v8/src/builtins.cc

1831 lines
60 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "arguments.h"
#include "bootstrapper.h"
#include "builtins.h"
#include "cpu-profiler.h"
#include "gdb-jit.h"
#include "ic-inl.h"
#include "heap-profiler.h"
#include "mark-compact.h"
#include "stub-cache.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
namespace {
// Arguments object passed to C++ builtins.
template <BuiltinExtraArguments extra_args>
class BuiltinArguments : public Arguments {
public:
BuiltinArguments(int length, Object** arguments)
: Arguments(length, arguments) { }
Object*& operator[] (int index) {
ASSERT(index < length());
return Arguments::operator[](index);
}
template <class S> Handle<S> at(int index) {
ASSERT(index < length());
return Arguments::at<S>(index);
}
Handle<Object> receiver() {
return Arguments::at<Object>(0);
}
Handle<JSFunction> called_function() {
STATIC_ASSERT(extra_args == NEEDS_CALLED_FUNCTION);
return Arguments::at<JSFunction>(Arguments::length() - 1);
}
// Gets the total number of arguments including the receiver (but
// excluding extra arguments).
int length() const {
STATIC_ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
return Arguments::length();
}
#ifdef DEBUG
void Verify() {
// Check we have at least the receiver.
ASSERT(Arguments::length() >= 1);
}
#endif
};
// Specialize BuiltinArguments for the called function extra argument.
template <>
int BuiltinArguments<NEEDS_CALLED_FUNCTION>::length() const {
return Arguments::length() - 1;
}
#ifdef DEBUG
template <>
void BuiltinArguments<NEEDS_CALLED_FUNCTION>::Verify() {
// Check we have at least the receiver and the called function.
ASSERT(Arguments::length() >= 2);
// Make sure cast to JSFunction succeeds.
called_function();
}
#endif
#define DEF_ARG_TYPE(name, spec) \
typedef BuiltinArguments<spec> name##ArgumentsType;
BUILTIN_LIST_C(DEF_ARG_TYPE)
#undef DEF_ARG_TYPE
} // namespace
// ----------------------------------------------------------------------------
// Support macro for defining builtins in C++.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
//
// In the body of the builtin function the arguments can be accessed
// through the BuiltinArguments object args.
#ifdef DEBUG
#define BUILTIN(name) \
MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate); \
MUST_USE_RESULT static MaybeObject* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
args.Verify(); \
return Builtin_Impl_##name(args, isolate); \
} \
MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate)
#else // For release mode.
#define BUILTIN(name) \
static MaybeObject* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate); \
static MaybeObject* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
return Builtin_impl##name(args, isolate); \
} \
static MaybeObject* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate)
#endif
static inline bool CalledAsConstructor(Isolate* isolate) {
#ifdef DEBUG
// Calculate the result using a full stack frame iterator and check
// that the state of the stack is as we assume it to be in the
// code below.
StackFrameIterator it(isolate);
ASSERT(it.frame()->is_exit());
it.Advance();
StackFrame* frame = it.frame();
bool reference_result = frame->is_construct();
#endif
Address fp = Isolate::c_entry_fp(isolate->thread_local_top());
// Because we know fp points to an exit frame we can use the relevant
// part of ExitFrame::ComputeCallerState directly.
const int kCallerOffset = ExitFrameConstants::kCallerFPOffset;
Address caller_fp = Memory::Address_at(fp + kCallerOffset);
// This inlines the part of StackFrame::ComputeType that grabs the
// type of the current frame. Note that StackFrame::ComputeType
// has been specialized for each architecture so if any one of them
// changes this code has to be changed as well.
const int kMarkerOffset = StandardFrameConstants::kMarkerOffset;
const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT);
Object* marker = Memory::Object_at(caller_fp + kMarkerOffset);
bool result = (marker == kConstructMarker);
ASSERT_EQ(result, reference_result);
return result;
}
// ----------------------------------------------------------------------------
BUILTIN(Illegal) {
UNREACHABLE();
return isolate->heap()->undefined_value(); // Make compiler happy.
}
BUILTIN(EmptyFunction) {
return isolate->heap()->undefined_value();
}
static void MoveDoubleElements(FixedDoubleArray* dst,
int dst_index,
FixedDoubleArray* src,
int src_index,
int len) {
if (len == 0) return;
OS::MemMove(dst->data_start() + dst_index,
src->data_start() + src_index,
len * kDoubleSize);
}
static void FillWithHoles(Heap* heap, FixedArray* dst, int from, int to) {
ASSERT(dst->map() != heap->fixed_cow_array_map());
MemsetPointer(dst->data_start() + from, heap->the_hole_value(), to - from);
}
static void FillWithHoles(FixedDoubleArray* dst, int from, int to) {
for (int i = from; i < to; i++) {
dst->set_the_hole(i);
}
}
static FixedArrayBase* LeftTrimFixedArray(Heap* heap,
FixedArrayBase* elms,
int to_trim) {
Map* map = elms->map();
int entry_size;
if (elms->IsFixedArray()) {
entry_size = kPointerSize;
} else {
entry_size = kDoubleSize;
}
ASSERT(elms->map() != heap->fixed_cow_array_map());
// For now this trick is only applied to fixed arrays in new and paged space.
// In large object space the object's start must coincide with chunk
// and thus the trick is just not applicable.
ASSERT(!heap->lo_space()->Contains(elms));
STATIC_ASSERT(FixedArrayBase::kMapOffset == 0);
STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize);
STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize);
Object** former_start = HeapObject::RawField(elms, 0);
const int len = elms->length();
if (to_trim * entry_size > FixedArrayBase::kHeaderSize &&
elms->IsFixedArray() &&
!heap->new_space()->Contains(elms)) {
// If we are doing a big trim in old space then we zap the space that was
// formerly part of the array so that the GC (aided by the card-based
// remembered set) won't find pointers to new-space there.
Object** zap = reinterpret_cast<Object**>(elms->address());
zap++; // Header of filler must be at least one word so skip that.
for (int i = 1; i < to_trim; i++) {
*zap++ = Smi::FromInt(0);
}
}
// Technically in new space this write might be omitted (except for
// debug mode which iterates through the heap), but to play safer
// we still do it.
heap->CreateFillerObjectAt(elms->address(), to_trim * entry_size);
int new_start_index = to_trim * (entry_size / kPointerSize);
former_start[new_start_index] = map;
former_start[new_start_index + 1] = Smi::FromInt(len - to_trim);
// Maintain marking consistency for HeapObjectIterator and
// IncrementalMarking.
int size_delta = to_trim * entry_size;
if (heap->marking()->TransferMark(elms->address(),
elms->address() + size_delta)) {
MemoryChunk::IncrementLiveBytesFromMutator(elms->address(), -size_delta);
}
FixedArrayBase* new_elms = FixedArrayBase::cast(HeapObject::FromAddress(
elms->address() + size_delta));
HeapProfiler* profiler = heap->isolate()->heap_profiler();
if (profiler->is_profiling()) {
profiler->ObjectMoveEvent(elms->address(),
new_elms->address(),
new_elms->Size());
if (profiler->is_tracking_allocations()) {
// Report filler object as a new allocation.
// Otherwise it will become an untracked object.
profiler->NewObjectEvent(elms->address(), elms->Size());
}
}
return new_elms;
}
static bool ArrayPrototypeHasNoElements(Heap* heap,
Context* native_context,
JSObject* array_proto) {
// This method depends on non writability of Object and Array prototype
// fields.
if (array_proto->elements() != heap->empty_fixed_array()) return false;
// Object.prototype
Object* proto = array_proto->GetPrototype();
if (proto == heap->null_value()) return false;
array_proto = JSObject::cast(proto);
if (array_proto != native_context->initial_object_prototype()) return false;
if (array_proto->elements() != heap->empty_fixed_array()) return false;
return array_proto->GetPrototype()->IsNull();
}
MUST_USE_RESULT
static inline MaybeObject* EnsureJSArrayWithWritableFastElements(
Heap* heap, Object* receiver, Arguments* args, int first_added_arg) {
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
if (!receiver->IsJSArray()) return NULL;
JSArray* array = JSArray::cast(receiver);
HeapObject* elms = array->elements();
Map* map = elms->map();
if (map == heap->fixed_array_map()) {
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_cow_array_map()) {
MaybeObject* maybe_writable_result = array->EnsureWritableFastElements();
if (args == NULL || array->HasFastObjectElements() ||
!maybe_writable_result->To(&elms)) {
return maybe_writable_result;
}
} else if (map == heap->fixed_double_array_map()) {
if (args == NULL) return elms;
} else {
return NULL;
}
// Need to ensure that the arguments passed in args can be contained in
// the array.
int args_length = args->length();
if (first_added_arg >= args_length) return array->elements();
ElementsKind origin_kind = array->map()->elements_kind();
ASSERT(!IsFastObjectElementsKind(origin_kind));
ElementsKind target_kind = origin_kind;
int arg_count = args->length() - first_added_arg;
Object** arguments = args->arguments() - first_added_arg - (arg_count - 1);
for (int i = 0; i < arg_count; i++) {
Object* arg = arguments[i];
if (arg->IsHeapObject()) {
if (arg->IsHeapNumber()) {
target_kind = FAST_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_ELEMENTS;
break;
}
}
}
if (target_kind != origin_kind) {
MaybeObject* maybe_failure = array->TransitionElementsKind(target_kind);
if (maybe_failure->IsFailure()) return maybe_failure;
return array->elements();
}
return elms;
}
static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap,
JSArray* receiver) {
if (!FLAG_clever_optimizations) return false;
Context* native_context = heap->isolate()->context()->native_context();
JSObject* array_proto =
JSObject::cast(native_context->array_function()->prototype());
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
return receiver->GetPrototype() == array_proto &&
ArrayPrototypeHasNoElements(heap, native_context, array_proto);
}
MUST_USE_RESULT static MaybeObject* CallJsBuiltin(
Isolate* isolate,
const char* name,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
HandleScope handleScope(isolate);
Handle<Object> js_builtin =
GetProperty(Handle<JSObject>(isolate->native_context()->builtins()),
name);
Handle<JSFunction> function = Handle<JSFunction>::cast(js_builtin);
int argc = args.length() - 1;
ScopedVector<Handle<Object> > argv(argc);
for (int i = 0; i < argc; ++i) {
argv[i] = args.at<Object>(i + 1);
}
bool pending_exception;
Handle<Object> result = Execution::Call(isolate,
function,
args.receiver(),
argc,
argv.start(),
&pending_exception);
if (pending_exception) return Failure::Exception();
return *result;
}
BUILTIN(ArrayPush) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(heap, receiver, &args, 1);
if (maybe_elms_obj == NULL) {
return CallJsBuiltin(isolate, "ArrayPush", args);
}
if (!maybe_elms_obj->To(&elms_obj)) return maybe_elms_obj;
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
ElementsKind kind = array->GetElementsKind();
if (IsFastSmiOrObjectElementsKind(kind)) {
FixedArray* elms = FixedArray::cast(elms_obj);
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
FixedArray* new_elms;
MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity);
if (!maybe_obj->To(&new_elms)) return maybe_obj;
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms_obj);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
elms = new_elms;
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int index = 0; index < to_add; index++) {
elms->set(index + len, args[index + 1], mode);
}
if (elms != array->elements()) {
array->set_elements(elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
} else {
int len = Smi::cast(array->length())->value();
int elms_len = elms_obj->length();
int to_add = args.length() - 1;
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
FixedDoubleArray* new_elms;
if (new_length > elms_len) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
MaybeObject* maybe_obj =
heap->AllocateUninitializedFixedDoubleArray(capacity);
if (!maybe_obj->To(&new_elms)) return maybe_obj;
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms_obj);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
} else {
// to_add is > 0 and new_length <= elms_len, so elms_obj cannot be the
// empty_fixed_array.
new_elms = FixedDoubleArray::cast(elms_obj);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
int index;
for (index = 0; index < to_add; index++) {
Object* arg = args[index + 1];
new_elms->set(index + len, arg->Number());
}
if (new_elms != array->elements()) {
array->set_elements(new_elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
}
BUILTIN(ArrayPop) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms =
EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0);
if (maybe_elms == NULL) return CallJsBuiltin(isolate, "ArrayPop", args);
if (!maybe_elms->To(&elms_obj)) return maybe_elms;
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = len - 1;
MaybeObject* maybe_result;
if (accessor->HasElement(array, array, new_length, elms_obj)) {
maybe_result = accessor->Get(array, array, new_length, elms_obj);
} else {
maybe_result = array->GetPrototype()->GetElement(isolate, len - 1);
}
if (maybe_result->IsFailure()) return maybe_result;
MaybeObject* maybe_failure =
accessor->SetLength(array, Smi::FromInt(new_length));
if (maybe_failure->IsFailure()) return maybe_failure;
return maybe_result;
}
BUILTIN(ArrayShift) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0);
if (maybe_elms_obj == NULL)
return CallJsBuiltin(isolate, "ArrayShift", args);
if (!maybe_elms_obj->To(&elms_obj)) return maybe_elms_obj;
if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) {
return CallJsBuiltin(isolate, "ArrayShift", args);
}
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
// Get first element
ElementsAccessor* accessor = array->GetElementsAccessor();
Object* first;
MaybeObject* maybe_first = accessor->Get(receiver, array, 0, elms_obj);
if (!maybe_first->To(&first)) return maybe_first;
if (first->IsTheHole()) {
first = heap->undefined_value();
}
if (!heap->lo_space()->Contains(elms_obj)) {
array->set_elements(LeftTrimFixedArray(heap, elms_obj, 1));
} else {
// Shift the elements.
if (elms_obj->IsFixedArray()) {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, 0, 1, len - 1);
elms->set(len - 1, heap->the_hole_value());
} else {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
MoveDoubleElements(elms, 0, elms, 1, len - 1);
elms->set_the_hole(len - 1);
}
}
// Set the length.
array->set_length(Smi::FromInt(len - 1));
return first;
}
BUILTIN(ArrayUnshift) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0);
if (maybe_elms_obj == NULL)
return CallJsBuiltin(isolate, "ArrayUnshift", args);
if (!maybe_elms_obj->To(&elms_obj)) return maybe_elms_obj;
if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
if (!array->HasFastSmiOrObjectElements()) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
FixedArray* elms = FixedArray::cast(elms_obj);
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
int new_length = len + to_add;
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
MaybeObject* maybe_object =
array->EnsureCanContainElements(&args, 1, to_add,
DONT_ALLOW_DOUBLE_ELEMENTS);
if (maybe_object->IsFailure()) return maybe_object;
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
FixedArray* new_elms;
MaybeObject* maybe_elms = heap->AllocateUninitializedFixedArray(capacity);
if (!maybe_elms->To(&new_elms)) return maybe_elms;
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, to_add,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
elms = new_elms;
array->set_elements(elms);
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, to_add, 0, len);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int i = 0; i < to_add; i++) {
elms->set(i, args[i + 1], mode);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
BUILTIN(ArraySlice) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms;
int len = -1;
if (receiver->IsJSArray()) {
JSArray* array = JSArray::cast(receiver);
if (!IsJSArrayFastElementMovingAllowed(heap, array)) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (array->HasFastElements()) {
elms = array->elements();
} else {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(array->length())->value();
} else {
// Array.slice(arguments, ...) is quite a common idiom (notably more
// than 50% of invocations in Web apps). Treat it in C++ as well.
Map* arguments_map =
isolate->context()->native_context()->arguments_boilerplate()->map();
bool is_arguments_object_with_fast_elements =
receiver->IsJSObject() &&
JSObject::cast(receiver)->map() == arguments_map;
if (!is_arguments_object_with_fast_elements) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
JSObject* object = JSObject::cast(receiver);
if (object->HasFastElements()) {
elms = object->elements();
} else {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
Object* len_obj = object->InObjectPropertyAt(Heap::kArgumentsLengthIndex);
if (!len_obj->IsSmi()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(len_obj)->value();
if (len > elms->length()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
JSObject* object = JSObject::cast(receiver);
ASSERT(len >= 0);
int n_arguments = args.length() - 1;
// Note carefully choosen defaults---if argument is missing,
// it's undefined which gets converted to 0 for relative_start
// and to len for relative_end.
int relative_start = 0;
int relative_end = len;
if (n_arguments > 0) {
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (n_arguments > 1) {
Object* arg2 = args[2];
if (arg2->IsSmi()) {
relative_end = Smi::cast(arg2)->value();
} else if (arg2->IsHeapNumber()) {
double end = HeapNumber::cast(arg2)->value();
if (end < kMinInt || end > kMaxInt) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_end = std::isnan(end) ? 0 : static_cast<int>(end);
} else if (!arg2->IsUndefined()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
}
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
int k = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
int final = (relative_end < 0) ? Max(len + relative_end, 0)
: Min(relative_end, len);
// Calculate the length of result array.
int result_len = Max(final - k, 0);
ElementsKind kind = object->GetElementsKind();
if (IsHoleyElementsKind(kind)) {
bool packed = true;
ElementsAccessor* accessor = ElementsAccessor::ForKind(kind);
for (int i = k; i < final; i++) {
if (!accessor->HasElement(object, object, i, elms)) {
packed = false;
break;
}
}
if (packed) {
kind = GetPackedElementsKind(kind);
} else if (!receiver->IsJSArray()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
JSArray* result_array;
MaybeObject* maybe_array = heap->AllocateJSArrayAndStorage(kind,
result_len,
result_len);
DisallowHeapAllocation no_gc;
if (result_len == 0) return maybe_array;
if (!maybe_array->To(&result_array)) return maybe_array;
ElementsAccessor* accessor = object->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, k, kind, result_array->elements(), 0, result_len, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
return result_array;
}
BUILTIN(ArraySplice) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms =
EnsureJSArrayWithWritableFastElements(heap, receiver, &args, 3);
if (maybe_elms == NULL) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
if (!maybe_elms->To(&elms_obj)) return maybe_elms;
if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
int n_arguments = args.length() - 1;
int relative_start = 0;
if (n_arguments > 0) {
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
// given as a request to delete all the elements from the start.
// And it differs from the case of undefined delete count.
// This does not follow ECMA-262, but we do the same for
// compatibility.
int actual_delete_count;
if (n_arguments == 1) {
ASSERT(len - actual_start >= 0);
actual_delete_count = len - actual_start;
} else {
int value = 0; // ToInteger(undefined) == 0
if (n_arguments > 1) {
Object* arg2 = args[2];
if (arg2->IsSmi()) {
value = Smi::cast(arg2)->value();
} else {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
actual_delete_count = Min(Max(value, 0), len - actual_start);
}
ElementsKind elements_kind = array->GetElementsKind();
int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0;
int new_length = len - actual_delete_count + item_count;
// For double mode we do not support changing the length.
if (new_length > len && IsFastDoubleElementsKind(elements_kind)) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
if (new_length == 0) {
MaybeObject* maybe_array = heap->AllocateJSArrayWithElements(
elms_obj, elements_kind, actual_delete_count);
if (maybe_array->IsFailure()) return maybe_array;
array->set_elements(heap->empty_fixed_array());
array->set_length(Smi::FromInt(0));
return maybe_array;
}
JSArray* result_array = NULL;
MaybeObject* maybe_array =
heap->AllocateJSArrayAndStorage(elements_kind,
actual_delete_count,
actual_delete_count);
if (!maybe_array->To(&result_array)) return maybe_array;
if (actual_delete_count > 0) {
DisallowHeapAllocation no_gc;
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, actual_start, elements_kind, result_array->elements(),
0, actual_delete_count, elms_obj);
// Cannot fail since the origin and target array are of the same elements
// kind.
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
}
bool elms_changed = false;
if (item_count < actual_delete_count) {
// Shrink the array.
const bool trim_array = !heap->lo_space()->Contains(elms_obj) &&
((actual_start + item_count) <
(len - actual_delete_count - actual_start));
if (trim_array) {
const int delta = actual_delete_count - item_count;
if (elms_obj->IsFixedDoubleArray()) {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
MoveDoubleElements(elms, delta, elms, 0, actual_start);
} else {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, delta, 0, actual_start);
}
elms_obj = LeftTrimFixedArray(heap, elms_obj, delta);
elms_changed = true;
} else {
if (elms_obj->IsFixedDoubleArray()) {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
MoveDoubleElements(elms, actual_start + item_count,
elms, actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
FillWithHoles(elms, new_length, len);
} else {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
FillWithHoles(heap, elms, new_length, len);
}
}
} else if (item_count > actual_delete_count) {
FixedArray* elms = FixedArray::cast(elms_obj);
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len));
// Check if array need to grow.
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
FixedArray* new_elms;
MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity);
if (!maybe_obj->To(&new_elms)) return maybe_obj;
DisallowHeapAllocation no_gc;
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
if (actual_start > 0) {
// Copy the part before actual_start as is.
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, 0, actual_start, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
}
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, actual_start + actual_delete_count, kind, new_elms,
actual_start + item_count,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
elms_obj = new_elms;
elms_changed = true;
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
}
}
if (IsFastDoubleElementsKind(elements_kind)) {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
for (int k = actual_start; k < actual_start + item_count; k++) {
Object* arg = args[3 + k - actual_start];
if (arg->IsSmi()) {
elms->set(k, Smi::cast(arg)->value());
} else {
elms->set(k, HeapNumber::cast(arg)->value());
}
}
} else {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int k = actual_start; k < actual_start + item_count; k++) {
elms->set(k, args[3 + k - actual_start], mode);
}
}
if (elms_changed) {
array->set_elements(elms_obj);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return result_array;
}
BUILTIN(ArrayConcat) {
Heap* heap = isolate->heap();
Context* native_context = isolate->context()->native_context();
JSObject* array_proto =
JSObject::cast(native_context->array_function()->prototype());
if (!ArrayPrototypeHasNoElements(heap, native_context, array_proto)) {
return CallJsBuiltin(isolate, "ArrayConcat", args);
}
// Iterate through all the arguments performing checks
// and calculating total length.
int n_arguments = args.length();
int result_len = 0;
ElementsKind elements_kind = GetInitialFastElementsKind();
bool has_double = false;
bool is_holey = false;
for (int i = 0; i < n_arguments; i++) {
Object* arg = args[i];
if (!arg->IsJSArray() ||
!JSArray::cast(arg)->HasFastElements() ||
JSArray::cast(arg)->GetPrototype() != array_proto) {
return CallJsBuiltin(isolate, "ArrayConcat", args);
}
int len = Smi::cast(JSArray::cast(arg)->length())->value();
// We shouldn't overflow when adding another len.
const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
USE(kHalfOfMaxInt);
result_len += len;
ASSERT(result_len >= 0);
if (result_len > FixedDoubleArray::kMaxLength) {
return CallJsBuiltin(isolate, "ArrayConcat", args);
}
ElementsKind arg_kind = JSArray::cast(arg)->map()->elements_kind();
has_double = has_double || IsFastDoubleElementsKind(arg_kind);
is_holey = is_holey || IsFastHoleyElementsKind(arg_kind);
if (IsMoreGeneralElementsKindTransition(elements_kind, arg_kind)) {
elements_kind = arg_kind;
}
}
if (is_holey) elements_kind = GetHoleyElementsKind(elements_kind);
// If a double array is concatted into a fast elements array, the fast
// elements array needs to be initialized to contain proper holes, since
// boxing doubles may cause incremental marking.
ArrayStorageAllocationMode mode =
has_double && IsFastObjectElementsKind(elements_kind)
? INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE : DONT_INITIALIZE_ARRAY_ELEMENTS;
JSArray* result_array;
// Allocate result.
MaybeObject* maybe_array =
heap->AllocateJSArrayAndStorage(elements_kind,
result_len,
result_len,
mode);
if (!maybe_array->To(&result_array)) return maybe_array;
if (result_len == 0) return result_array;
int j = 0;
FixedArrayBase* storage = result_array->elements();
ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind);
for (int i = 0; i < n_arguments; i++) {
JSArray* array = JSArray::cast(args[i]);
int len = Smi::cast(array->length())->value();
ElementsKind from_kind = array->GetElementsKind();
if (len > 0) {
MaybeObject* maybe_failure =
accessor->CopyElements(array, 0, from_kind, storage, j, len);
if (maybe_failure->IsFailure()) return maybe_failure;
j += len;
}
}
ASSERT(j == result_len);
return result_array;
}
// -----------------------------------------------------------------------------
// Strict mode poison pills
BUILTIN(StrictModePoisonPill) {
HandleScope scope(isolate);
return isolate->Throw(*isolate->factory()->NewTypeError(
"strict_poison_pill", HandleVector<Object>(NULL, 0)));
}
// -----------------------------------------------------------------------------
//
// Searches the hidden prototype chain of the given object for the first
// object that is an instance of the given type. If no such object can
// be found then Heap::null_value() is returned.
static inline Object* FindHidden(Heap* heap,
Object* object,
FunctionTemplateInfo* type) {
if (object->IsInstanceOf(type)) return object;
Object* proto = object->GetPrototype(heap->isolate());
if (proto->IsJSObject() &&
JSObject::cast(proto)->map()->is_hidden_prototype()) {
return FindHidden(heap, proto, type);
}
return heap->null_value();
}
// Returns the holder JSObject if the function can legally be called
// with this receiver. Returns Heap::null_value() if the call is
// illegal. Any arguments that don't fit the expected type is
// overwritten with undefined. Note that holder and the arguments are
// implicitly rewritten with the first object in the hidden prototype
// chain that actually has the expected type.
static inline Object* TypeCheck(Heap* heap,
int argc,
Object** argv,
FunctionTemplateInfo* info) {
Object* recv = argv[0];
// API calls are only supported with JSObject receivers.
if (!recv->IsJSObject()) return heap->null_value();
Object* sig_obj = info->signature();
if (sig_obj->IsUndefined()) return recv;
SignatureInfo* sig = SignatureInfo::cast(sig_obj);
// If necessary, check the receiver
Object* recv_type = sig->receiver();
Object* holder = recv;
if (!recv_type->IsUndefined()) {
holder = FindHidden(heap, holder, FunctionTemplateInfo::cast(recv_type));
if (holder == heap->null_value()) return heap->null_value();
}
Object* args_obj = sig->args();
// If there is no argument signature we're done
if (args_obj->IsUndefined()) return holder;
FixedArray* args = FixedArray::cast(args_obj);
int length = args->length();
if (argc <= length) length = argc - 1;
for (int i = 0; i < length; i++) {
Object* argtype = args->get(i);
if (argtype->IsUndefined()) continue;
Object** arg = &argv[-1 - i];
Object* current = *arg;
current = FindHidden(heap, current, FunctionTemplateInfo::cast(argtype));
if (current == heap->null_value()) current = heap->undefined_value();
*arg = current;
}
return holder;
}
template <bool is_construct>
MUST_USE_RESULT static MaybeObject* HandleApiCallHelper(
BuiltinArguments<NEEDS_CALLED_FUNCTION> args, Isolate* isolate) {
ASSERT(is_construct == CalledAsConstructor(isolate));
Heap* heap = isolate->heap();
HandleScope scope(isolate);
Handle<JSFunction> function = args.called_function();
ASSERT(function->shared()->IsApiFunction());
FunctionTemplateInfo* fun_data = function->shared()->get_api_func_data();
if (is_construct) {
Handle<FunctionTemplateInfo> desc(fun_data, isolate);
bool pending_exception = false;
isolate->factory()->ConfigureInstance(
desc, Handle<JSObject>::cast(args.receiver()), &pending_exception);
ASSERT(isolate->has_pending_exception() == pending_exception);
if (pending_exception) return Failure::Exception();
fun_data = *desc;
}
Object* raw_holder = TypeCheck(heap, args.length(), &args[0], fun_data);
if (raw_holder->IsNull()) {
// This function cannot be called with the given receiver. Abort!
Handle<Object> obj =
isolate->factory()->NewTypeError(
"illegal_invocation", HandleVector(&function, 1));
return isolate->Throw(*obj);
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined()) {
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
Object* data_obj = call_data->data();
Object* result;
LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver())));
ASSERT(raw_holder->IsJSObject());
FunctionCallbackArguments custom(isolate,
data_obj,
*function,
raw_holder,
&args[0] - 1,
args.length() - 1,
is_construct);
v8::Handle<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!is_construct || result->IsJSObject()) return result;
}
return *args.receiver();
}
BUILTIN(HandleApiCall) {
return HandleApiCallHelper<false>(args, isolate);
}
BUILTIN(HandleApiCallConstruct) {
return HandleApiCallHelper<true>(args, isolate);
}
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
MUST_USE_RESULT static MaybeObject* HandleApiCallAsFunctionOrConstructor(
Isolate* isolate,
bool is_construct_call,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
// Non-functions are never called as constructors. Even if this is an object
// called as a constructor the delegate call is not a construct call.
ASSERT(!CalledAsConstructor(isolate));
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Get the invocation callback from the function descriptor that was
// used to create the called object.
ASSERT(obj->map()->has_instance_call_handler());
JSFunction* constructor = JSFunction::cast(obj->map()->constructor());
ASSERT(constructor->shared()->IsApiFunction());
Object* handler =
constructor->shared()->get_api_func_data()->instance_call_handler();
ASSERT(!handler->IsUndefined());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* result;
{
HandleScope scope(isolate);
LOG(isolate, ApiObjectAccess("call non-function", obj));
FunctionCallbackArguments custom(isolate,
call_data->data(),
constructor,
obj,
&args[0] - 1,
args.length() - 1,
is_construct_call);
v8::Handle<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
}
// Check for exceptions and return result.
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(isolate, false, args);
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(isolate, true, args);
}
static void Generate_LoadIC_Initialize(MacroAssembler* masm) {
LoadIC::GenerateInitialize(masm);
}
static void Generate_LoadIC_PreMonomorphic(MacroAssembler* masm) {
LoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_LoadIC_Miss(MacroAssembler* masm) {
LoadIC::GenerateMiss(masm);
}
static void Generate_LoadIC_Megamorphic(MacroAssembler* masm) {
LoadIC::GenerateMegamorphic(masm);
}
static void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm);
}
static void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) {
LoadStubCompiler::GenerateLoadViaGetter(
masm, LoadStubCompiler::registers()[0], Handle<JSFunction>());
}
static void Generate_LoadIC_Slow(MacroAssembler* masm) {
LoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) {
KeyedLoadIC::GenerateInitialize(masm);
}
static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) {
KeyedLoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm, MISS);
}
static void Generate_KeyedLoadIC_MissForceGeneric(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm, MISS_FORCE_GENERIC);
}
static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) {
KeyedLoadIC::GenerateGeneric(masm);
}
static void Generate_KeyedLoadIC_String(MacroAssembler* masm) {
KeyedLoadIC::GenerateString(masm);
}
static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
KeyedLoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedLoadIC_IndexedInterceptor(MacroAssembler* masm) {
KeyedLoadIC::GenerateIndexedInterceptor(masm);
}
static void Generate_KeyedLoadIC_NonStrictArguments(MacroAssembler* masm) {
KeyedLoadIC::GenerateNonStrictArguments(masm);
}
static void Generate_StoreIC_Slow(MacroAssembler* masm) {
StoreIC::GenerateSlow(masm);
}
static void Generate_StoreIC_Slow_Strict(MacroAssembler* masm) {
StoreIC::GenerateSlow(masm);
}
static void Generate_StoreIC_Initialize(MacroAssembler* masm) {
StoreIC::GenerateInitialize(masm);
}
static void Generate_StoreIC_Initialize_Strict(MacroAssembler* masm) {
StoreIC::GenerateInitialize(masm);
}
static void Generate_StoreIC_PreMonomorphic(MacroAssembler* masm) {
StoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_StoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
StoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
static void Generate_StoreIC_Normal(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
static void Generate_StoreIC_Normal_Strict(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
static void Generate_StoreIC_Megamorphic(MacroAssembler* masm) {
StoreIC::GenerateMegamorphic(masm, kNonStrictMode);
}
static void Generate_StoreIC_Megamorphic_Strict(MacroAssembler* masm) {
StoreIC::GenerateMegamorphic(masm, kStrictMode);
}
static void Generate_StoreIC_GlobalProxy(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kNonStrictMode);
}
static void Generate_StoreIC_GlobalProxy_Strict(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kStrictMode);
}
static void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) {
StoreStubCompiler::GenerateStoreViaSetter(masm, Handle<JSFunction>());
}
static void Generate_StoreIC_Generic(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kNonStrictMode);
}
static void Generate_StoreIC_Generic_Strict(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kStrictMode);
}
static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm, kNonStrictMode);
}
static void Generate_KeyedStoreIC_Generic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm, kStrictMode);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm, MISS);
}
static void Generate_KeyedStoreIC_MissForceGeneric(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm, MISS_FORCE_GENERIC);
}
static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
static void Generate_KeyedStoreIC_Slow_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_NonStrictArguments(MacroAssembler* masm) {
KeyedStoreIC::GenerateNonStrictArguments(masm);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateLoadICDebugBreak(masm);
}
static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateStoreICDebugBreak(masm);
}
static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedLoadICDebugBreak(masm);
}
static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedStoreICDebugBreak(masm);
}
static void Generate_CompareNilIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateCompareNilICDebugBreak(masm);
}
static void Generate_Return_DebugBreak(MacroAssembler* masm) {
Debug::GenerateReturnDebugBreak(masm);
}
static void Generate_CallFunctionStub_DebugBreak(MacroAssembler* masm) {
Debug::GenerateCallFunctionStubDebugBreak(masm);
}
static void Generate_CallFunctionStub_Recording_DebugBreak(
MacroAssembler* masm) {
Debug::GenerateCallFunctionStubRecordDebugBreak(masm);
}
static void Generate_CallConstructStub_DebugBreak(MacroAssembler* masm) {
Debug::GenerateCallConstructStubDebugBreak(masm);
}
static void Generate_CallConstructStub_Recording_DebugBreak(
MacroAssembler* masm) {
Debug::GenerateCallConstructStubRecordDebugBreak(masm);
}
static void Generate_Slot_DebugBreak(MacroAssembler* masm) {
Debug::GenerateSlotDebugBreak(masm);
}
static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) {
Debug::GeneratePlainReturnLiveEdit(masm);
}
static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) {
Debug::GenerateFrameDropperLiveEdit(masm);
}
#endif
Builtins::Builtins() : initialized_(false) {
memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count);
memset(names_, 0, sizeof(names_[0]) * builtin_count);
}
Builtins::~Builtins() {
}
#define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name),
Address const Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
#define DEF_JS_NAME(name, ignore) #name,
#define DEF_JS_ARGC(ignore, argc) argc,
const char* const Builtins::javascript_names_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_NAME)
};
int const Builtins::javascript_argc_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_ARGC)
};
#undef DEF_JS_NAME
#undef DEF_JS_ARGC
struct BuiltinDesc {
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
BuiltinExtraArguments extra_args;
};
#define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} }
class BuiltinFunctionTable {
public:
BuiltinDesc* functions() {
CallOnce(&once_, &Builtins::InitBuiltinFunctionTable);
return functions_;
}
OnceType once_;
BuiltinDesc functions_[Builtins::builtin_count + 1];
friend class Builtins;
};
static BuiltinFunctionTable builtin_function_table =
BUILTIN_FUNCTION_TABLE_INIT;
// Define array of pointers to generators and C builtin functions.
// We do this in a sort of roundabout way so that we can do the initialization
// within the lexical scope of Builtins:: and within a context where
// Code::Flags names a non-abstract type.
void Builtins::InitBuiltinFunctionTable() {
BuiltinDesc* functions = builtin_function_table.functions_;
functions[builtin_count].generator = NULL;
functions[builtin_count].c_code = NULL;
functions[builtin_count].s_name = NULL;
functions[builtin_count].name = builtin_count;
functions[builtin_count].flags = static_cast<Code::Flags>(0);
functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS;
#define DEF_FUNCTION_PTR_C(aname, aextra_args) \
functions->generator = FUNCTION_ADDR(Generate_Adaptor); \
functions->c_code = FUNCTION_ADDR(Builtin_##aname); \
functions->s_name = #aname; \
functions->name = c_##aname; \
functions->flags = Code::ComputeFlags(Code::BUILTIN); \
functions->extra_args = aextra_args; \
++functions;
#define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::kind, \
state, \
extra); \
functions->extra_args = NO_EXTRA_ARGUMENTS; \
++functions;
#define DEF_FUNCTION_PTR_H(aname, kind, extra) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags( \
Code::HANDLER, MONOMORPHIC, extra, Code::NORMAL, Code::kind); \
functions->extra_args = NO_EXTRA_ARGUMENTS; \
++functions;
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_H(DEF_FUNCTION_PTR_H)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
}
void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) {
ASSERT(!initialized_);
Heap* heap = isolate->heap();
// Create a scope for the handles in the builtins.
HandleScope scope(isolate);
const BuiltinDesc* functions = builtin_function_table.functions();
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects. Be careful
// with alignment, some platforms don't like unaligned code.
union { int force_alignment; byte buffer[8*KB]; } u;
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
MacroAssembler masm(isolate, u.buffer, sizeof u.buffer);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments);
Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
ASSERT(!masm.has_frame());
g(&masm, functions[i].name, functions[i].extra_args);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = functions[i].flags;
Object* code = NULL;
{
// During startup it's OK to always allocate and defer GC to later.
// This simplifies things because we don't need to retry.
AlwaysAllocateScope __scope__;
{ MaybeObject* maybe_code =
heap->CreateCode(desc, flags, masm.CodeObject());
if (!maybe_code->ToObject(&code)) {
v8::internal::V8::FatalProcessOutOfMemory("CreateCode");
}
}
}
// Log the event and add the code to the builtins array.
PROFILE(isolate,
CodeCreateEvent(Logger::BUILTIN_TAG,
Code::cast(code),
functions[i].s_name));
GDBJIT(AddCode(GDBJITInterface::BUILTIN,
functions[i].s_name,
Code::cast(code)));
builtins_[i] = code;
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
PrintF("Builtin: %s\n", functions[i].s_name);
Code::cast(code)->Disassemble(functions[i].s_name);
PrintF("\n");
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
initialized_ = true;
}
void Builtins::TearDown() {
initialized_ = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
// may be called during initialization (disassembler!)
if (initialized_) {
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kInterrupt, 0, 1);
}
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
#define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_H(name, kind, extra) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C)
BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A)
BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H)
BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A)
#undef DEFINE_BUILTIN_ACCESSOR_C
#undef DEFINE_BUILTIN_ACCESSOR_A
} } // namespace v8::internal