
|
|
|
for (int i = 0; i < length_; i++) result[i] = start_[i];
|
|
|
|
|
return Vector<T>(result, length_);
|
|
|
|
|
}
|
|
|
|
|
|
2008-11-25 11:07:48 +00:00
|
|
|
|
void Sort(int (*cmp)(const T*, const T*)) {
|
|
|
|
|
typedef int (*RawComparer)(const void*, const void*);
|
|
|
|
|
qsort(start(),
|
|
|
|
|
length(),
|
|
|
|
|
sizeof(T),
|
|
|
|
|
reinterpret_cast<RawComparer>(cmp));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Sort() {
|
2008-11-26 08:03:55 +00:00
|
|
|
|
Sort(PointerValueCompare<T>);
|
2008-11-25 11:07:48 +00:00
|
|
|
|
}
|
|
|
|
|
|
2009-06-11 14:08:34 +00:00
|
|
|
|
void Truncate(int length) {
|
|
|
|
|
ASSERT(length <= length_);
|
|
|
|
|
length_ = length;
|
|
|
|
|
}
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// Releases the array underlying this vector. Once disposed the
|
|
|
|
|
// vector is empty.
|
|
|
|
|
void Dispose() {
|
|
|
|
|
DeleteArray(start_);
|
|
|
|
|
start_ = NULL;
|
|
|
|
|
length_ = 0;
|
|
|
|
|
}
|
|
|
|
|
|
2008-09-11 14:34:48 +00:00
|
|
|
|
inline Vector<T> operator+(int offset) {
|
|
|
|
|
ASSERT(offset < length_);
|
|
|
|
|
return Vector<T>(start_ + offset, length_ - offset);
|
|
|
|
|
}
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
// Factory method for creating empty vectors.
|
|
|
|
|
static Vector<T> empty() { return Vector<T>(NULL, 0); }
|
|
|
|
|
|
2010-09-15 10:54:35 +00:00
|
|
|
|
template<typename S>
|
|
|
|
|
static Vector<T> cast(Vector<S> input) {
|
|
|
|
|
return Vector<T>(reinterpret_cast<T*>(input.start()),
|
|
|
|
|
input.length() * sizeof(S) / sizeof(T));
|
|
|
|
|
}
|
|
|
|
|
|
2009-05-29 09:00:39 +00:00
|
|
|
|
protected:
|
|
|
|
|
void set_start(T* start) { start_ = start; }
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
private:
|
|
|
|
|
T* start_;
|
|
|
|
|
int length_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
2010-12-07 11:31:57 +00:00
|
|
|
|
// A pointer that can only be set once and doesn't allow NULL values.
|
|
|
|
|
template<typename T>
|
|
|
|
|
class SetOncePointer {
|
|
|
|
|
public:
|
|
|
|
|
SetOncePointer() : pointer_(NULL) { }
|
|
|
|
|
|
|
|
|
|
bool is_set() const { return pointer_ != NULL; }
|
|
|
|
|
|
|
|
|
|
T* get() const {
|
|
|
|
|
ASSERT(pointer_ != NULL);
|
|
|
|
|
return pointer_;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void set(T* value) {
|
|
|
|
|
ASSERT(pointer_ == NULL && value != NULL);
|
|
|
|
|
pointer_ = value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
T* pointer_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
2008-09-11 15:03:22 +00:00
|
|
|
|
template <typename T, int kSize>
|
2008-09-11 14:34:48 +00:00
|
|
|
|
class EmbeddedVector : public Vector<T> {
|
|
|
|
|
public:
|
2008-09-11 15:03:22 +00:00
|
|
|
|
EmbeddedVector() : Vector<T>(buffer_, kSize) { }
|
2009-05-29 09:00:39 +00:00
|
|
|
|
|
2010-12-07 11:31:57 +00:00
|
|
|
|
explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
|
|
|
|
|
for (int i = 0; i < kSize; ++i) {
|
|
|
|
|
buffer_[i] = initial_value;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2009-05-29 09:00:39 +00:00
|
|
|
|
// When copying, make underlying Vector to reference our buffer.
|
|
|
|
|
EmbeddedVector(const EmbeddedVector& rhs)
|
|
|
|
|
: Vector<T>(rhs) {
|
|
|
|
|
memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
|
|
|
|
|
set_start(buffer_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
EmbeddedVector& operator=(const EmbeddedVector& rhs) {
|
|
|
|
|
if (this == &rhs) return *this;
|
|
|
|
|
Vector<T>::operator=(rhs);
|
|
|
|
|
memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
|
2010-03-12 10:20:01 +00:00
|
|
|
|
this->set_start(buffer_);
|
2009-05-29 09:00:39 +00:00
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
2008-09-11 14:34:48 +00:00
|
|
|
|
private:
|
2008-09-11 15:03:22 +00:00
|
|
|
|
T buffer_[kSize];
|
2008-09-11 14:34:48 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
2009-04-16 21:01:05 +00:00
|
|
|
|
template <typename T>
|
|
|
|
|
class ScopedVector : public Vector<T> {
|
|
|
|
|
public:
|
|
|
|
|
explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
|
|
|
|
|
~ScopedVector() {
|
|
|
|
|
DeleteArray(this->start());
|
|
|
|
|
}
|
2010-05-05 12:25:58 +00:00
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
|
2009-04-16 21:01:05 +00:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
inline Vector<const char> CStrVector(const char* data) {
|
2009-11-11 09:50:06 +00:00
|
|
|
|
return Vector<const char>(data, StrLength(data));
|
2008-07-03 15:10:15 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
inline Vector<char> MutableCStrVector(char* data) {
|
2009-11-11 09:50:06 +00:00
|
|
|
|
return Vector<char>(data, StrLength(data));
|
2008-07-03 15:10:15 +00:00
|
|
|
|
}
|
|
|
|
|
|
2008-09-11 14:34:48 +00:00
|
|
|
|
inline Vector<char> MutableCStrVector(char* data, int max) {
|
2009-11-11 09:50:06 +00:00
|
|
|
|
int length = StrLength(data);
|
2008-09-11 14:34:48 +00:00
|
|
|
|
return Vector<char>(data, (length < max) ? length : max);
|
|
|
|
|
}
|
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
|
2010-08-24 10:53:44 +00:00
|
|
|
|
/*
|
|
|
|
|
* A class that collects values into a backing store.
|
|
|
|
|
* Specialized versions of the class can allow access to the backing store
|
|
|
|
|
* in different ways.
|
|
|
|
|
* There is no guarantee that the backing store is contiguous (and, as a
|
|
|
|
|
* consequence, no guarantees that consecutively added elements are adjacent
|
|
|
|
|
* in memory). The collector may move elements unless it has guaranteed not
|
|
|
|
|
* to.
|
|
|
|
|
*/
|
2010-08-27 08:26:29 +00:00
|
|
|
|
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
|
2010-08-24 10:53:44 +00:00
|
|
|
|
class Collector {
|
|
|
|
|
public:
|
2010-08-27 08:26:29 +00:00
|
|
|
|
explicit Collector(int initial_capacity = kMinCapacity)
|
|
|
|
|
: index_(0), size_(0) {
|
|
|
|
|
current_chunk_ = Vector<T>::New(initial_capacity);
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
virtual ~Collector() {
|
|
|
|
|
// Free backing store (in reverse allocation order).
|
2010-08-27 08:26:29 +00:00
|
|
|
|
current_chunk_.Dispose();
|
2010-08-24 10:53:44 +00:00
|
|
|
|
for (int i = chunks_.length() - 1; i >= 0; i--) {
|
|
|
|
|
chunks_.at(i).Dispose();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add a single element.
|
|
|
|
|
inline void Add(T value) {
|
2010-08-27 08:26:29 +00:00
|
|
|
|
if (index_ >= current_chunk_.length()) {
|
2010-08-24 10:53:44 +00:00
|
|
|
|
Grow(1);
|
|
|
|
|
}
|
|
|
|
|
current_chunk_[index_] = value;
|
|
|
|
|
index_++;
|
2010-08-27 08:26:29 +00:00
|
|
|
|
size_++;
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add a block of contiguous elements and return a Vector backed by the
|
|
|
|
|
// memory area.
|
|
|
|
|
// A basic Collector will keep this vector valid as long as the Collector
|
|
|
|
|
// is alive.
|
|
|
|
|
inline Vector<T> AddBlock(int size, T initial_value) {
|
2010-08-27 08:26:29 +00:00
|
|
|
|
ASSERT(size > 0);
|
|
|
|
|
if (size > current_chunk_.length() - index_) {
|
2010-08-24 10:53:44 +00:00
|
|
|
|
Grow(size);
|
|
|
|
|
}
|
2010-08-27 08:26:29 +00:00
|
|
|
|
T* position = current_chunk_.start() + index_;
|
2010-08-24 10:53:44 +00:00
|
|
|
|
index_ += size;
|
2010-08-27 08:26:29 +00:00
|
|
|
|
size_ += size;
|
2010-08-24 10:53:44 +00:00
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
|
|
|
position[i] = initial_value;
|
|
|
|
|
}
|
|
|
|
|
return Vector<T>(position, size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-12-22 20:14:19 +00:00
|
|
|
|
// Add a contiguous block of elements and return a vector backed
|
|
|
|
|
// by the added block.
|
|
|
|
|
// A basic Collector will keep this vector valid as long as the Collector
|
|
|
|
|
// is alive.
|
|
|
|
|
inline Vector<T> AddBlock(Vector<const T> source) {
|
|
|
|
|
if (source.length() > current_chunk_.length() - index_) {
|
|
|
|
|
Grow(source.length());
|
|
|
|
|
}
|
|
|
|
|
T* position = current_chunk_.start() + index_;
|
|
|
|
|
index_ += source.length();
|
|
|
|
|
size_ += source.length();
|
|
|
|
|
for (int i = 0; i < source.length(); i++) {
|
|
|
|
|
position[i] = source[i];
|
|
|
|
|
}
|
|
|
|
|
return Vector<T>(position, source.length());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2010-08-27 08:26:29 +00:00
|
|
|
|
// Write the contents of the collector into the provided vector.
|
|
|
|
|
void WriteTo(Vector<T> destination) {
|
|
|
|
|
ASSERT(size_ <= destination.length());
|
2010-08-24 10:53:44 +00:00
|
|
|
|
int position = 0;
|
|
|
|
|
for (int i = 0; i < chunks_.length(); i++) {
|
|
|
|
|
Vector<T> chunk = chunks_.at(i);
|
|
|
|
|
for (int j = 0; j < chunk.length(); j++) {
|
2010-08-27 08:26:29 +00:00
|
|
|
|
destination[position] = chunk[j];
|
2010-08-24 10:53:44 +00:00
|
|
|
|
position++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (int i = 0; i < index_; i++) {
|
2010-08-27 08:26:29 +00:00
|
|
|
|
destination[position] = current_chunk_[i];
|
2010-08-24 10:53:44 +00:00
|
|
|
|
position++;
|
|
|
|
|
}
|
2010-08-27 08:26:29 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Allocate a single contiguous vector, copy all the collected
|
|
|
|
|
// elements to the vector, and return it.
|
|
|
|
|
// The caller is responsible for freeing the memory of the returned
|
|
|
|
|
// vector (e.g., using Vector::Dispose).
|
|
|
|
|
Vector<T> ToVector() {
|
|
|
|
|
Vector<T> new_store = Vector<T>::New(size_);
|
|
|
|
|
WriteTo(new_store);
|
|
|
|
|
return new_store;
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
2010-08-24 12:29:50 +00:00
|
|
|
|
// Resets the collector to be empty.
|
2011-05-03 08:23:58 +00:00
|
|
|
|
virtual void Reset();
|
2010-08-24 12:29:50 +00:00
|
|
|
|
|
2010-08-27 08:26:29 +00:00
|
|
|
|
// Total number of elements added to collector so far.
|
|
|
|
|
inline int size() { return size_; }
|
|
|
|
|
|
2010-08-24 10:53:44 +00:00
|
|
|
|
protected:
|
|
|
|
|
static const int kMinCapacity = 16;
|
|
|
|
|
List<Vector<T> > chunks_;
|
2010-08-27 08:26:29 +00:00
|
|
|
|
Vector<T> current_chunk_; // Block of memory currently being written into.
|
|
|
|
|
int index_; // Current index in current chunk.
|
|
|
|
|
int size_; // Total number of elements in collector.
|
2010-08-24 10:53:44 +00:00
|
|
|
|
|
|
|
|
|
// Creates a new current chunk, and stores the old chunk in the chunks_ list.
|
|
|
|
|
void Grow(int min_capacity) {
|
2010-08-27 08:26:29 +00:00
|
|
|
|
ASSERT(growth_factor > 1);
|
2011-09-07 12:39:53 +00:00
|
|
|
|
int new_capacity;
|
|
|
|
|
int current_length = current_chunk_.length();
|
|
|
|
|
if (current_length < kMinCapacity) {
|
|
|
|
|
// The collector started out as empty.
|
|
|
|
|
new_capacity = min_capacity * growth_factor;
|
|
|
|
|
if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
|
|
|
|
|
} else {
|
|
|
|
|
int growth = current_length * (growth_factor - 1);
|
|
|
|
|
if (growth > max_growth) {
|
|
|
|
|
growth = max_growth;
|
|
|
|
|
}
|
|
|
|
|
new_capacity = current_length + growth;
|
|
|
|
|
if (new_capacity < min_capacity) {
|
|
|
|
|
new_capacity = min_capacity + growth;
|
|
|
|
|
}
|
2010-08-27 08:26:29 +00:00
|
|
|
|
}
|
2011-09-08 13:44:11 +00:00
|
|
|
|
NewChunk(new_capacity);
|
2010-08-27 08:26:29 +00:00
|
|
|
|
ASSERT(index_ + min_capacity <= current_chunk_.length());
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Before replacing the current chunk, give a subclass the option to move
|
|
|
|
|
// some of the current data into the new chunk. The function may update
|
|
|
|
|
// the current index_ value to represent data no longer in the current chunk.
|
|
|
|
|
// Returns the initial index of the new chunk (after copied data).
|
2011-09-08 13:44:11 +00:00
|
|
|
|
virtual void NewChunk(int new_capacity) {
|
|
|
|
|
Vector<T> new_chunk = Vector<T>::New(new_capacity);
|
|
|
|
|
if (index_ > 0) {
|
|
|
|
|
chunks_.Add(current_chunk_.SubVector(0, index_));
|
|
|
|
|
} else {
|
|
|
|
|
current_chunk_.Dispose();
|
|
|
|
|
}
|
|
|
|
|
current_chunk_ = new_chunk;
|
|
|
|
|
index_ = 0;
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* A collector that allows sequences of values to be guaranteed to
|
|
|
|
|
* stay consecutive.
|
|
|
|
|
* If the backing store grows while a sequence is active, the current
|
|
|
|
|
* sequence might be moved, but after the sequence is ended, it will
|
|
|
|
|
* not move again.
|
|
|
|
|
* NOTICE: Blocks allocated using Collector::AddBlock(int) can move
|
|
|
|
|
* as well, if inside an active sequence where another element is added.
|
|
|
|
|
*/
|
2010-08-27 08:26:29 +00:00
|
|
|
|
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
|
|
|
|
|
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
|
2010-08-24 10:53:44 +00:00
|
|
|
|
public:
|
2010-08-27 08:26:29 +00:00
|
|
|
|
explicit SequenceCollector(int initial_capacity)
|
|
|
|
|
: Collector<T, growth_factor, max_growth>(initial_capacity),
|
2010-08-24 10:53:44 +00:00
|
|
|
|
sequence_start_(kNoSequence) { }
|
|
|
|
|
|
|
|
|
|
virtual ~SequenceCollector() {}
|
|
|
|
|
|
|
|
|
|
void StartSequence() {
|
|
|
|
|
ASSERT(sequence_start_ == kNoSequence);
|
|
|
|
|
sequence_start_ = this->index_;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Vector<T> EndSequence() {
|
|
|
|
|
ASSERT(sequence_start_ != kNoSequence);
|
|
|
|
|
int sequence_start = sequence_start_;
|
|
|
|
|
sequence_start_ = kNoSequence;
|
2010-08-27 08:26:29 +00:00
|
|
|
|
if (sequence_start == this->index_) return Vector<T>();
|
|
|
|
|
return this->current_chunk_.SubVector(sequence_start, this->index_);
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
|
|
|
|
|
2010-08-24 12:29:50 +00:00
|
|
|
|
// Drops the currently added sequence, and all collected elements in it.
|
|
|
|
|
void DropSequence() {
|
|
|
|
|
ASSERT(sequence_start_ != kNoSequence);
|
2010-08-27 08:26:29 +00:00
|
|
|
|
int sequence_length = this->index_ - sequence_start_;
|
2010-08-24 12:29:50 +00:00
|
|
|
|
this->index_ = sequence_start_;
|
2010-08-27 08:26:29 +00:00
|
|
|
|
this->size_ -= sequence_length;
|
2010-08-24 12:29:50 +00:00
|
|
|
|
sequence_start_ = kNoSequence;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
virtual void Reset() {
|
|
|
|
|
sequence_start_ = kNoSequence;
|
2010-08-27 08:26:29 +00:00
|
|
|
|
this->Collector<T, growth_factor, max_growth>::Reset();
|
2010-08-24 12:29:50 +00:00
|
|
|
|
}
|
|
|
|
|
|
2010-08-24 10:53:44 +00:00
|
|
|
|
private:
|
|
|
|
|
static const int kNoSequence = -1;
|
|
|
|
|
int sequence_start_;
|
|
|
|
|
|
|
|
|
|
// Move the currently active sequence to the new chunk.
|
2011-09-08 13:44:11 +00:00
|
|
|
|
virtual void NewChunk(int new_capacity) {
|
|
|
|
|
if (sequence_start_ == kNoSequence) {
|
|
|
|
|
// Fall back on default behavior if no sequence has been started.
|
|
|
|
|
this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
|
|
|
|
|
return;
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
2011-09-08 13:44:11 +00:00
|
|
|
|
int sequence_length = this->index_ - sequence_start_;
|
|
|
|
|
Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
|
|
|
|
|
ASSERT(sequence_length < new_chunk.length());
|
|
|
|
|
for (int i = 0; i < sequence_length; i++) {
|
|
|
|
|
new_chunk[i] = this->current_chunk_[sequence_start_ + i];
|
|
|
|
|
}
|
|
|
|
|
if (sequence_start_ > 0) {
|
|
|
|
|
this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
|
|
|
|
|
} else {
|
|
|
|
|
this->current_chunk_.Dispose();
|
|
|
|
|
}
|
|
|
|
|
this->current_chunk_ = new_chunk;
|
|
|
|
|
this->index_ = sequence_length;
|
|
|
|
|
sequence_start_ = 0;
|
2010-08-24 10:53:44 +00:00
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
2010-02-25 12:49:23 +00:00
|
|
|
|
// Compare ASCII/16bit chars to ASCII/16bit chars.
|
|
|
|
|
template <typename lchar, typename rchar>
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
|
2010-02-25 12:49:23 +00:00
|
|
|
|
const lchar* limit = lhs + chars;
|
|
|
|
|
#ifdef V8_HOST_CAN_READ_UNALIGNED
|
|
|
|
|
if (sizeof(*lhs) == sizeof(*rhs)) {
|
|
|
|
|
// Number of characters in a uintptr_t.
|
|
|
|
|
static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
|
|
|
|
|
while (lhs <= limit - kStepSize) {
|
|
|
|
|
if (*reinterpret_cast<const uintptr_t*>(lhs) !=
|
|
|
|
|
*reinterpret_cast<const uintptr_t*>(rhs)) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
lhs += kStepSize;
|
|
|
|
|
rhs += kStepSize;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
while (lhs < limit) {
|
|
|
|
|
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
|
|
|
|
|
if (r != 0) return r;
|
|
|
|
|
++lhs;
|
|
|
|
|
++rhs;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2009-11-24 14:10:06 +00:00
|
|
|
|
// Calculate 10^exponent.
|
2011-11-29 10:56:11 +00:00
|
|
|
|
inline int TenToThe(int exponent) {
|
2010-11-05 08:18:53 +00:00
|
|
|
|
ASSERT(exponent <= 9);
|
|
|
|
|
ASSERT(exponent >= 1);
|
|
|
|
|
int answer = 10;
|
|
|
|
|
for (int i = 1; i < exponent; i++) answer *= 10;
|
|
|
|
|
return answer;
|
|
|
|
|
}
|
2009-11-24 14:10:06 +00:00
|
|
|
|
|
2010-03-12 10:20:01 +00:00
|
|
|
|
|
|
|
|
|
// The type-based aliasing rule allows the compiler to assume that pointers of
|
|
|
|
|
// different types (for some definition of different) never alias each other.
|
|
|
|
|
// Thus the following code does not work:
|
|
|
|
|
//
|
|
|
|
|
// float f = foo();
|
|
|
|
|
// int fbits = *(int*)(&f);
|
|
|
|
|
//
|
|
|
|
|
// The compiler 'knows' that the int pointer can't refer to f since the types
|
|
|
|
|
// don't match, so the compiler may cache f in a register, leaving random data
|
|
|
|
|
// in fbits. Using C++ style casts makes no difference, however a pointer to
|
|
|
|
|
// char data is assumed to alias any other pointer. This is the 'memcpy
|
|
|
|
|
// exception'.
|
|
|
|
|
//
|
|
|
|
|
// Bit_cast uses the memcpy exception to move the bits from a variable of one
|
|
|
|
|
// type of a variable of another type. Of course the end result is likely to
|
|
|
|
|
// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
|
|
|
|
|
// will completely optimize BitCast away.
|
|
|
|
|
//
|
|
|
|
|
// There is an additional use for BitCast.
|
|
|
|
|
// Recent gccs will warn when they see casts that may result in breakage due to
|
|
|
|
|
// the type-based aliasing rule. If you have checked that there is no breakage
|
|
|
|
|
// you can use BitCast to cast one pointer type to another. This confuses gcc
|
|
|
|
|
// enough that it can no longer see that you have cast one pointer type to
|
|
|
|
|
// another thus avoiding the warning.
|
2011-02-01 20:47:53 +00:00
|
|
|
|
|
|
|
|
|
// We need different implementations of BitCast for pointer and non-pointer
|
|
|
|
|
// values. We use partial specialization of auxiliary struct to work around
|
|
|
|
|
// issues with template functions overloading.
|
2010-03-12 10:20:01 +00:00
|
|
|
|
template <class Dest, class Source>
|
2011-02-01 20:47:53 +00:00
|
|
|
|
struct BitCastHelper {
|
|
|
|
|
STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
|
2010-03-12 10:20:01 +00:00
|
|
|
|
|
2011-02-01 20:47:53 +00:00
|
|
|
|
INLINE(static Dest cast(const Source& source)) {
|
|
|
|
|
Dest dest;
|
|
|
|
|
memcpy(&dest, &source, sizeof(dest));
|
|
|
|
|
return dest;
|
|
|
|
|
}
|
|
|
|
|
};
|
2010-03-12 10:20:01 +00:00
|
|
|
|
|
2010-08-11 10:52:34 +00:00
|
|
|
|
template <class Dest, class Source>
|
2011-02-01 20:47:53 +00:00
|
|
|
|
struct BitCastHelper<Dest, Source*> {
|
|
|
|
|
INLINE(static Dest cast(Source* source)) {
|
|
|
|
|
return BitCastHelper<Dest, uintptr_t>::
|
|
|
|
|
cast(reinterpret_cast<uintptr_t>(source));
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
2011-03-21 09:59:29 +00:00
|
|
|
|
template <class Dest, class Source>
|
|
|
|
|
INLINE(Dest BitCast(const Source& source));
|
|
|
|
|
|
2011-02-01 20:47:53 +00:00
|
|
|
|
template <class Dest, class Source>
|
|
|
|
|
inline Dest BitCast(const Source& source) {
|
|
|
|
|
return BitCastHelper<Dest, Source>::cast(source);
|
2010-08-11 10:52:34 +00:00
|
|
|
|
}
|
2010-03-30 12:01:06 +00:00
|
|
|
|
|
2011-06-10 12:09:48 +00:00
|
|
|
|
|
|
|
|
|
template<typename ElementType, int NumElements>
|
|
|
|
|
class EmbeddedContainer {
|
|
|
|
|
public:
|
|
|
|
|
EmbeddedContainer() : elems_() { }
|
|
|
|
|
|
|
|
|
|
int length() { return NumElements; }
|
|
|
|
|
ElementType& operator[](int i) {
|
|
|
|
|
ASSERT(i < length());
|
|
|
|
|
return elems_[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
ElementType elems_[NumElements];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename ElementType>
|
|
|
|
|
class EmbeddedContainer<ElementType, 0> {
|
|
|
|
|
public:
|
|
|
|
|
int length() { return 0; }
|
|
|
|
|
ElementType& operator[](int i) {
|
|
|
|
|
UNREACHABLE();
|
|
|
|
|
static ElementType t = 0;
|
|
|
|
|
return t;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
2011-07-05 11:54:11 +00:00
|
|
|
|
// Helper class for building result strings in a character buffer. The
|
|
|
|
|
// purpose of the class is to use safe operations that checks the
|
|
|
|
|
// buffer bounds on all operations in debug mode.
|
|
|
|
|
// This simple base class does not allow formatted output.
|
|
|
|
|
class SimpleStringBuilder {
|
|
|
|
|
public:
|
|
|
|
|
// Create a string builder with a buffer of the given size. The
|
|
|
|
|
// buffer is allocated through NewArray<char> and must be
|
|
|
|
|
// deallocated by the caller of Finalize().
|
|
|
|
|
explicit SimpleStringBuilder(int size);
|
|
|
|
|
|
|
|
|
|
SimpleStringBuilder(char* buffer, int size)
|
|
|
|
|
: buffer_(buffer, size), position_(0) { }
|
|
|
|
|
|
|
|
|
|
~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
|
|
|
|
|
|
|
|
|
|
int size() const { return buffer_.length(); }
|
|
|
|
|
|
|
|
|
|
// Get the current position in the builder.
|
|
|
|
|
int position() const {
|
|
|
|
|
ASSERT(!is_finalized());
|
|
|
|
|
return position_;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Reset the position.
|
|
|
|
|
void Reset() { position_ = 0; }
|
|
|
|
|
|
|
|
|
|
// Add a single character to the builder. It is not allowed to add
|
|
|
|
|
// 0-characters; use the Finalize() method to terminate the string
|
|
|
|
|
// instead.
|
|
|
|
|
void AddCharacter(char c) {
|
|
|
|
|
ASSERT(c != '\0');
|
|
|
|
|
ASSERT(!is_finalized() && position_ < buffer_.length());
|
|
|
|
|
buffer_[position_++] = c;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add an entire string to the builder. Uses strlen() internally to
|
|
|
|
|
// compute the length of the input string.
|
|
|
|
|
void AddString(const char* s);
|
|
|
|
|
|
|
|
|
|
// Add the first 'n' characters of the given string 's' to the
|
|
|
|
|
// builder. The input string must have enough characters.
|
|
|
|
|
void AddSubstring(const char* s, int n);
|
|
|
|
|
|
|
|
|
|
// Add character padding to the builder. If count is non-positive,
|
|
|
|
|
// nothing is added to the builder.
|
|
|
|
|
void AddPadding(char c, int count);
|
|
|
|
|
|
|
|
|
|
// Add the decimal representation of the value.
|
|
|
|
|
void AddDecimalInteger(int value);
|
|
|
|
|
|
|
|
|
|
// Finalize the string by 0-terminating it and returning the buffer.
|
|
|
|
|
char* Finalize();
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
Vector<char> buffer_;
|
|
|
|
|
int position_;
|
|
|
|
|
|
|
|
|
|
bool is_finalized() const { return position_ < 0; }
|
2011-09-08 19:57:14 +00:00
|
|
|
|
|
2011-07-05 11:54:11 +00:00
|
|
|
|
private:
|
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
|
|
|
|
|
};
|
|
|
|
|
|
2011-07-21 13:06:55 +00:00
|
|
|
|
|
|
|
|
|
// A poor man's version of STL's bitset: A bit set of enums E (without explicit
|
|
|
|
|
// values), fitting into an integral type T.
|
|
|
|
|
template <class E, class T = int>
|
|
|
|
|
class EnumSet {
|
|
|
|
|
public:
|
|
|
|
|
explicit EnumSet(T bits = 0) : bits_(bits) {}
|
|
|
|
|
bool IsEmpty() const { return bits_ == 0; }
|
|
|
|
|
bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
|
2012-01-20 14:08:20 +00:00
|
|
|
|
bool ContainsAnyOf(const EnumSet& set) const {
|
|
|
|
|
return (bits_ & set.bits_) != 0;
|
|
|
|
|
}
|
2011-07-21 13:06:55 +00:00
|
|
|
|
void Add(E element) { bits_ |= Mask(element); }
|
2012-01-20 14:08:20 +00:00
|
|
|
|
void Add(const EnumSet& set) { bits_ |= set.bits_; }
|
2011-07-21 13:06:55 +00:00
|
|
|
|
void Remove(E element) { bits_ &= ~Mask(element); }
|
2012-01-20 14:08:20 +00:00
|
|
|
|
void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
|
|
|
|
|
void RemoveAll() { bits_ = 0; }
|
|
|
|
|
void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
|
2011-07-21 13:06:55 +00:00
|
|
|
|
T ToIntegral() const { return bits_; }
|
2012-01-20 14:08:20 +00:00
|
|
|
|
bool operator==(const EnumSet& set) { return bits_ == set.bits_; }
|
2011-07-21 13:06:55 +00:00
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
T Mask(E element) const {
|
|
|
|
|
// The strange typing in ASSERT is necessary to avoid stupid warnings, see:
|
|
|
|
|
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
|
|
|
|
|
ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT));
|
|
|
|
|
return 1 << element;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
T bits_;
|
|
|
|
|
};
|
|
|
|
|
|
2010-08-11 10:52:34 +00:00
|
|
|
|
} } // namespace v8::internal
|
2010-04-14 07:26:20 +00:00
|
|
|
|
|
2008-07-03 15:10:15 +00:00
|
|
|
|
#endif // V8_UTILS_H_
|