v8/src/code-stubs.cc

1173 lines
42 KiB
C++
Raw Normal View History

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "code-stubs.h"
#include "cpu-profiler.h"
#include "stub-cache.h"
#include "factory.h"
#include "gdb-jit.h"
#include "macro-assembler.h"
namespace v8 {
namespace internal {
CodeStubInterfaceDescriptor::CodeStubInterfaceDescriptor()
: register_param_count_(-1),
stack_parameter_count_(no_reg),
hint_stack_parameter_count_(-1),
function_mode_(NOT_JS_FUNCTION_STUB_MODE),
register_params_(NULL),
deoptimization_handler_(NULL),
miss_handler_(),
has_miss_handler_(false) { }
bool CodeStub::FindCodeInCache(Code** code_out, Isolate* isolate) {
UnseededNumberDictionary* stubs = isolate->heap()->code_stubs();
int index = stubs->FindEntry(GetKey());
if (index != UnseededNumberDictionary::kNotFound) {
*code_out = Code::cast(stubs->ValueAt(index));
return true;
}
return false;
}
SmartArrayPointer<const char> CodeStub::GetName() {
char buffer[100];
NoAllocationStringAllocator allocator(buffer,
static_cast<unsigned>(sizeof(buffer)));
StringStream stream(&allocator);
PrintName(&stream);
return stream.ToCString();
}
void CodeStub::RecordCodeGeneration(Code* code, Isolate* isolate) {
SmartArrayPointer<const char> name = GetName();
PROFILE(isolate, CodeCreateEvent(Logger::STUB_TAG, code, *name));
GDBJIT(AddCode(GDBJITInterface::STUB, *name, code));
Counters* counters = isolate->counters();
counters->total_stubs_code_size()->Increment(code->instruction_size());
}
Code::Kind CodeStub::GetCodeKind() const {
return Code::STUB;
}
Handle<Code> CodeStub::GetCodeCopyFromTemplate(Isolate* isolate) {
Handle<Code> ic = GetCode(isolate);
ic = isolate->factory()->CopyCode(ic);
RecordCodeGeneration(*ic, isolate);
return ic;
}
Handle<Code> PlatformCodeStub::GenerateCode(Isolate* isolate) {
Factory* factory = isolate->factory();
// Generate the new code.
MacroAssembler masm(isolate, NULL, 256);
{
// Update the static counter each time a new code stub is generated.
isolate->counters()->code_stubs()->Increment();
// Nested stubs are not allowed for leaves.
AllowStubCallsScope allow_scope(&masm, false);
// Generate the code for the stub.
masm.set_generating_stub(true);
NoCurrentFrameScope scope(&masm);
Generate(&masm);
}
// Create the code object.
CodeDesc desc;
masm.GetCode(&desc);
// Copy the generated code into a heap object.
Code::Flags flags = Code::ComputeFlags(
GetCodeKind(),
GetICState(),
GetExtraICState(),
GetStubType(),
GetStubFlags());
Handle<Code> new_object = factory->NewCode(
desc, flags, masm.CodeObject(), NeedsImmovableCode());
return new_object;
}
void CodeStub::VerifyPlatformFeatures(Isolate* isolate) {
ASSERT(CpuFeatures::VerifyCrossCompiling());
}
Handle<Code> CodeStub::GetCode(Isolate* isolate) {
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
Code* code;
if (UseSpecialCache()
? FindCodeInSpecialCache(&code, isolate)
: FindCodeInCache(&code, isolate)) {
ASSERT(IsPregenerated(isolate) == code->is_pregenerated());
ASSERT(GetCodeKind() == code->kind());
return Handle<Code>(code);
}
#ifdef DEBUG
VerifyPlatformFeatures(isolate);
#endif
{
HandleScope scope(isolate);
Handle<Code> new_object = GenerateCode(isolate);
new_object->set_major_key(MajorKey());
FinishCode(new_object);
RecordCodeGeneration(*new_object, isolate);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code_stubs) {
new_object->Disassemble(*GetName());
PrintF("\n");
}
#endif
if (UseSpecialCache()) {
AddToSpecialCache(new_object);
} else {
// Update the dictionary and the root in Heap.
Handle<UnseededNumberDictionary> dict =
factory->DictionaryAtNumberPut(
Handle<UnseededNumberDictionary>(heap->code_stubs()),
GetKey(),
new_object);
heap->public_set_code_stubs(*dict);
}
code = *new_object;
}
Activate(code);
Refactoring of snapshots. This simplifies and improves the speed of deserializing code. The current startup time improvement for V8 is around 6%, but code deserialization is speeded up disproportionately, and we will soon have more code in the snapshot. * Removed support for deserializing into large object space. The regular pages are 1Mbyte now and that is plenty. This is a big simplification. * Instead of reserving space for the snapshot we actually allocate it now. This removes some special casing from the memory management and simplifies deserialization since we are just bumping a pointer rather than calling the normal allocation routines during deserialization. * Record in the snapshot how much we need to boot up and allocate it instead of just assuming that allocations in a new VM will always be linear. * In the snapshot we always address an object as a negative offset from the current allocation point. We used to sometimes address from the start of the deserialized data, but this is less useful now that we have good support for roots and repetitions in the deserialization data. * Code objects were previously deserialized (like other objects) by alternating raw data (deserialized with memcpy) and pointers (to external references, other objects, etc.). Now we deserialize code objects with a single memcpy, followed by a series of skips and pointers that partially overwrite the code we memcopied out of the snapshot. The skips are sometimes merged into the following instruction in the deserialization data to reduce dispatch time. * Integers in the snapshot were stored in a variable length format that gives a compact representation for small positive integers. This is still the case, but the new encoding can be decoded without branches or conditional instructions, which is faster on a modern CPU. Review URL: https://chromiumcodereview.appspot.com/10918067 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12505 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-14 11:16:56 +00:00
ASSERT(!NeedsImmovableCode() ||
heap->lo_space()->Contains(code) ||
heap->code_space()->FirstPage()->Contains(code->address()));
return Handle<Code>(code, isolate);
}
const char* CodeStub::MajorName(CodeStub::Major major_key,
bool allow_unknown_keys) {
switch (major_key) {
#define DEF_CASE(name) case name: return #name "Stub";
CODE_STUB_LIST(DEF_CASE)
#undef DEF_CASE
default:
if (!allow_unknown_keys) {
UNREACHABLE();
}
return NULL;
}
}
void CodeStub::PrintBaseName(StringStream* stream) {
stream->Add("%s", MajorName(MajorKey(), false));
}
void CodeStub::PrintName(StringStream* stream) {
PrintBaseName(stream);
PrintState(stream);
}
void BinaryOpStub::PrintBaseName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* ovr = "";
if (mode_ == OVERWRITE_LEFT) ovr = "_ReuseLeft";
if (mode_ == OVERWRITE_RIGHT) ovr = "_ReuseRight";
stream->Add("BinaryOpStub_%s%s", op_name, ovr);
}
void BinaryOpStub::PrintState(StringStream* stream) {
stream->Add("(");
stream->Add(StateToName(left_state_));
stream->Add("*");
if (fixed_right_arg_.has_value) {
stream->Add("%d", fixed_right_arg_.value);
} else {
stream->Add(StateToName(right_state_));
}
stream->Add("->");
stream->Add(StateToName(result_state_));
stream->Add(")");
}
Maybe<Handle<Object> > BinaryOpStub::Result(Handle<Object> left,
Handle<Object> right,
Isolate* isolate) {
Handle<JSBuiltinsObject> builtins(isolate->js_builtins_object());
Builtins::JavaScript func = BinaryOpIC::TokenToJSBuiltin(op_);
Object* builtin = builtins->javascript_builtin(func);
Handle<JSFunction> builtin_function =
Handle<JSFunction>(JSFunction::cast(builtin), isolate);
bool caught_exception;
Handle<Object> result = Execution::Call(isolate, builtin_function, left,
1, &right, &caught_exception);
return Maybe<Handle<Object> >(!caught_exception, result);
}
void BinaryOpStub::Initialize() {
fixed_right_arg_.has_value = false;
left_state_ = right_state_ = result_state_ = NONE;
}
void BinaryOpStub::Generate(Token::Value op,
State left,
State right,
State result,
OverwriteMode mode,
Isolate* isolate) {
BinaryOpStub stub(INITIALIZED);
stub.op_ = op;
stub.left_state_ = left;
stub.right_state_ = right;
stub.result_state_ = result;
stub.mode_ = mode;
stub.GetCode(isolate);
}
void BinaryOpStub::Generate(Token::Value op,
State left,
int right,
State result,
OverwriteMode mode,
Isolate* isolate) {
BinaryOpStub stub(INITIALIZED);
stub.op_ = op;
stub.left_state_ = left;
stub.fixed_right_arg_.has_value = true;
stub.fixed_right_arg_.value = right;
stub.right_state_ = SMI;
stub.result_state_ = result;
stub.mode_ = mode;
stub.GetCode(isolate);
}
void BinaryOpStub::GenerateAheadOfTime(Isolate* isolate) {
Token::Value binop[] = {Token::SUB, Token::MOD, Token::DIV, Token::MUL,
Token::ADD, Token::SAR, Token::BIT_OR, Token::BIT_AND,
Token::BIT_XOR, Token::SHL, Token::SHR};
for (unsigned i = 0; i < ARRAY_SIZE(binop); i++) {
BinaryOpStub stub(UNINITIALIZED);
stub.op_ = binop[i];
stub.GetCode(isolate);
}
// TODO(olivf) We should investigate why adding stubs to the snapshot is so
// expensive at runtime. When solved we should be able to add most binops to
// the snapshot instead of hand-picking them.
// Generated list of commonly used stubs
Generate(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::MOD, SMI, 2, SMI, NO_OVERWRITE, isolate);
Generate(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE, isolate);
Generate(Token::MOD, SMI, 32, SMI, NO_OVERWRITE, isolate);
Generate(Token::MOD, SMI, 4, SMI, NO_OVERWRITE, isolate);
Generate(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::MOD, SMI, 8, SMI, NO_OVERWRITE, isolate);
Generate(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE, isolate);
Generate(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
Generate(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT, isolate);
Generate(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT, isolate);
Generate(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE, isolate);
Generate(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE, isolate);
Generate(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT, isolate);
Generate(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT, isolate);
Generate(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE, isolate);
Generate(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT, isolate);
Generate(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT, isolate);
}
bool BinaryOpStub::can_encode_arg_value(int32_t value) const {
return op_ == Token::MOD && value > 0 && IsPowerOf2(value) &&
FixedRightArgValueBits::is_valid(WhichPowerOf2(value));
}
int BinaryOpStub::encode_arg_value(int32_t value) const {
ASSERT(can_encode_arg_value(value));
return WhichPowerOf2(value);
}
int32_t BinaryOpStub::decode_arg_value(int value) const {
return 1 << value;
}
int BinaryOpStub::encode_token(Token::Value op) const {
ASSERT(op >= FIRST_TOKEN && op <= LAST_TOKEN);
return op - FIRST_TOKEN;
}
Token::Value BinaryOpStub::decode_token(int op) const {
int res = op + FIRST_TOKEN;
ASSERT(res >= FIRST_TOKEN && res <= LAST_TOKEN);
return static_cast<Token::Value>(res);
}
const char* BinaryOpStub::StateToName(State state) {
switch (state) {
case NONE:
return "None";
case SMI:
return "Smi";
case INT32:
return "Int32";
case NUMBER:
return "Number";
case STRING:
return "String";
case GENERIC:
return "Generic";
}
return "";
}
void BinaryOpStub::UpdateStatus(Handle<Object> left,
Handle<Object> right,
Maybe<Handle<Object> > result) {
int old_state = GetExtraICState();
UpdateStatus(left, &left_state_);
UpdateStatus(right, &right_state_);
int32_t value;
bool new_has_fixed_right_arg =
right->ToInt32(&value) && can_encode_arg_value(value) &&
(left_state_ == SMI || left_state_ == INT32) &&
(result_state_ == NONE || !fixed_right_arg_.has_value);
fixed_right_arg_ = Maybe<int32_t>(new_has_fixed_right_arg, value);
if (result.has_value) UpdateStatus(result.value, &result_state_);
State max_input = Max(left_state_, right_state_);
// TODO(olivf) Instead of doing this normalization we should have a Hydrogen
// version of the LookupNumberStringCache to avoid a converting StringAddStub.
if (left_state_ == STRING && right_state_ < STRING) {
right_state_ = GENERIC;
} else if (right_state_ == STRING && left_state_ < STRING) {
left_state_ = GENERIC;
} else if (!has_int_result() && op_ != Token::SHR &&
max_input <= NUMBER && max_input > result_state_) {
result_state_ = max_input;
}
ASSERT(result_state_ <= (has_int_result() ? INT32 : NUMBER) ||
op_ == Token::ADD);
if (old_state == GetExtraICState()) {
// Tagged operations can lead to non-truncating HChanges
if (left->IsUndefined() || left->IsBoolean()) {
left_state_ = GENERIC;
} else if (right->IsUndefined() || right->IsBoolean()) {
right_state_ = GENERIC;
} else {
// Since the fpu is to precise, we might bail out on numbers which
// actually would truncate with 64 bit precision.
ASSERT(!CpuFeatures::IsSupported(SSE2) &&
result_state_ <= INT32);
result_state_ = NUMBER;
}
}
}
void BinaryOpStub::UpdateStatus(Handle<Object> object,
State* state) {
bool is_truncating = (op_ == Token::BIT_AND || op_ == Token::BIT_OR ||
op_ == Token::BIT_XOR || op_ == Token::SAR ||
op_ == Token::SHL || op_ == Token::SHR);
v8::internal::TypeInfo type = v8::internal::TypeInfo::FromValue(object);
if (object->IsBoolean() && is_truncating) {
// Booleans are converted by truncating by HChange.
type = TypeInfo::Integer32();
}
if (object->IsUndefined()) {
// Undefined will be automatically truncated for us by HChange.
type = is_truncating ? TypeInfo::Integer32() : TypeInfo::Double();
}
State int_state = SmiValuesAre32Bits() ? NUMBER : INT32;
State new_state = NONE;
if (type.IsSmi()) {
new_state = SMI;
} else if (type.IsInteger32()) {
new_state = int_state;
} else if (type.IsNumber()) {
new_state = NUMBER;
} else if (object->IsString() && operation() == Token::ADD) {
new_state = STRING;
} else {
new_state = GENERIC;
}
if ((new_state <= NUMBER && *state > NUMBER) ||
(new_state > NUMBER && *state <= NUMBER && *state != NONE)) {
new_state = GENERIC;
}
*state = Max(*state, new_state);
}
Handle<Type> BinaryOpStub::StateToType(State state,
Isolate* isolate) {
Handle<Type> t = handle(Type::None(), isolate);
switch (state) {
case NUMBER:
t = handle(Type::Union(t, handle(Type::Double(), isolate)), isolate);
// Fall through.
case INT32:
t = handle(Type::Union(t, handle(Type::Signed32(), isolate)), isolate);
// Fall through.
case SMI:
t = handle(Type::Union(t, handle(Type::Smi(), isolate)), isolate);
break;
case STRING:
t = handle(Type::Union(t, handle(Type::String(), isolate)), isolate);
break;
case GENERIC:
return handle(Type::Any(), isolate);
break;
case NONE:
break;
}
return t;
}
Handle<Type> BinaryOpStub::GetLeftType(Isolate* isolate) const {
return StateToType(left_state_, isolate);
}
Handle<Type> BinaryOpStub::GetRightType(Isolate* isolate) const {
return StateToType(right_state_, isolate);
}
Handle<Type> BinaryOpStub::GetResultType(Isolate* isolate) const {
if (HasSideEffects(isolate)) return StateToType(NONE, isolate);
if (result_state_ == GENERIC && op_ == Token::ADD) {
return handle(Type::Union(handle(Type::Number(), isolate),
handle(Type::String(), isolate)), isolate);
}
ASSERT(result_state_ != GENERIC);
if (result_state_ == NUMBER && op_ == Token::SHR) {
return handle(Type::Unsigned32(), isolate);
}
return StateToType(result_state_, isolate);
}
InlineCacheState ICCompareStub::GetICState() {
CompareIC::State state = Max(left_, right_);
switch (state) {
case CompareIC::UNINITIALIZED:
return ::v8::internal::UNINITIALIZED;
case CompareIC::SMI:
case CompareIC::NUMBER:
case CompareIC::INTERNALIZED_STRING:
case CompareIC::STRING:
case CompareIC::UNIQUE_NAME:
case CompareIC::OBJECT:
case CompareIC::KNOWN_OBJECT:
return MONOMORPHIC;
case CompareIC::GENERIC:
return ::v8::internal::GENERIC;
}
UNREACHABLE();
return ::v8::internal::UNINITIALIZED;
}
void ICCompareStub::AddToSpecialCache(Handle<Code> new_object) {
ASSERT(*known_map_ != NULL);
Isolate* isolate = new_object->GetIsolate();
Factory* factory = isolate->factory();
return Map::UpdateCodeCache(known_map_,
strict() ?
factory->strict_compare_ic_string() :
factory->compare_ic_string(),
new_object);
}
bool ICCompareStub::FindCodeInSpecialCache(Code** code_out, Isolate* isolate) {
Factory* factory = isolate->factory();
Code::Flags flags = Code::ComputeFlags(
GetCodeKind(),
UNINITIALIZED);
ASSERT(op_ == Token::EQ || op_ == Token::EQ_STRICT);
Handle<Object> probe(
known_map_->FindInCodeCache(
strict() ?
*factory->strict_compare_ic_string() :
*factory->compare_ic_string(),
flags),
isolate);
if (probe->IsCode()) {
*code_out = Code::cast(*probe);
#ifdef DEBUG
Token::Value cached_op;
ICCompareStub::DecodeMinorKey((*code_out)->stub_info(), NULL, NULL, NULL,
&cached_op);
ASSERT(op_ == cached_op);
#endif
return true;
}
return false;
}
int ICCompareStub::MinorKey() {
return OpField::encode(op_ - Token::EQ) |
LeftStateField::encode(left_) |
RightStateField::encode(right_) |
HandlerStateField::encode(state_);
}
void ICCompareStub::DecodeMinorKey(int minor_key,
CompareIC::State* left_state,
CompareIC::State* right_state,
CompareIC::State* handler_state,
Token::Value* op) {
if (left_state) {
*left_state =
static_cast<CompareIC::State>(LeftStateField::decode(minor_key));
}
if (right_state) {
*right_state =
static_cast<CompareIC::State>(RightStateField::decode(minor_key));
}
if (handler_state) {
*handler_state =
static_cast<CompareIC::State>(HandlerStateField::decode(minor_key));
}
if (op) {
*op = static_cast<Token::Value>(OpField::decode(minor_key) + Token::EQ);
}
}
void ICCompareStub::Generate(MacroAssembler* masm) {
switch (state_) {
case CompareIC::UNINITIALIZED:
GenerateMiss(masm);
break;
case CompareIC::SMI:
GenerateSmis(masm);
break;
case CompareIC::NUMBER:
GenerateNumbers(masm);
break;
case CompareIC::STRING:
GenerateStrings(masm);
break;
case CompareIC::INTERNALIZED_STRING:
GenerateInternalizedStrings(masm);
break;
case CompareIC::UNIQUE_NAME:
GenerateUniqueNames(masm);
break;
case CompareIC::OBJECT:
GenerateObjects(masm);
break;
case CompareIC::KNOWN_OBJECT:
ASSERT(*known_map_ != NULL);
GenerateKnownObjects(masm);
break;
case CompareIC::GENERIC:
GenerateGeneric(masm);
break;
}
}
void CompareNilICStub::UpdateStatus(Handle<Object> object) {
ASSERT(!state_.Contains(GENERIC));
State old_state(state_);
if (object->IsNull()) {
state_.Add(NULL_TYPE);
} else if (object->IsUndefined()) {
state_.Add(UNDEFINED);
} else if (object->IsUndetectableObject() ||
object->IsOddball() ||
!object->IsHeapObject()) {
state_.RemoveAll();
state_.Add(GENERIC);
} else if (IsMonomorphic()) {
state_.RemoveAll();
state_.Add(GENERIC);
} else {
state_.Add(MONOMORPHIC_MAP);
}
TraceTransition(old_state, state_);
}
template<class StateType>
void HydrogenCodeStub::TraceTransition(StateType from, StateType to) {
// Note: Although a no-op transition is semantically OK, it is hinting at a
// bug somewhere in our state transition machinery.
ASSERT(from != to);
#ifdef DEBUG
if (!FLAG_trace_ic) return;
char buffer[100];
NoAllocationStringAllocator allocator(buffer,
static_cast<unsigned>(sizeof(buffer)));
StringStream stream(&allocator);
stream.Add("[");
PrintBaseName(&stream);
stream.Add(": ");
from.Print(&stream);
stream.Add("=>");
to.Print(&stream);
stream.Add("]\n");
stream.OutputToStdOut();
#endif
}
void CompareNilICStub::PrintBaseName(StringStream* stream) {
CodeStub::PrintBaseName(stream);
stream->Add((nil_value_ == kNullValue) ? "(NullValue)":
"(UndefinedValue)");
}
void CompareNilICStub::PrintState(StringStream* stream) {
state_.Print(stream);
}
void CompareNilICStub::State::Print(StringStream* stream) const {
stream->Add("(");
SimpleListPrinter printer(stream);
if (IsEmpty()) printer.Add("None");
if (Contains(UNDEFINED)) printer.Add("Undefined");
if (Contains(NULL_TYPE)) printer.Add("Null");
if (Contains(MONOMORPHIC_MAP)) printer.Add("MonomorphicMap");
if (Contains(GENERIC)) printer.Add("Generic");
stream->Add(")");
}
Handle<Type> CompareNilICStub::GetType(
Isolate* isolate,
Handle<Map> map) {
if (state_.Contains(CompareNilICStub::GENERIC)) {
return handle(Type::Any(), isolate);
}
Handle<Type> result(Type::None(), isolate);
if (state_.Contains(CompareNilICStub::UNDEFINED)) {
result = handle(Type::Union(result, handle(Type::Undefined(), isolate)),
isolate);
}
if (state_.Contains(CompareNilICStub::NULL_TYPE)) {
result = handle(Type::Union(result, handle(Type::Null(), isolate)),
isolate);
}
if (state_.Contains(CompareNilICStub::MONOMORPHIC_MAP)) {
Type* type = map.is_null() ? Type::Detectable() : Type::Class(map);
result = handle(Type::Union(result, handle(type, isolate)), isolate);
}
return result;
}
Handle<Type> CompareNilICStub::GetInputType(
Isolate* isolate,
Handle<Map> map) {
Handle<Type> output_type = GetType(isolate, map);
Handle<Type> nil_type = handle(nil_value_ == kNullValue
? Type::Null() : Type::Undefined(), isolate);
return handle(Type::Union(output_type, nil_type), isolate);
}
void InstanceofStub::PrintName(StringStream* stream) {
const char* args = "";
if (HasArgsInRegisters()) {
args = "_REGS";
}
const char* inline_check = "";
if (HasCallSiteInlineCheck()) {
inline_check = "_INLINE";
}
const char* return_true_false_object = "";
if (ReturnTrueFalseObject()) {
return_true_false_object = "_TRUEFALSE";
}
stream->Add("InstanceofStub%s%s%s",
args,
inline_check,
return_true_false_object);
}
void JSEntryStub::FinishCode(Handle<Code> code) {
Handle<FixedArray> handler_table =
code->GetIsolate()->factory()->NewFixedArray(1, TENURED);
handler_table->set(0, Smi::FromInt(handler_offset_));
code->set_handler_table(*handler_table);
}
void KeyedLoadDictionaryElementStub::Generate(MacroAssembler* masm) {
KeyedLoadStubCompiler::GenerateLoadDictionaryElement(masm);
}
void CreateAllocationSiteStub::GenerateAheadOfTime(Isolate* isolate) {
CreateAllocationSiteStub stub;
stub.GetCode(isolate)->set_is_pregenerated(true);
}
void KeyedStoreElementStub::Generate(MacroAssembler* masm) {
switch (elements_kind_) {
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
UNREACHABLE();
break;
case DICTIONARY_ELEMENTS:
KeyedStoreStubCompiler::GenerateStoreDictionaryElement(masm);
break;
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
void ArgumentsAccessStub::PrintName(StringStream* stream) {
stream->Add("ArgumentsAccessStub_");
switch (type_) {
case READ_ELEMENT: stream->Add("ReadElement"); break;
case NEW_NON_STRICT_FAST: stream->Add("NewNonStrictFast"); break;
case NEW_NON_STRICT_SLOW: stream->Add("NewNonStrictSlow"); break;
case NEW_STRICT: stream->Add("NewStrict"); break;
}
}
void CallFunctionStub::PrintName(StringStream* stream) {
stream->Add("CallFunctionStub_Args%d", argc_);
if (ReceiverMightBeImplicit()) stream->Add("_Implicit");
if (RecordCallTarget()) stream->Add("_Recording");
}
void CallConstructStub::PrintName(StringStream* stream) {
stream->Add("CallConstructStub");
if (RecordCallTarget()) stream->Add("_Recording");
}
bool ToBooleanStub::UpdateStatus(Handle<Object> object) {
Types old_types(types_);
bool to_boolean_value = types_.UpdateStatus(object);
TraceTransition(old_types, types_);
return to_boolean_value;
}
void ToBooleanStub::PrintState(StringStream* stream) {
types_.Print(stream);
}
void ToBooleanStub::Types::Print(StringStream* stream) const {
stream->Add("(");
SimpleListPrinter printer(stream);
if (IsEmpty()) printer.Add("None");
if (Contains(UNDEFINED)) printer.Add("Undefined");
if (Contains(BOOLEAN)) printer.Add("Bool");
if (Contains(NULL_TYPE)) printer.Add("Null");
if (Contains(SMI)) printer.Add("Smi");
if (Contains(SPEC_OBJECT)) printer.Add("SpecObject");
if (Contains(STRING)) printer.Add("String");
if (Contains(SYMBOL)) printer.Add("Symbol");
if (Contains(HEAP_NUMBER)) printer.Add("HeapNumber");
stream->Add(")");
}
bool ToBooleanStub::Types::UpdateStatus(Handle<Object> object) {
if (object->IsUndefined()) {
Add(UNDEFINED);
return false;
} else if (object->IsBoolean()) {
Add(BOOLEAN);
return object->IsTrue();
} else if (object->IsNull()) {
Add(NULL_TYPE);
return false;
} else if (object->IsSmi()) {
Add(SMI);
return Smi::cast(*object)->value() != 0;
} else if (object->IsSpecObject()) {
Add(SPEC_OBJECT);
return !object->IsUndetectableObject();
} else if (object->IsString()) {
Add(STRING);
return !object->IsUndetectableObject() &&
String::cast(*object)->length() != 0;
} else if (object->IsSymbol()) {
Add(SYMBOL);
return true;
} else if (object->IsHeapNumber()) {
ASSERT(!object->IsUndetectableObject());
Add(HEAP_NUMBER);
double value = HeapNumber::cast(*object)->value();
return value != 0 && !std::isnan(value);
} else {
// We should never see an internal object at runtime here!
UNREACHABLE();
return true;
}
}
bool ToBooleanStub::Types::NeedsMap() const {
return Contains(ToBooleanStub::SPEC_OBJECT)
|| Contains(ToBooleanStub::STRING)
|| Contains(ToBooleanStub::SYMBOL)
|| Contains(ToBooleanStub::HEAP_NUMBER);
}
bool ToBooleanStub::Types::CanBeUndetectable() const {
return Contains(ToBooleanStub::SPEC_OBJECT)
|| Contains(ToBooleanStub::STRING);
}
void StubFailureTrampolineStub::GenerateAheadOfTime(Isolate* isolate) {
StubFailureTrampolineStub stub1(NOT_JS_FUNCTION_STUB_MODE);
StubFailureTrampolineStub stub2(JS_FUNCTION_STUB_MODE);
stub1.GetCode(isolate)->set_is_pregenerated(true);
stub2.GetCode(isolate)->set_is_pregenerated(true);
}
void ProfileEntryHookStub::EntryHookTrampoline(intptr_t function,
intptr_t stack_pointer,
Isolate* isolate) {
FunctionEntryHook entry_hook = isolate->function_entry_hook();
ASSERT(entry_hook != NULL);
entry_hook(function, stack_pointer);
}
static void InstallDescriptor(Isolate* isolate, HydrogenCodeStub* stub) {
int major_key = stub->MajorKey();
CodeStubInterfaceDescriptor* descriptor =
isolate->code_stub_interface_descriptor(major_key);
if (!descriptor->initialized()) {
stub->InitializeInterfaceDescriptor(isolate, descriptor);
}
}
void ArrayConstructorStubBase::InstallDescriptors(Isolate* isolate) {
ArrayNoArgumentConstructorStub stub1(GetInitialFastElementsKind());
InstallDescriptor(isolate, &stub1);
ArraySingleArgumentConstructorStub stub2(GetInitialFastElementsKind());
InstallDescriptor(isolate, &stub2);
ArrayNArgumentsConstructorStub stub3(GetInitialFastElementsKind());
InstallDescriptor(isolate, &stub3);
}
void FastNewClosureStub::InstallDescriptors(Isolate* isolate) {
FastNewClosureStub stub(STRICT_MODE, false);
InstallDescriptor(isolate, &stub);
}
ArrayConstructorStub::ArrayConstructorStub(Isolate* isolate)
: argument_count_(ANY) {
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
}
ArrayConstructorStub::ArrayConstructorStub(Isolate* isolate,
int argument_count) {
if (argument_count == 0) {
argument_count_ = NONE;
} else if (argument_count == 1) {
argument_count_ = ONE;
} else if (argument_count >= 2) {
argument_count_ = MORE_THAN_ONE;
} else {
UNREACHABLE();
}
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
}
void InternalArrayConstructorStubBase::InstallDescriptors(Isolate* isolate) {
InternalArrayNoArgumentConstructorStub stub1(FAST_ELEMENTS);
InstallDescriptor(isolate, &stub1);
InternalArraySingleArgumentConstructorStub stub2(FAST_ELEMENTS);
InstallDescriptor(isolate, &stub2);
InternalArrayNArgumentsConstructorStub stub3(FAST_ELEMENTS);
InstallDescriptor(isolate, &stub3);
}
InternalArrayConstructorStub::InternalArrayConstructorStub(
Isolate* isolate) {
InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
}
} } // namespace v8::internal