v8/src/frames-inl.h

335 lines
9.5 KiB
C
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_FRAMES_INL_H_
#define V8_FRAMES_INL_H_
#include "src/frames.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/v8memory.h"
#if V8_TARGET_ARCH_IA32
#include "src/ia32/frames-ia32.h" // NOLINT
#elif V8_TARGET_ARCH_X64
#include "src/x64/frames-x64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/frames-arm64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM
#include "src/arm/frames-arm.h" // NOLINT
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/frames-ppc.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/frames-mips.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/frames-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_S390
#include "src/s390/frames-s390.h" // NOLINT
#elif V8_TARGET_ARCH_X87
#include "src/x87/frames-x87.h" // NOLINT
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
inline Address StackHandler::address() const {
return reinterpret_cast<Address>(const_cast<StackHandler*>(this));
}
inline StackHandler* StackHandler::next() const {
const int offset = StackHandlerConstants::kNextOffset;
return FromAddress(Memory::Address_at(address() + offset));
}
inline StackHandler* StackHandler::FromAddress(Address address) {
return reinterpret_cast<StackHandler*>(address);
}
inline StackFrame::StackFrame(StackFrameIteratorBase* iterator)
: iterator_(iterator), isolate_(iterator_->isolate()) {
}
inline StackHandler* StackFrame::top_handler() const {
return iterator_->handler();
}
inline Code* StackFrame::LookupCode() const {
// TODO(jgruber): This should really check that pc is within the returned
// code's instruction range [instruction_start(), instruction_end()[.
return GetContainingCode(isolate(), pc());
}
inline Code* StackFrame::GetContainingCode(Isolate* isolate, Address pc) {
return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code;
}
inline Address* StackFrame::ResolveReturnAddressLocation(Address* pc_address) {
if (return_address_location_resolver_ == NULL) {
return pc_address;
} else {
return reinterpret_cast<Address*>(
return_address_location_resolver_(
reinterpret_cast<uintptr_t>(pc_address)));
}
}
inline EntryFrame::EntryFrame(StackFrameIteratorBase* iterator)
: StackFrame(iterator) {
}
inline EntryConstructFrame::EntryConstructFrame(
StackFrameIteratorBase* iterator)
: EntryFrame(iterator) {
}
inline ExitFrame::ExitFrame(StackFrameIteratorBase* iterator)
: StackFrame(iterator) {
}
inline BuiltinExitFrame::BuiltinExitFrame(StackFrameIteratorBase* iterator)
: ExitFrame(iterator) {}
inline Object* BuiltinExitFrame::receiver_slot_object() const {
// The receiver is the first argument on the frame.
// fp[1]: return address.
// fp[2]: the last argument (new target).
// fp[4]: argc.
// fp[2 + argc - 1]: receiver.
Object* argc_slot = argc_slot_object();
DCHECK(argc_slot->IsSmi());
int argc = Smi::cast(argc_slot)->value();
const int receiverOffset =
BuiltinExitFrameConstants::kNewTargetOffset + (argc - 1) * kPointerSize;
return Memory::Object_at(fp() + receiverOffset);
}
inline Object* BuiltinExitFrame::argc_slot_object() const {
return Memory::Object_at(fp() + BuiltinExitFrameConstants::kArgcOffset);
}
inline Object* BuiltinExitFrame::target_slot_object() const {
return Memory::Object_at(fp() + BuiltinExitFrameConstants::kTargetOffset);
}
inline Object* BuiltinExitFrame::new_target_slot_object() const {
return Memory::Object_at(fp() + BuiltinExitFrameConstants::kNewTargetOffset);
}
inline StandardFrame::StandardFrame(StackFrameIteratorBase* iterator)
: StackFrame(iterator) {
}
inline Object* StandardFrame::GetExpression(int index) const {
return Memory::Object_at(GetExpressionAddress(index));
}
inline void StandardFrame::SetExpression(int index, Object* value) {
Memory::Object_at(GetExpressionAddress(index)) = value;
}
inline Address StandardFrame::caller_fp() const {
return Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset);
}
inline Address StandardFrame::caller_pc() const {
return Memory::Address_at(ComputePCAddress(fp()));
}
inline Address StandardFrame::ComputePCAddress(Address fp) {
return fp + StandardFrameConstants::kCallerPCOffset;
}
inline Address StandardFrame::ComputeConstantPoolAddress(Address fp) {
return fp + StandardFrameConstants::kConstantPoolOffset;
}
inline bool StandardFrame::IsArgumentsAdaptorFrame(Address fp) {
[runtime] Unify and simplify how frames are marked Before this CL, various code stubs used different techniques for marking their frames to enable stack-crawling and other access to data in the frame. All of them were based on a abuse of the "standard" frame representation, e.g. storing the a context pointer immediately below the frame's fp, and a function pointer after that. Although functional, this approach tends to make stubs and builtins do an awkward, unnecessary dance to appear like standard frames, even if they have nothing to do with JavaScript execution. This CL attempts to improve this by: * Ensuring that there are only two fundamentally different types of frames, a "standard" frame and a "typed" frame. Standard frames, as before, contain both a context and function pointer. Typed frames contain only a minimum of a smi marker in the position immediately below the fp where the context is in standard frames. * Only interpreted, full codegen, and optimized Crankshaft and TurboFan JavaScript frames use the "standard" format. All other frames use the type frame format with an explicit marker. * Typed frames can contain one or more values below the type marker. There is new magic macro machinery in frames.h that simplifies defining the offsets of these fields in typed frames. * A new flag in the CallDescriptor enables specifying whether a frame is a standard frame or a typed frame. Secondary register location spilling is now only enabled for standard frames. * A zillion places in the code have been updated to deal with the fact that most code stubs and internal frames use the typed frame format. This includes changes in the deoptimizer, debugger, and liveedit. * StandardFrameConstants::kMarkerOffset is deprecated, (CommonFrameConstants::kContextOrFrameTypeOffset and StandardFrameConstants::kFrameOffset are now used in its stead). LOG=N Review URL: https://codereview.chromium.org/1696043002 Cr-Commit-Position: refs/heads/master@{#34571}
2016-03-08 08:35:44 +00:00
Object* frame_type =
Memory::Object_at(fp + TypedFrameConstants::kFrameTypeOffset);
return frame_type == Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR);
}
inline bool StandardFrame::IsConstructFrame(Address fp) {
[runtime] Unify and simplify how frames are marked Before this CL, various code stubs used different techniques for marking their frames to enable stack-crawling and other access to data in the frame. All of them were based on a abuse of the "standard" frame representation, e.g. storing the a context pointer immediately below the frame's fp, and a function pointer after that. Although functional, this approach tends to make stubs and builtins do an awkward, unnecessary dance to appear like standard frames, even if they have nothing to do with JavaScript execution. This CL attempts to improve this by: * Ensuring that there are only two fundamentally different types of frames, a "standard" frame and a "typed" frame. Standard frames, as before, contain both a context and function pointer. Typed frames contain only a minimum of a smi marker in the position immediately below the fp where the context is in standard frames. * Only interpreted, full codegen, and optimized Crankshaft and TurboFan JavaScript frames use the "standard" format. All other frames use the type frame format with an explicit marker. * Typed frames can contain one or more values below the type marker. There is new magic macro machinery in frames.h that simplifies defining the offsets of these fields in typed frames. * A new flag in the CallDescriptor enables specifying whether a frame is a standard frame or a typed frame. Secondary register location spilling is now only enabled for standard frames. * A zillion places in the code have been updated to deal with the fact that most code stubs and internal frames use the typed frame format. This includes changes in the deoptimizer, debugger, and liveedit. * StandardFrameConstants::kMarkerOffset is deprecated, (CommonFrameConstants::kContextOrFrameTypeOffset and StandardFrameConstants::kFrameOffset are now used in its stead). LOG=N Review URL: https://codereview.chromium.org/1696043002 Cr-Commit-Position: refs/heads/master@{#34571}
2016-03-08 08:35:44 +00:00
Object* frame_type =
Memory::Object_at(fp + TypedFrameConstants::kFrameTypeOffset);
return frame_type == Smi::FromInt(StackFrame::CONSTRUCT);
}
inline JavaScriptFrame::JavaScriptFrame(StackFrameIteratorBase* iterator)
: StandardFrame(iterator) {}
Address JavaScriptFrame::GetParameterSlot(int index) const {
int param_count = ComputeParametersCount();
DCHECK(-1 <= index && index < param_count);
int parameter_offset = (param_count - index - 1) * kPointerSize;
return caller_sp() + parameter_offset;
}
inline Address JavaScriptFrame::GetOperandSlot(int index) const {
Address base = fp() + JavaScriptFrameConstants::kLocal0Offset;
DCHECK(IsAddressAligned(base, kPointerSize));
DCHECK_EQ(type(), JAVA_SCRIPT);
DCHECK_LT(index, ComputeOperandsCount());
DCHECK_LE(0, index);
// Operand stack grows down.
return base - index * kPointerSize;
}
inline Object* JavaScriptFrame::GetOperand(int index) const {
return Memory::Object_at(GetOperandSlot(index));
}
inline int JavaScriptFrame::ComputeOperandsCount() const {
Address base = fp() + JavaScriptFrameConstants::kLocal0Offset;
// Base points to low address of first operand and stack grows down, so add
// kPointerSize to get the actual stack size.
intptr_t stack_size_in_bytes = (base + kPointerSize) - sp();
DCHECK(IsAligned(stack_size_in_bytes, kPointerSize));
DCHECK(type() == JAVA_SCRIPT);
DCHECK(stack_size_in_bytes >= 0);
return static_cast<int>(stack_size_in_bytes >> kPointerSizeLog2);
}
inline void JavaScriptFrame::set_receiver(Object* value) {
Memory::Object_at(GetParameterSlot(-1)) = value;
}
inline bool JavaScriptFrame::has_adapted_arguments() const {
return IsArgumentsAdaptorFrame(caller_fp());
}
inline Object* JavaScriptFrame::function_slot_object() const {
const int offset = JavaScriptFrameConstants::kFunctionOffset;
return Memory::Object_at(fp() + offset);
}
inline StubFrame::StubFrame(StackFrameIteratorBase* iterator)
: StandardFrame(iterator) {
}
inline OptimizedFrame::OptimizedFrame(StackFrameIteratorBase* iterator)
: JavaScriptFrame(iterator) {
}
inline InterpretedFrame::InterpretedFrame(StackFrameIteratorBase* iterator)
: JavaScriptFrame(iterator) {}
inline ArgumentsAdaptorFrame::ArgumentsAdaptorFrame(
StackFrameIteratorBase* iterator) : JavaScriptFrame(iterator) {
}
inline BuiltinFrame::BuiltinFrame(StackFrameIteratorBase* iterator)
: JavaScriptFrame(iterator) {}
inline WasmFrame::WasmFrame(StackFrameIteratorBase* iterator)
: StandardFrame(iterator) {}
inline WasmToJsFrame::WasmToJsFrame(StackFrameIteratorBase* iterator)
: StubFrame(iterator) {}
inline JsToWasmFrame::JsToWasmFrame(StackFrameIteratorBase* iterator)
: StubFrame(iterator) {}
inline InternalFrame::InternalFrame(StackFrameIteratorBase* iterator)
: StandardFrame(iterator) {
}
inline StubFailureTrampolineFrame::StubFailureTrampolineFrame(
StackFrameIteratorBase* iterator) : StandardFrame(iterator) {
}
inline ConstructFrame::ConstructFrame(StackFrameIteratorBase* iterator)
: InternalFrame(iterator) {
}
inline JavaScriptFrameIterator::JavaScriptFrameIterator(
Isolate* isolate)
: iterator_(isolate) {
if (!done()) Advance();
}
inline JavaScriptFrameIterator::JavaScriptFrameIterator(
Isolate* isolate, ThreadLocalTop* top)
: iterator_(isolate, top) {
if (!done()) Advance();
}
inline JavaScriptFrame* JavaScriptFrameIterator::frame() const {
// TODO(1233797): The frame hierarchy needs to change. It's
// problematic that we can't use the safe-cast operator to cast to
// the JavaScript frame type, because we may encounter arguments
// adaptor frames.
StackFrame* frame = iterator_.frame();
DCHECK(frame->is_java_script() || frame->is_arguments_adaptor());
return static_cast<JavaScriptFrame*>(frame);
}
inline StandardFrame* StackTraceFrameIterator::frame() const {
StackFrame* frame = iterator_.frame();
DCHECK(frame->is_java_script() || frame->is_arguments_adaptor() ||
frame->is_wasm());
return static_cast<StandardFrame*>(frame);
}
bool StackTraceFrameIterator::is_javascript() const {
return frame()->is_java_script();
}
bool StackTraceFrameIterator::is_wasm() const { return frame()->is_wasm(); }
JavaScriptFrame* StackTraceFrameIterator::javascript_frame() const {
DCHECK(is_javascript());
return static_cast<JavaScriptFrame*>(frame());
}
WasmFrame* StackTraceFrameIterator::wasm_frame() const {
DCHECK(is_wasm());
return static_cast<WasmFrame*>(frame());
}
inline StackFrame* SafeStackFrameIterator::frame() const {
DCHECK(!done());
DCHECK(frame_->is_java_script() || frame_->is_exit() ||
frame_->is_builtin_exit());
return frame_;
}
} // namespace internal
} // namespace v8
#endif // V8_FRAMES_INL_H_