v8/test/cctest/wasm/test-run-wasm-64.cc

1576 lines
55 KiB
C++
Raw Normal View History

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "src/base/bits.h"
#include "src/wasm/wasm-macro-gen.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/test-signatures.h"
#include "test/cctest/wasm/wasm-run-utils.h"
// If the target architecture is 64-bit, enable all tests.
#if !V8_TARGET_ARCH_32_BIT || V8_TARGET_ARCH_X64
#define WASM_64 1
#else
#define WASM_64 0
#endif
#define CHECK_TRAP32(x) \
CHECK_EQ(0xdeadbeef, (bit_cast<uint32_t>(x)) & 0xFFFFFFFF)
#define CHECK_TRAP64(x) \
CHECK_EQ(0xdeadbeefdeadbeef, (bit_cast<uint64_t>(x)) & 0xFFFFFFFFFFFFFFFF)
#define CHECK_TRAP(x) CHECK_TRAP32(x)
#define asi64(x) static_cast<int64_t>(x)
#define asu64(x) static_cast<uint64_t>(x)
#define B2(a, b) kExprBlock, a, b, kExprEnd
#define B1(a) kExprBlock, a, kExprEnd
// Can't bridge macro land with nested macros.
#if V8_TARGET_ARCH_MIPS
#define MIPS true
#else
#define MIPS false
#endif
#define FOREACH_I64_OPERATOR(V) \
V(DepthFirst, true) \
V(I64Phi, true) \
V(I64Const, true) \
V(I64Return, true) \
V(I64Param, true) \
V(I64LoadStore, true) \
V(I64Add, true) \
V(I64Sub, true) \
V(I64Mul, !MIPS) \
V(I64DivS, true) \
V(I64DivU, true) \
V(I64RemS, true) \
V(I64RemU, true) \
V(I64And, true) \
V(I64Ior, true) \
V(I64Xor, true) \
V(I64Shl, true) \
V(I64ShrU, true) \
V(I64ShrS, true) \
V(I64Eq, true) \
V(I64Ne, true) \
V(I64LtS, true) \
V(I64LeS, true) \
V(I64LtU, true) \
V(I64LeU, true) \
V(I64GtS, true) \
V(I64GeS, true) \
V(I64GtU, true) \
V(I64GeU, true) \
V(I64Ctz, true) \
V(I64Clz, true) \
V(I64Popcnt, true) \
V(I32ConvertI64, true) \
V(I64SConvertF32, true) \
V(I64SConvertF64, true) \
V(I64UConvertF32, true) \
V(I64UConvertF64, true) \
V(I64SConvertI32, true) \
V(I64UConvertI32, true) \
V(F32SConvertI64, true) \
V(F32UConvertI64, true) \
V(F64SConvertI64, true) \
V(F64UConvertI64, true) \
V(F64ReinterpretI64, true) \
V(I64ReinterpretF64, true) \
V(I64Ror, true) \
V(I64Rol, true)
#define DECLARE_CONST(name, cond) static const bool kSupported_##name = cond;
FOREACH_I64_OPERATOR(DECLARE_CONST)
#undef DECLARE_CONST
#define REQUIRE(name) \
if (!WASM_64 && !kSupported_##name) return
WASM_EXEC_TEST(I64Const) {
REQUIRE(I64Const);
WasmRunner<int64_t> r(execution_mode);
const int64_t kExpectedValue = 0x1122334455667788LL;
// return(kExpectedValue)
BUILD(r, WASM_I64V_9(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
WASM_EXEC_TEST(I64Const_many) {
REQUIRE(I64Const);
int cntr = 0;
FOR_INT32_INPUTS(i) {
WasmRunner<int64_t> r(execution_mode);
const int64_t kExpectedValue = (static_cast<int64_t>(*i) << 32) | cntr;
// return(kExpectedValue)
BUILD(r, WASM_I64V(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
cntr++;
}
}
WASM_EXEC_TEST(Return_I64) {
REQUIRE(I64Return);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_RETURN1(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
WASM_EXEC_TEST(I64Add) {
REQUIRE(I64Add);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i + *j, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64Sub) {
REQUIRE(I64Sub);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i - *j, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64DivS) {
REQUIRE(I64DivS);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
if (*j == 0) {
CHECK_TRAP64(r.Call(*i, *j));
} else if (*j == -1 && *i == std::numeric_limits<int64_t>::min()) {
CHECK_TRAP64(r.Call(*i, *j));
} else {
CHECK_EQ(*i / *j, r.Call(*i, *j));
}
}
}
}
WASM_EXEC_TEST(I64DivS_Trap) {
REQUIRE(I64DivS);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(asi64(0), asi64(100)));
CHECK_TRAP64(r.Call(asi64(100), asi64(0)));
CHECK_TRAP64(r.Call(asi64(-1001), asi64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), asi64(-1)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), asi64(0)));
}
WASM_EXEC_TEST(I64DivS_Byzero_Const) {
REQUIRE(I64DivS);
for (int8_t denom = -2; denom < 8; denom++) {
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_DIVS(WASM_GET_LOCAL(0), WASM_I64V_1(denom)));
for (int64_t val = -7; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP64(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
WASM_EXEC_TEST(I64DivU) {
REQUIRE(I64DivU);
WasmRunner<uint64_t> r(execution_mode, MachineType::Uint64(),
MachineType::Uint64());
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
if (*j == 0) {
CHECK_TRAP64(r.Call(*i, *j));
} else {
CHECK_EQ(*i / *j, r.Call(*i, *j));
}
}
}
}
WASM_EXEC_TEST(I64DivU_Trap) {
REQUIRE(I64DivU);
WasmRunner<uint64_t> r(execution_mode, MachineType::Uint64(),
MachineType::Uint64());
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(0, r.Call(asu64(0), asu64(100)));
CHECK_TRAP64(r.Call(asu64(100), asu64(0)));
CHECK_TRAP64(r.Call(asu64(1001), asu64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<uint64_t>::max(), asu64(0)));
}
WASM_EXEC_TEST(I64DivU_Byzero_Const) {
REQUIRE(I64DivU);
for (uint64_t denom = 0xfffffffffffffffe; denom < 8; denom++) {
WasmRunner<uint64_t> r(execution_mode, MachineType::Uint64());
BUILD(r, WASM_I64_DIVU(WASM_GET_LOCAL(0), WASM_I64V_1(denom)));
for (uint64_t val = 0xfffffffffffffff0; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP64(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
WASM_EXEC_TEST(I64RemS) {
REQUIRE(I64RemS);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
if (*j == 0) {
CHECK_TRAP64(r.Call(*i, *j));
} else {
CHECK_EQ(*i % *j, r.Call(*i, *j));
}
}
}
}
WASM_EXEC_TEST(I64RemS_Trap) {
REQUIRE(I64RemS);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(33, r.Call(asi64(133), asi64(100)));
CHECK_EQ(0, r.Call(std::numeric_limits<int64_t>::min(), asi64(-1)));
CHECK_TRAP64(r.Call(asi64(100), asi64(0)));
CHECK_TRAP64(r.Call(asi64(-1001), asi64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<int64_t>::min(), asi64(0)));
}
WASM_EXEC_TEST(I64RemU) {
REQUIRE(I64RemU);
WasmRunner<uint64_t> r(execution_mode, MachineType::Uint64(),
MachineType::Uint64());
BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
if (*j == 0) {
CHECK_TRAP64(r.Call(*i, *j));
} else {
CHECK_EQ(*i % *j, r.Call(*i, *j));
}
}
}
}
WASM_EXEC_TEST(I64RemU_Trap) {
REQUIRE(I64RemU);
WasmRunner<uint64_t> r(execution_mode, MachineType::Uint64(),
MachineType::Uint64());
BUILD(r, WASM_I64_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(17, r.Call(asu64(217), asu64(100)));
CHECK_TRAP64(r.Call(asu64(100), asu64(0)));
CHECK_TRAP64(r.Call(asu64(1001), asu64(0)));
CHECK_TRAP64(r.Call(std::numeric_limits<uint64_t>::max(), asu64(0)));
}
WASM_EXEC_TEST(I64And) {
REQUIRE(I64And);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_AND(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ((*i) & (*j), r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64Ior) {
REQUIRE(I64Ior);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_IOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ((*i) | (*j), r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64Xor) {
REQUIRE(I64Xor);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ((*i) ^ (*j), r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64Shl) {
REQUIRE(I64Shl);
{
WasmRunner<uint64_t> r(execution_mode, MachineType::Uint64(),
MachineType::Uint64());
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
uint64_t expected = (*i) << (*j & 0x3f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(0)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 0, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(32)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 32, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 20, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHL(WASM_GET_LOCAL(0), WASM_I64V_1(40)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i << 40, r.Call(*i)); }
}
}
WASM_EXEC_TEST(I64ShrU) {
REQUIRE(I64ShrU);
{
WasmRunner<uint64_t> r(execution_mode, MachineType::Uint64(),
MachineType::Uint64());
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
uint64_t expected = (*i) >> (*j & 0x3f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(0)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 0, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(32)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 32, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 20, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SHR(WASM_GET_LOCAL(0), WASM_I64V_1(40)));
FOR_UINT64_INPUTS(i) { CHECK_EQ(*i >> 40, r.Call(*i)); }
}
}
WASM_EXEC_TEST(I64ShrS) {
REQUIRE(I64ShrS);
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
int64_t expected = (*i) >> (*j & 0x3f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(0)));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 0, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(32)));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 32, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(20)));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 20, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_SAR(WASM_GET_LOCAL(0), WASM_I64V_1(40)));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i >> 40, r.Call(*i)); }
}
}
WASM_EXEC_TEST(I64Eq) {
REQUIRE(I64Eq);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_EQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i == *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64Ne) {
REQUIRE(I64Ne);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_NE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i != *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64LtS) {
REQUIRE(I64LtS);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_LTS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i < *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64LeS) {
REQUIRE(I64LeS);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_LES(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i <= *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64LtU) {
REQUIRE(I64LtU);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_LTU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(*i < *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64LeU) {
REQUIRE(I64LeU);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_LEU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(*i <= *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64GtS) {
REQUIRE(I64GtS);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_GTS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i > *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64GeS) {
REQUIRE(I64GeS);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_GES(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i >= *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64GtU) {
REQUIRE(I64GtU);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_GTU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(*i > *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I64GeU) {
REQUIRE(I64GeU);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_GEU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) { CHECK_EQ(*i >= *j ? 1 : 0, r.Call(*i, *j)); }
}
}
WASM_EXEC_TEST(I32ConvertI64) {
REQUIRE(I32ConvertI64);
FOR_INT64_INPUTS(i) {
WasmRunner<int32_t> r(execution_mode);
BUILD(r, WASM_I32_CONVERT_I64(WASM_I64V(*i)));
CHECK_EQ(static_cast<int32_t>(*i), r.Call());
}
}
WASM_EXEC_TEST(I64SConvertI32) {
REQUIRE(I64SConvertI32);
WasmRunner<int64_t> r(execution_mode, MachineType::Int32());
BUILD(r, WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i)); }
}
WASM_EXEC_TEST(I64UConvertI32) {
REQUIRE(I64UConvertI32);
WasmRunner<int64_t> r(execution_mode, MachineType::Uint32());
BUILD(r, WASM_I64_UCONVERT_I32(WASM_GET_LOCAL(0)));
FOR_UINT32_INPUTS(i) { CHECK_EQ(static_cast<uint64_t>(*i), r.Call(*i)); }
}
WASM_EXEC_TEST(I64Popcnt) {
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0xffffffffffffffff},
{0, 0x0000000000000000},
{2, 0x0000080000008000},
{26, 0x1123456782345678},
{38, 0xffedcba09edcba09}};
WasmRunner<int64_t> r(execution_mode, MachineType::Uint64());
BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
WASM_EXEC_TEST(F32SConvertI64) {
REQUIRE(F32SConvertI64);
WasmRunner<float> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_F32_SCONVERT_I64(WASM_GET_LOCAL(0)));
X87: Change the test case for X87 Run_WasmF32SConvertI64/Run_WasmF64SConvertI64. The CL #34701 (https://codereview.chromium.org/1779123002/) added the Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 test cases and X87 failed at them. The reason is same as the CL #33630 (Issue 1649323002: X87: Change the test case for X87 RunRoundInt32ToFloat32), please refer: https://codereview.chromium.org/1649323002. Here is the key comments from CL #33630: Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function, those inlined functions has different behavior comparing with GCC ia32 build and x87 build. The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value. The V8 turbofan JITTed has exactly same result in both X87 and IA32 port. For CHECK_EQ(a, b) function, if a and b are double or float, it will has similar behaviors like CheckFloatEq(...) and CheckDoubleEq(...) function when compiled by GCC and causes the test case fail. So we add the following sentence to do type case to keep the same precision for Run_WasmF32SConvertI64/Run_WasmF64SConvertI64. Such as: volatile double expect = static_cast<float>(*i). ahaas put those codes in CHECK_FLOAT_EQ and CHECK_DOUBLE_EQ macros in CL #34534 (https://codereview.chromium.org/1773513002 ). So this CL replaced the CHECK_EQ in Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 to CHECK_FLOAT_EQ/CHECK_DOUBLE_EQ for x87 can pass Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 tests. BUG= Review URL: https://codereview.chromium.org/1784813004 Cr-Commit-Position: refs/heads/master@{#34813}
2016-03-16 13:14:01 +00:00
FOR_INT64_INPUTS(i) { CHECK_FLOAT_EQ(static_cast<float>(*i), r.Call(*i)); }
}
WASM_EXEC_TEST(F32UConvertI64) {
REQUIRE(F32UConvertI64);
struct {
uint64_t input;
uint32_t expected;
} values[] = {{0x0, 0x0},
{0x1, 0x3f800000},
{0xffffffff, 0x4f800000},
{0x1b09788b, 0x4dd84bc4},
{0x4c5fce8, 0x4c98bf9d},
{0xcc0de5bf, 0x4f4c0de6},
{0x2, 0x40000000},
{0x3, 0x40400000},
{0x4, 0x40800000},
{0x5, 0x40a00000},
{0x8, 0x41000000},
{0x9, 0x41100000},
{0xffffffffffffffff, 0x5f800000},
{0xfffffffffffffffe, 0x5f800000},
{0xfffffffffffffffd, 0x5f800000},
{0x0, 0x0},
{0x100000000, 0x4f800000},
{0xffffffff00000000, 0x5f800000},
{0x1b09788b00000000, 0x5dd84bc4},
{0x4c5fce800000000, 0x5c98bf9d},
{0xcc0de5bf00000000, 0x5f4c0de6},
{0x200000000, 0x50000000},
{0x300000000, 0x50400000},
{0x400000000, 0x50800000},
{0x500000000, 0x50a00000},
{0x800000000, 0x51000000},
{0x900000000, 0x51100000},
{0x273a798e187937a3, 0x5e1ce9e6},
{0xece3af835495a16b, 0x5f6ce3b0},
{0xb668ecc11223344, 0x5d3668ed},
{0x9e, 0x431e0000},
{0x43, 0x42860000},
{0xaf73, 0x472f7300},
{0x116b, 0x458b5800},
{0x658ecc, 0x4acb1d98},
{0x2b3b4c, 0x4a2ced30},
{0x88776655, 0x4f087766},
{0x70000000, 0x4ee00000},
{0x7200000, 0x4ce40000},
{0x7fffffff, 0x4f000000},
{0x56123761, 0x4eac246f},
{0x7fffff00, 0x4efffffe},
{0x761c4761eeeeeeee, 0x5eec388f},
{0x80000000eeeeeeee, 0x5f000000},
{0x88888888dddddddd, 0x5f088889},
{0xa0000000dddddddd, 0x5f200000},
{0xddddddddaaaaaaaa, 0x5f5dddde},
{0xe0000000aaaaaaaa, 0x5f600000},
{0xeeeeeeeeeeeeeeee, 0x5f6eeeef},
{0xfffffffdeeeeeeee, 0x5f800000},
{0xf0000000dddddddd, 0x5f700000},
{0x7fffffdddddddd, 0x5b000000},
{0x3fffffaaaaaaaa, 0x5a7fffff},
{0x1fffffaaaaaaaa, 0x59fffffd},
{0xfffff, 0x497ffff0},
{0x7ffff, 0x48ffffe0},
{0x3ffff, 0x487fffc0},
{0x1ffff, 0x47ffff80},
{0xffff, 0x477fff00},
{0x7fff, 0x46fffe00},
{0x3fff, 0x467ffc00},
{0x1fff, 0x45fff800},
{0xfff, 0x457ff000},
{0x7ff, 0x44ffe000},
{0x3ff, 0x447fc000},
{0x1ff, 0x43ff8000},
{0x3fffffffffff, 0x56800000},
{0x1fffffffffff, 0x56000000},
{0xfffffffffff, 0x55800000},
{0x7ffffffffff, 0x55000000},
{0x3ffffffffff, 0x54800000},
{0x1ffffffffff, 0x54000000},
{0x8000008000000000, 0x5f000000},
{0x8000008000000001, 0x5f000001},
{0x8000000000000400, 0x5f000000},
{0x8000000000000401, 0x5f000000}};
WasmRunner<float> r(execution_mode, MachineType::Uint64());
BUILD(r, WASM_F32_UCONVERT_I64(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(bit_cast<float>(values[i].expected), r.Call(values[i].input));
}
}
WASM_EXEC_TEST(F64SConvertI64) {
REQUIRE(F64SConvertI64);
WasmRunner<double> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_F64_SCONVERT_I64(WASM_GET_LOCAL(0)));
X87: Change the test case for X87 Run_WasmF32SConvertI64/Run_WasmF64SConvertI64. The CL #34701 (https://codereview.chromium.org/1779123002/) added the Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 test cases and X87 failed at them. The reason is same as the CL #33630 (Issue 1649323002: X87: Change the test case for X87 RunRoundInt32ToFloat32), please refer: https://codereview.chromium.org/1649323002. Here is the key comments from CL #33630: Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function, those inlined functions has different behavior comparing with GCC ia32 build and x87 build. The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value. The V8 turbofan JITTed has exactly same result in both X87 and IA32 port. For CHECK_EQ(a, b) function, if a and b are double or float, it will has similar behaviors like CheckFloatEq(...) and CheckDoubleEq(...) function when compiled by GCC and causes the test case fail. So we add the following sentence to do type case to keep the same precision for Run_WasmF32SConvertI64/Run_WasmF64SConvertI64. Such as: volatile double expect = static_cast<float>(*i). ahaas put those codes in CHECK_FLOAT_EQ and CHECK_DOUBLE_EQ macros in CL #34534 (https://codereview.chromium.org/1773513002 ). So this CL replaced the CHECK_EQ in Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 to CHECK_FLOAT_EQ/CHECK_DOUBLE_EQ for x87 can pass Run_WasmF32SConvertI64/Run_WasmF64SConvertI64 tests. BUG= Review URL: https://codereview.chromium.org/1784813004 Cr-Commit-Position: refs/heads/master@{#34813}
2016-03-16 13:14:01 +00:00
FOR_INT64_INPUTS(i) { CHECK_DOUBLE_EQ(static_cast<double>(*i), r.Call(*i)); }
}
WASM_EXEC_TEST(F64UConvertI64) {
REQUIRE(F64UConvertI64);
struct {
uint64_t input;
uint64_t expected;
} values[] = {{0x0, 0x0},
{0x1, 0x3ff0000000000000},
{0xffffffff, 0x41efffffffe00000},
{0x1b09788b, 0x41bb09788b000000},
{0x4c5fce8, 0x419317f3a0000000},
{0xcc0de5bf, 0x41e981bcb7e00000},
{0x2, 0x4000000000000000},
{0x3, 0x4008000000000000},
{0x4, 0x4010000000000000},
{0x5, 0x4014000000000000},
{0x8, 0x4020000000000000},
{0x9, 0x4022000000000000},
{0xffffffffffffffff, 0x43f0000000000000},
{0xfffffffffffffffe, 0x43f0000000000000},
{0xfffffffffffffffd, 0x43f0000000000000},
{0x100000000, 0x41f0000000000000},
{0xffffffff00000000, 0x43efffffffe00000},
{0x1b09788b00000000, 0x43bb09788b000000},
{0x4c5fce800000000, 0x439317f3a0000000},
{0xcc0de5bf00000000, 0x43e981bcb7e00000},
{0x200000000, 0x4200000000000000},
{0x300000000, 0x4208000000000000},
{0x400000000, 0x4210000000000000},
{0x500000000, 0x4214000000000000},
{0x800000000, 0x4220000000000000},
{0x900000000, 0x4222000000000000},
{0x273a798e187937a3, 0x43c39d3cc70c3c9c},
{0xece3af835495a16b, 0x43ed9c75f06a92b4},
{0xb668ecc11223344, 0x43a6cd1d98224467},
{0x9e, 0x4063c00000000000},
{0x43, 0x4050c00000000000},
{0xaf73, 0x40e5ee6000000000},
{0x116b, 0x40b16b0000000000},
{0x658ecc, 0x415963b300000000},
{0x2b3b4c, 0x41459da600000000},
{0x88776655, 0x41e10eeccaa00000},
{0x70000000, 0x41dc000000000000},
{0x7200000, 0x419c800000000000},
{0x7fffffff, 0x41dfffffffc00000},
{0x56123761, 0x41d5848dd8400000},
{0x7fffff00, 0x41dfffffc0000000},
{0x761c4761eeeeeeee, 0x43dd8711d87bbbbc},
{0x80000000eeeeeeee, 0x43e00000001dddde},
{0x88888888dddddddd, 0x43e11111111bbbbc},
{0xa0000000dddddddd, 0x43e40000001bbbbc},
{0xddddddddaaaaaaaa, 0x43ebbbbbbbb55555},
{0xe0000000aaaaaaaa, 0x43ec000000155555},
{0xeeeeeeeeeeeeeeee, 0x43edddddddddddde},
{0xfffffffdeeeeeeee, 0x43efffffffbdddde},
{0xf0000000dddddddd, 0x43ee0000001bbbbc},
{0x7fffffdddddddd, 0x435ffffff7777777},
{0x3fffffaaaaaaaa, 0x434fffffd5555555},
{0x1fffffaaaaaaaa, 0x433fffffaaaaaaaa},
{0xfffff, 0x412ffffe00000000},
{0x7ffff, 0x411ffffc00000000},
{0x3ffff, 0x410ffff800000000},
{0x1ffff, 0x40fffff000000000},
{0xffff, 0x40efffe000000000},
{0x7fff, 0x40dfffc000000000},
{0x3fff, 0x40cfff8000000000},
{0x1fff, 0x40bfff0000000000},
{0xfff, 0x40affe0000000000},
{0x7ff, 0x409ffc0000000000},
{0x3ff, 0x408ff80000000000},
{0x1ff, 0x407ff00000000000},
{0x3fffffffffff, 0x42cfffffffffff80},
{0x1fffffffffff, 0x42bfffffffffff00},
{0xfffffffffff, 0x42affffffffffe00},
{0x7ffffffffff, 0x429ffffffffffc00},
{0x3ffffffffff, 0x428ffffffffff800},
{0x1ffffffffff, 0x427ffffffffff000},
{0x8000008000000000, 0x43e0000010000000},
{0x8000008000000001, 0x43e0000010000000},
{0x8000000000000400, 0x43e0000000000000},
{0x8000000000000401, 0x43e0000000000001}};
WasmRunner<double> r(execution_mode, MachineType::Uint64());
BUILD(r, WASM_F64_UCONVERT_I64(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(bit_cast<double>(values[i].expected), r.Call(values[i].input));
}
}
WASM_EXEC_TEST(I64SConvertF32a) {
WasmRunner<int64_t> r(execution_mode, MachineType::Float32());
BUILD(r, WASM_I64_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(std::numeric_limits<int64_t>::max()) &&
*i >= static_cast<float>(std::numeric_limits<int64_t>::min())) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(I64SConvertF64a) {
WasmRunner<int64_t> r(execution_mode, MachineType::Float64());
BUILD(r, WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<double>(std::numeric_limits<int64_t>::max()) &&
*i >= static_cast<double>(std::numeric_limits<int64_t>::min())) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(I64UConvertF32a) {
WasmRunner<uint64_t> r(execution_mode, MachineType::Float32());
BUILD(r, WASM_I64_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(std::numeric_limits<uint64_t>::max()) &&
*i > -1) {
CHECK_EQ(static_cast<uint64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(I64UConvertF64a) {
WasmRunner<uint64_t> r(execution_mode, MachineType::Float64());
BUILD(r, WASM_I64_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<float>(std::numeric_limits<uint64_t>::max()) &&
*i > -1) {
CHECK_EQ(static_cast<uint64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(CallI64Parameter) {
// Build the target function.
LocalType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kAstI64;
param_types[3] = kAstI32;
param_types[4] = kAstI32;
FunctionSig sig(1, 19, param_types);
for (int i = 0; i < 19; i++) {
TestingModule module(execution_mode);
WasmFunctionCompiler t(&sig, &module);
if (i == 2 || i == 3) {
continue;
} else {
BUILD(t, WASM_GET_LOCAL(i));
}
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(
r,
WASM_I32_CONVERT_I64(WASM_CALL_FUNCTIONN(
19, index, WASM_I64V_9(0xbcd12340000000b),
WASM_I64V_9(0xbcd12340000000c), WASM_I32V_1(0xd),
WASM_I32_CONVERT_I64(WASM_I64V_9(0xbcd12340000000e)),
WASM_I64V_9(0xbcd12340000000f), WASM_I64V_10(0xbcd1234000000010),
WASM_I64V_10(0xbcd1234000000011), WASM_I64V_10(0xbcd1234000000012),
WASM_I64V_10(0xbcd1234000000013), WASM_I64V_10(0xbcd1234000000014),
WASM_I64V_10(0xbcd1234000000015), WASM_I64V_10(0xbcd1234000000016),
WASM_I64V_10(0xbcd1234000000017), WASM_I64V_10(0xbcd1234000000018),
WASM_I64V_10(0xbcd1234000000019), WASM_I64V_10(0xbcd123400000001a),
WASM_I64V_10(0xbcd123400000001b), WASM_I64V_10(0xbcd123400000001c),
WASM_I64V_10(0xbcd123400000001d))));
CHECK_EQ(i + 0xb, r.Call());
}
}
void TestI64Binop(WasmExecutionMode execution_mode, WasmOpcode opcode,
int64_t expected, int64_t a, int64_t b) {
{
WasmRunner<int64_t> r(execution_mode);
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_I64V(a), WASM_I64V(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestI64Cmp(WasmExecutionMode execution_mode, WasmOpcode opcode,
int64_t expected, int64_t a, int64_t b) {
{
WasmRunner<int32_t> r(execution_mode);
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_I64V(a), WASM_I64V(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
#define TEST_I64_BINOP(name, expected, a, b) \
do { \
if (WASM_64 || kSupported_##name) \
TestI64Binop(execution_mode, kExpr##name, expected, a, b); \
} while (false)
WASM_EXEC_TEST(I64Binops) {
TEST_I64_BINOP(I64Add, -5586332274295447011, 0x501b72ebabc26847,
0x625de9793d8f79d6);
TEST_I64_BINOP(I64Sub, 9001903251710731490, 0xf24fe6474640002e,
0x7562b6f711991b4c);
TEST_I64_BINOP(I64Mul, -4569547818546064176, 0x231a263c2cbc6451,
0xead44de6bd3e23d0);
TEST_I64_BINOP(I64Mul, -25963122347507043, 0x4da1fa47c9352b73,
0x91fe82317aa035af);
TEST_I64_BINOP(I64Mul, 7640290486138131960, 0x185731abe8eea47c,
0x714ec59f1380d4c2);
TEST_I64_BINOP(I64DivS, -91517, 0x93b1190a34de56a0, 0x00004d8f68863948);
TEST_I64_BINOP(I64DivU, 149016, 0xe15b3727e8a2080a, 0x0000631bfa72db8b);
TEST_I64_BINOP(I64RemS, -664128064149968, 0x9a78b4e4fe708692,
0x0003e0b6b3be7609);
TEST_I64_BINOP(I64RemU, 1742040017332765, 0x0ce84708c6258c81,
0x000a6fde82016697);
TEST_I64_BINOP(I64And, 2531040582801836054, 0xaf257d1602644a16,
0x33b290a91a10d997);
TEST_I64_BINOP(I64Ior, 8556201506536114940, 0x169d9be7bd3f0a5c,
0x66bca28d77af40e8);
TEST_I64_BINOP(I64Xor, -4605655183785456377, 0xb6ea20a5d48e85b8,
0x76ff4da6c80688bf);
TEST_I64_BINOP(I64Shl, -7240704056088331264, 0xef4dc1ed030e8ffe, 9);
TEST_I64_BINOP(I64ShrU, 12500673744059159, 0xb1a52fa7deec5d14, 10);
TEST_I64_BINOP(I64ShrS, 1725103446999874, 0x3107c791461a112b, 11);
TEST_I64_BINOP(I64Ror, -8960135652432576946, 0x73418d1717e4e83a, 12);
TEST_I64_BINOP(I64Ror, 7617662827409989779, 0xebff67cf0c126d36, 13);
TEST_I64_BINOP(I64Rol, -2097714064174346012, 0x43938b8db0b0f230, 14);
TEST_I64_BINOP(I64Rol, 8728493013947314237, 0xe07af243ac4d219d, 15);
}
#define TEST_I64_CMP(name, expected, a, b) \
do { \
if (WASM_64 || kSupported_##name) \
TestI64Cmp(execution_mode, kExpr##name, expected, a, b); \
} while (false)
WASM_EXEC_TEST(I64Compare) {
TEST_I64_CMP(I64Eq, 0, 0xB915D8FA494064F0, 0x04D700B2536019A3);
TEST_I64_CMP(I64Ne, 1, 0xC2FAFAAAB0446CDC, 0x52A3328F780C97A3);
TEST_I64_CMP(I64LtS, 0, 0x673636E6306B0578, 0x028EC9ECA78F7227);
TEST_I64_CMP(I64LeS, 1, 0xAE5214114B86A0FA, 0x7C1D21DA3DFD0CCF);
TEST_I64_CMP(I64LtU, 0, 0x7D52166381EC1CE0, 0x59F4A6A9E78CD3D8);
TEST_I64_CMP(I64LeU, 1, 0xE4169A385C7EA0E0, 0xFBDBED2C8781E5BC);
TEST_I64_CMP(I64GtS, 0, 0x9D08FF8FB5F42E81, 0xD4E5C9D7FE09F621);
TEST_I64_CMP(I64GeS, 1, 0x78DA3B2F73264E0F, 0x6FE5E2A67C501CBE);
TEST_I64_CMP(I64GtU, 0, 0x8F691284E44F7DA9, 0xD5EA9BC1EE149192);
TEST_I64_CMP(I64GeU, 0, 0x0886A0C58C7AA224, 0x5DDBE5A81FD7EE47);
}
WASM_EXEC_TEST(I64Clz) {
REQUIRE(I64Clz);
struct {
int64_t expected;
uint64_t input;
} values[] = {{0, 0x8000100000000000}, {1, 0x4000050000000000},
{2, 0x2000030000000000}, {3, 0x1000000300000000},
{4, 0x0805000000000000}, {5, 0x0400600000000000},
{6, 0x0200000000000000}, {7, 0x010000a000000000},
{8, 0x00800c0000000000}, {9, 0x0040000000000000},
{10, 0x0020000d00000000}, {11, 0x00100f0000000000},
{12, 0x0008000000000000}, {13, 0x0004100000000000},
{14, 0x0002002000000000}, {15, 0x0001030000000000},
{16, 0x0000804000000000}, {17, 0x0000400500000000},
{18, 0x0000205000000000}, {19, 0x0000170000000000},
{20, 0x0000087000000000}, {21, 0x0000040500000000},
{22, 0x0000020300000000}, {23, 0x0000010100000000},
{24, 0x0000008900000000}, {25, 0x0000004100000000},
{26, 0x0000002200000000}, {27, 0x0000001300000000},
{28, 0x0000000800000000}, {29, 0x0000000400000000},
{30, 0x0000000200000000}, {31, 0x0000000100000000},
{32, 0x0000000080001000}, {33, 0x0000000040000500},
{34, 0x0000000020000300}, {35, 0x0000000010000003},
{36, 0x0000000008050000}, {37, 0x0000000004006000},
{38, 0x0000000002000000}, {39, 0x00000000010000a0},
{40, 0x0000000000800c00}, {41, 0x0000000000400000},
{42, 0x000000000020000d}, {43, 0x0000000000100f00},
{44, 0x0000000000080000}, {45, 0x0000000000041000},
{46, 0x0000000000020020}, {47, 0x0000000000010300},
{48, 0x0000000000008040}, {49, 0x0000000000004005},
{50, 0x0000000000002050}, {51, 0x0000000000001700},
{52, 0x0000000000000870}, {53, 0x0000000000000405},
{54, 0x0000000000000203}, {55, 0x0000000000000101},
{56, 0x0000000000000089}, {57, 0x0000000000000041},
{58, 0x0000000000000022}, {59, 0x0000000000000013},
{60, 0x0000000000000008}, {61, 0x0000000000000004},
{62, 0x0000000000000002}, {63, 0x0000000000000001},
{64, 0x0000000000000000}};
WasmRunner<int64_t> r(execution_mode, MachineType::Uint64());
BUILD(r, WASM_I64_CLZ(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
WASM_EXEC_TEST(I64Ctz) {
REQUIRE(I64Ctz);
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0x0000000000000000}, {63, 0x8000000000000000},
{62, 0x4000000000000000}, {61, 0x2000000000000000},
{60, 0x1000000000000000}, {59, 0xa800000000000000},
{58, 0xf400000000000000}, {57, 0x6200000000000000},
{56, 0x9100000000000000}, {55, 0xcd80000000000000},
{54, 0x0940000000000000}, {53, 0xaf20000000000000},
{52, 0xac10000000000000}, {51, 0xe0b8000000000000},
{50, 0x9ce4000000000000}, {49, 0xc792000000000000},
{48, 0xb8f1000000000000}, {47, 0x3b9f800000000000},
{46, 0xdb4c400000000000}, {45, 0xe9a3200000000000},
{44, 0xfca6100000000000}, {43, 0x6c8a780000000000},
{42, 0x8ce5a40000000000}, {41, 0xcb7d020000000000},
{40, 0xcb4dc10000000000}, {39, 0xdfbec58000000000},
{38, 0x27a9db4000000000}, {37, 0xde3bcb2000000000},
{36, 0xd7e8a61000000000}, {35, 0x9afdbc8800000000},
{34, 0x9afdbc8400000000}, {33, 0x9afdbc8200000000},
{32, 0x9afdbc8100000000}, {31, 0x0000000080000000},
{30, 0x0000000040000000}, {29, 0x0000000020000000},
{28, 0x0000000010000000}, {27, 0x00000000a8000000},
{26, 0x00000000f4000000}, {25, 0x0000000062000000},
{24, 0x0000000091000000}, {23, 0x00000000cd800000},
{22, 0x0000000009400000}, {21, 0x00000000af200000},
{20, 0x00000000ac100000}, {19, 0x00000000e0b80000},
{18, 0x000000009ce40000}, {17, 0x00000000c7920000},
{16, 0x00000000b8f10000}, {15, 0x000000003b9f8000},
{14, 0x00000000db4c4000}, {13, 0x00000000e9a32000},
{12, 0x00000000fca61000}, {11, 0x000000006c8a7800},
{10, 0x000000008ce5a400}, {9, 0x00000000cb7d0200},
{8, 0x00000000cb4dc100}, {7, 0x00000000dfbec580},
{6, 0x0000000027a9db40}, {5, 0x00000000de3bcb20},
{4, 0x00000000d7e8a610}, {3, 0x000000009afdbc88},
{2, 0x000000009afdbc84}, {1, 0x000000009afdbc82},
{0, 0x000000009afdbc81}};
WasmRunner<int64_t> r(execution_mode, MachineType::Uint64());
BUILD(r, WASM_I64_CTZ(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
WASM_EXEC_TEST(I64Popcnt2) {
REQUIRE(I64Popcnt);
struct {
int64_t expected;
uint64_t input;
} values[] = {{64, 0xffffffffffffffff},
{0, 0x0000000000000000},
{2, 0x0000080000008000},
{26, 0x1123456782345678},
{38, 0xffedcba09edcba09}};
WasmRunner<int64_t> r(execution_mode, MachineType::Uint64());
BUILD(r, WASM_I64_POPCNT(WASM_GET_LOCAL(0)));
for (size_t i = 0; i < arraysize(values); i++) {
CHECK_EQ(values[i].expected, r.Call(values[i].input));
}
}
// Test the WasmRunner with an Int64 return value and different numbers of
// Int64 parameters.
WASM_EXEC_TEST(I64WasmRunner) {
REQUIRE(I64Param);
REQUIRE(I64Xor);
{FOR_INT64_INPUTS(i){WasmRunner<int64_t> r(execution_mode);
BUILD(r, WASM_I64V(*i));
CHECK_EQ(*i, r.Call());
}
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT64_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) { CHECK_EQ(*i ^ *j, r.Call(*i, *j)); }
}
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0),
WASM_I64_XOR(WASM_GET_LOCAL(1), WASM_GET_LOCAL(2))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(*i ^ *j ^ *j, r.Call(*i, *j, *j));
CHECK_EQ(*j ^ *i ^ *j, r.Call(*j, *i, *j));
CHECK_EQ(*j ^ *j ^ *i, r.Call(*j, *j, *i));
}
}
}
{
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64(), MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_XOR(WASM_GET_LOCAL(0),
WASM_I64_XOR(WASM_GET_LOCAL(1),
WASM_I64_XOR(WASM_GET_LOCAL(2),
WASM_GET_LOCAL(3)))));
FOR_INT64_INPUTS(i) {
FOR_INT64_INPUTS(j) {
CHECK_EQ(*i ^ *j ^ *j ^ *j, r.Call(*i, *j, *j, *j));
CHECK_EQ(*j ^ *i ^ *j ^ *j, r.Call(*j, *i, *j, *j));
CHECK_EQ(*j ^ *j ^ *i ^ *j, r.Call(*j, *j, *i, *j));
CHECK_EQ(*j ^ *j ^ *j ^ *i, r.Call(*j, *j, *j, *i));
}
}
}
}
WASM_EXEC_TEST(Call_Int64Sub) {
REQUIRE(I64Sub);
// Build the target function.
TestSignatures sigs;
TestingModule module(execution_mode);
WasmFunctionCompiler t(sigs.l_ll(), &module);
BUILD(t, WASM_I64_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd();
// Build the caller function.
WasmRunner<int64_t> r(&module, MachineType::Int64(), MachineType::Int64());
BUILD(r, WASM_CALL_FUNCTION2(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int64_t a = static_cast<int64_t>(*i) << 32 |
(static_cast<int64_t>(*j) | 0xFFFFFFFF);
int64_t b = static_cast<int64_t>(*j) << 32 |
(static_cast<int64_t>(*i) | 0xFFFFFFFF);
int64_t expected = static_cast<int64_t>(static_cast<uint64_t>(a) -
static_cast<uint64_t>(b));
CHECK_EQ(expected, r.Call(a, b));
}
}
}
WASM_EXEC_TEST(LoadStoreI64_sx) {
REQUIRE(I64LoadStore);
REQUIRE(DepthFirst);
byte loads[] = {kExprI64LoadMem8S, kExprI64LoadMem16S, kExprI64LoadMem32S,
kExprI64LoadMem};
for (size_t m = 0; m < arraysize(loads); m++) {
TestingModule module(execution_mode);
byte* memory = module.AddMemoryElems<byte>(16);
WasmRunner<int64_t> r(&module);
byte code[] = {
kExprI8Const, 8, // --
kExprI8Const, 0, // --
loads[m], // --
ZERO_ALIGNMENT, // --
ZERO_OFFSET, // --
kExprI64StoreMem, // --
ZERO_ALIGNMENT, // --
ZERO_OFFSET // --
};
r.Build(code, code + arraysize(code));
// Try a bunch of different negative values.
for (int i = -1; i >= -128; i -= 11) {
int size = 1 << m;
module.BlankMemory();
memory[size - 1] = static_cast<byte>(i); // set the high order byte.
int64_t expected = static_cast<int64_t>(i) << ((size - 1) * 8);
CHECK_EQ(expected, r.Call());
CHECK_EQ(static_cast<byte>(i), memory[8 + size - 1]);
for (int j = size; j < 8; j++) {
CHECK_EQ(255, memory[8 + j]);
}
}
}
}
WASM_EXEC_TEST(I64SConvertF32b) {
REQUIRE(I64SConvertF32);
WasmRunner<int64_t> r(execution_mode, MachineType::Float32());
BUILD(r, WASM_I64_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(INT64_MAX) &&
*i >= static_cast<float>(INT64_MIN)) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(I64SConvertF64b) {
REQUIRE(I64SConvertF64);
WasmRunner<int64_t> r(execution_mode, MachineType::Float64());
BUILD(r, WASM_I64_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<double>(INT64_MAX) &&
*i >= static_cast<double>(INT64_MIN)) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(I64UConvertF32b) {
REQUIRE(I64UConvertF32);
WasmRunner<uint64_t> r(execution_mode, MachineType::Float32());
BUILD(r, WASM_I64_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(UINT64_MAX) && *i > -1) {
CHECK_EQ(static_cast<uint64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(I64UConvertF64b) {
REQUIRE(I64UConvertF64);
WasmRunner<uint64_t> r(execution_mode, MachineType::Float64());
BUILD(r, WASM_I64_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < static_cast<float>(UINT64_MAX) && *i > -1) {
CHECK_EQ(static_cast<uint64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP64(r.Call(*i));
}
}
}
WASM_EXEC_TEST(I64ReinterpretF64) {
REQUIRE(I64ReinterpretF64);
TestingModule module(execution_mode);
int64_t* memory = module.AddMemoryElems<int64_t>(8);
WasmRunner<int64_t> r(&module);
BUILD(r, WASM_I64_REINTERPRET_F64(
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int64_t expected = static_cast<int64_t>(*i) * 0x300010001;
module.WriteMemory(&memory[0], expected);
CHECK_EQ(expected, r.Call());
}
}
WASM_EXEC_TEST(F64ReinterpretI64) {
REQUIRE(F64ReinterpretI64);
TestingModule module(execution_mode);
int64_t* memory = module.AddMemoryElems<int64_t>(8);
WasmRunner<int64_t> r(&module, MachineType::Int64());
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(MachineType::Float64(), WASM_ZERO,
WASM_F64_REINTERPRET_I64(WASM_GET_LOCAL(0))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int64_t expected = static_cast<int64_t>(*i) * 0x300010001;
CHECK_EQ(expected, r.Call(expected));
CHECK_EQ(expected, module.ReadMemory<int64_t>(&memory[0]));
}
}
WASM_EXEC_TEST(LoadMemI64) {
REQUIRE(I64LoadStore);
TestingModule module(execution_mode);
int64_t* memory = module.AddMemoryElems<int64_t>(8);
module.RandomizeMemory(1111);
WasmRunner<int64_t> r(&module);
BUILD(r, WASM_LOAD_MEM(MachineType::Int64(), WASM_I8(0)));
module.WriteMemory<int64_t>(&memory[0], 0xaabbccdd00112233LL);
CHECK_EQ(0xaabbccdd00112233LL, r.Call());
module.WriteMemory<int64_t>(&memory[0], 0x33aabbccdd001122LL);
CHECK_EQ(0x33aabbccdd001122LL, r.Call());
module.WriteMemory<int64_t>(&memory[0], 77777777);
CHECK_EQ(77777777, r.Call());
}
WASM_EXEC_TEST(LoadMemI64_alignment) {
REQUIRE(I64LoadStore);
TestingModule module(execution_mode);
int64_t* memory = module.AddMemoryElems<int64_t>(8);
for (byte alignment = 0; alignment <= 3; alignment++) {
module.RandomizeMemory(1111);
WasmRunner<int64_t> r(&module);
BUILD(r,
WASM_LOAD_MEM_ALIGNMENT(MachineType::Int64(), WASM_I8(0), alignment));
module.WriteMemory<int64_t>(&memory[0], 0xaabbccdd00112233LL);
CHECK_EQ(0xaabbccdd00112233LL, r.Call());
module.WriteMemory<int64_t>(&memory[0], 0x33aabbccdd001122LL);
CHECK_EQ(0x33aabbccdd001122LL, r.Call());
module.WriteMemory<int64_t>(&memory[0], 77777777);
CHECK_EQ(77777777, r.Call());
}
}
WASM_EXEC_TEST(MemI64_Sum) {
REQUIRE(I64LoadStore);
REQUIRE(I64Add);
REQUIRE(I64Sub);
REQUIRE(I64Phi);
const int kNumElems = 20;
TestingModule module(execution_mode);
uint64_t* memory = module.AddMemoryElems<uint64_t>(kNumElems);
WasmRunner<uint64_t> r(&module, MachineType::Int32());
const byte kSum = r.AllocateLocal(kAstI64);
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_I64_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Int64(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(8))))),
WASM_GET_LOCAL(1)));
// Run 4 trials.
for (int i = 0; i < 3; i++) {
module.RandomizeMemory(i * 33);
uint64_t expected = 0;
for (size_t j = kNumElems - 1; j > 0; j--) {
expected += module.ReadMemory(&memory[j]);
}
uint64_t result = r.Call(8 * (kNumElems - 1));
CHECK_EQ(expected, result);
}
}
WASM_EXEC_TEST(StoreMemI64_alignment) {
TestingModule module(execution_mode);
int64_t* memory = module.AddMemoryElems<int64_t>(4);
const int64_t kWritten = 0x12345678abcd0011ll;
for (byte i = 0; i <= 3; i++) {
WasmRunner<int64_t> r(&module, MachineType::Int64());
BUILD(r, WASM_STORE_MEM_ALIGNMENT(MachineType::Int64(), WASM_ZERO, i,
WASM_GET_LOCAL(0)));
module.RandomizeMemory(1111);
module.WriteMemory<int64_t>(&memory[0], 0);
CHECK_EQ(kWritten, r.Call(kWritten));
CHECK_EQ(kWritten, module.ReadMemory(&memory[0]));
}
}
WASM_EXEC_TEST(I64Global) {
REQUIRE(I64LoadStore);
REQUIRE(I64SConvertI32);
REQUIRE(I64And);
REQUIRE(DepthFirst);
TestingModule module(execution_mode);
int64_t* global = module.AddGlobal<int64_t>(MachineType::Int64());
WasmRunner<int32_t> r(&module, MachineType::Int32());
// global = global + p0
BUILD(r, B2(WASM_STORE_GLOBAL(
0, WASM_I64_AND(WASM_LOAD_GLOBAL(0),
WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
module.WriteMemory<int64_t>(global, 0xFFFFFFFFFFFFFFFFLL);
for (int i = 9; i < 444444; i += 111111) {
int64_t expected = *global & i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
WASM_EXEC_TEST(I64Eqz) {
REQUIRE(I64Eq);
WasmRunner<int32_t> r(execution_mode, MachineType::Int64());
BUILD(r, WASM_I64_EQZ(WASM_GET_LOCAL(0)));
FOR_INT64_INPUTS(i) {
int32_t result = *i == 0 ? 1 : 0;
CHECK_EQ(result, r.Call(*i));
}
}
WASM_EXEC_TEST(I64Ror) {
REQUIRE(I64Ror);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_ROR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
int64_t expected = bits::RotateRight64(*i, *j & 0x3f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
WASM_EXEC_TEST(I64Rol) {
REQUIRE(I64Rol);
WasmRunner<int64_t> r(execution_mode, MachineType::Int64(),
MachineType::Int64());
BUILD(r, WASM_I64_ROL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT64_INPUTS(i) {
FOR_UINT64_INPUTS(j) {
int64_t expected = bits::RotateLeft64(*i, *j & 0x3f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
WASM_EXEC_TEST(StoreMem_offset_oob_i64) {
TestingModule module(execution_mode);
byte* memory = module.AddMemoryElems<byte>(32);
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
for (size_t m = 0; m < arraysize(machineTypes); m++) {
module.RandomizeMemory(1119 + static_cast<int>(m));
WasmRunner<int32_t> r(&module, MachineType::Uint32());
BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0),
WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)),
WASM_ZERO);
byte memsize = WasmOpcodes::MemSize(machineTypes[m]);
uint32_t boundary = 24 - memsize;
CHECK_EQ(0, r.Call(boundary)); // in bounds.
CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize));
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
#define ADD_CODE(vec, ...) \
do { \
byte __buf[] = {__VA_ARGS__}; \
for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \
} while (false)
static void CompileCallIndirectMany(LocalType param) {
// Make sure we don't run out of registers when compiling indirect calls
// with many many parameters.
TestSignatures sigs;
for (byte num_params = 0; num_params < 40; num_params++) {
v8::base::AccountingAllocator allocator;
Zone zone(&allocator);
HandleScope scope(CcTest::InitIsolateOnce());
TestingModule module(kExecuteCompiled);
FunctionSig* sig = sigs.many(&zone, kAstStmt, param, num_params);
module.AddSignature(sig);
module.AddSignature(sig);
module.AddIndirectFunctionTable(nullptr, 0);
WasmFunctionCompiler t(sig, &module);
std::vector<byte> code;
ADD_CODE(code, kExprI8Const, 0);
for (byte p = 0; p < num_params; p++) {
ADD_CODE(code, kExprGetLocal, p);
}
ADD_CODE(code, kExprCallIndirect, static_cast<byte>(num_params), 1);
t.Build(&code[0], &code[0] + code.size());
t.Compile();
}
}
TEST(Compile_Wasm_CallIndirect_Many_i64) { CompileCallIndirectMany(kAstI64); }
static void Run_WasmMixedCall_N(WasmExecutionMode execution_mode, int start) {
const int kExpected = 6333;
const int kElemSize = 8;
TestSignatures sigs;
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Int64(),
MachineType::Float64(), MachineType::Float32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Float64(), MachineType::Float32(),
MachineType::Float64(), MachineType::Int32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Int32()};
int num_params = static_cast<int>(arraysize(mixed)) - start;
for (int which = 0; which < num_params; which++) {
v8::base::AccountingAllocator allocator;
Zone zone(&allocator);
TestingModule module(execution_mode);
module.AddMemory(1024);
MachineType* memtypes = &mixed[start];
MachineType result = memtypes[which];
// =========================================================================
// Build the selector function.
// =========================================================================
uint32_t index;
FunctionSig::Builder b(&zone, 1, num_params);
b.AddReturn(WasmOpcodes::LocalTypeFor(result));
for (int i = 0; i < num_params; i++) {
b.AddParam(WasmOpcodes::LocalTypeFor(memtypes[i]));
}
WasmFunctionCompiler t(b.Build(), &module);
BUILD(t, WASM_GET_LOCAL(which));
index = t.CompileAndAdd();
// =========================================================================
// Build the calling function.
// =========================================================================
WasmRunner<int32_t> r(&module);
std::vector<byte> code;
// Load the offset for the store.
ADD_CODE(code, WASM_ZERO);
// Load the arguments.
for (int i = 0; i < num_params; i++) {
int offset = (i + 1) * kElemSize;
ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I8(offset)));
}
// Call the selector function.
ADD_CODE(code, kExprCallFunction, static_cast<byte>(num_params),
static_cast<byte>(index));
// Store the result in memory.
ADD_CODE(code,
static_cast<byte>(WasmOpcodes::LoadStoreOpcodeOf(result, true)),
ZERO_ALIGNMENT, ZERO_OFFSET);
// Return the expected value.
ADD_CODE(code, WASM_I32V_2(kExpected));
r.Build(&code[0], &code[0] + code.size());
// Run the code.
for (int t = 0; t < 10; t++) {
module.RandomizeMemory();
CHECK_EQ(kExpected, r.Call());
int size = WasmOpcodes::MemSize(result);
for (int i = 0; i < size; i++) {
int base = (which + 1) * kElemSize;
byte expected = module.raw_mem_at<byte>(base + i);
byte result = module.raw_mem_at<byte>(i);
CHECK_EQ(expected, result);
}
}
}
}
WASM_EXEC_TEST(MixedCall_i64_0) { Run_WasmMixedCall_N(execution_mode, 0); }
WASM_EXEC_TEST(MixedCall_i64_1) { Run_WasmMixedCall_N(execution_mode, 1); }
WASM_EXEC_TEST(MixedCall_i64_2) { Run_WasmMixedCall_N(execution_mode, 2); }
WASM_EXEC_TEST(MixedCall_i64_3) { Run_WasmMixedCall_N(execution_mode, 3); }