2014-11-11 08:29:54 +00:00
|
|
|
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file.
|
|
|
|
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <cmath>
|
|
|
|
|
|
|
|
#if V8_TARGET_ARCH_PPC
|
|
|
|
|
|
|
|
#include "src/assembler.h"
|
2015-03-04 05:53:05 +00:00
|
|
|
#include "src/base/bits.h"
|
2014-11-11 08:29:54 +00:00
|
|
|
#include "src/codegen.h"
|
|
|
|
#include "src/disasm.h"
|
|
|
|
#include "src/ppc/constants-ppc.h"
|
|
|
|
#include "src/ppc/frames-ppc.h"
|
|
|
|
#include "src/ppc/simulator-ppc.h"
|
|
|
|
|
|
|
|
#if defined(USE_SIMULATOR)
|
|
|
|
|
|
|
|
// Only build the simulator if not compiling for real PPC hardware.
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// This macro provides a platform independent use of sscanf. The reason for
|
|
|
|
// SScanF not being implemented in a platform independent way through
|
|
|
|
// ::v8::internal::OS in the same way as SNPrintF is that the
|
|
|
|
// Windows C Run-Time Library does not provide vsscanf.
|
|
|
|
#define SScanF sscanf // NOLINT
|
|
|
|
|
|
|
|
// The PPCDebugger class is used by the simulator while debugging simulated
|
|
|
|
// PowerPC code.
|
|
|
|
class PPCDebugger {
|
|
|
|
public:
|
|
|
|
explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
|
|
|
|
~PPCDebugger();
|
|
|
|
|
|
|
|
void Stop(Instruction* instr);
|
|
|
|
void Debug();
|
|
|
|
|
|
|
|
private:
|
|
|
|
static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
|
|
|
|
static const Instr kNopInstr = (ORI); // ori, 0,0,0
|
|
|
|
|
|
|
|
Simulator* sim_;
|
|
|
|
|
|
|
|
intptr_t GetRegisterValue(int regnum);
|
|
|
|
double GetRegisterPairDoubleValue(int regnum);
|
|
|
|
double GetFPDoubleRegisterValue(int regnum);
|
|
|
|
bool GetValue(const char* desc, intptr_t* value);
|
|
|
|
bool GetFPDoubleValue(const char* desc, double* value);
|
|
|
|
|
|
|
|
// Set or delete a breakpoint. Returns true if successful.
|
|
|
|
bool SetBreakpoint(Instruction* break_pc);
|
|
|
|
bool DeleteBreakpoint(Instruction* break_pc);
|
|
|
|
|
|
|
|
// Undo and redo all breakpoints. This is needed to bracket disassembly and
|
|
|
|
// execution to skip past breakpoints when run from the debugger.
|
|
|
|
void UndoBreakpoints();
|
|
|
|
void RedoBreakpoints();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
PPCDebugger::~PPCDebugger() {}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef GENERATED_CODE_COVERAGE
|
|
|
|
static FILE* coverage_log = NULL;
|
|
|
|
|
|
|
|
|
|
|
|
static void InitializeCoverage() {
|
|
|
|
char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
|
|
|
|
if (file_name != NULL) {
|
|
|
|
coverage_log = fopen(file_name, "aw+");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void PPCDebugger::Stop(Instruction* instr) {
|
|
|
|
// Get the stop code.
|
|
|
|
uint32_t code = instr->SvcValue() & kStopCodeMask;
|
|
|
|
// Retrieve the encoded address, which comes just after this stop.
|
|
|
|
char** msg_address =
|
|
|
|
reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
|
|
|
|
char* msg = *msg_address;
|
|
|
|
DCHECK(msg != NULL);
|
|
|
|
|
|
|
|
// Update this stop description.
|
|
|
|
if (isWatchedStop(code) && !watched_stops_[code].desc) {
|
|
|
|
watched_stops_[code].desc = msg;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (strlen(msg) > 0) {
|
|
|
|
if (coverage_log != NULL) {
|
|
|
|
fprintf(coverage_log, "%s\n", msg);
|
|
|
|
fflush(coverage_log);
|
|
|
|
}
|
|
|
|
// Overwrite the instruction and address with nops.
|
|
|
|
instr->SetInstructionBits(kNopInstr);
|
|
|
|
reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
|
|
|
|
}
|
|
|
|
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else // ndef GENERATED_CODE_COVERAGE
|
|
|
|
|
|
|
|
static void InitializeCoverage() {}
|
|
|
|
|
|
|
|
|
|
|
|
void PPCDebugger::Stop(Instruction* instr) {
|
|
|
|
// Get the stop code.
|
|
|
|
// use of kStopCodeMask not right on PowerPC
|
|
|
|
uint32_t code = instr->SvcValue() & kStopCodeMask;
|
|
|
|
// Retrieve the encoded address, which comes just after this stop.
|
|
|
|
char* msg =
|
|
|
|
*reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
|
|
|
|
// Update this stop description.
|
|
|
|
if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
|
|
|
|
sim_->watched_stops_[code].desc = msg;
|
|
|
|
}
|
|
|
|
// Print the stop message and code if it is not the default code.
|
|
|
|
if (code != kMaxStopCode) {
|
|
|
|
PrintF("Simulator hit stop %u: %s\n", code, msg);
|
|
|
|
} else {
|
|
|
|
PrintF("Simulator hit %s\n", msg);
|
|
|
|
}
|
|
|
|
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
|
|
|
|
Debug();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
intptr_t PPCDebugger::GetRegisterValue(int regnum) {
|
|
|
|
return sim_->get_register(regnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
|
|
|
|
return sim_->get_double_from_register_pair(regnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
|
|
|
|
return sim_->get_double_from_d_register(regnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
|
|
|
|
int regnum = Registers::Number(desc);
|
|
|
|
if (regnum != kNoRegister) {
|
|
|
|
*value = GetRegisterValue(regnum);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
if (strncmp(desc, "0x", 2) == 0) {
|
|
|
|
return SScanF(desc + 2, "%" V8PRIxPTR,
|
|
|
|
reinterpret_cast<uintptr_t*>(value)) == 1;
|
|
|
|
} else {
|
|
|
|
return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
|
|
|
|
1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
|
2015-10-05 19:45:34 +00:00
|
|
|
int regnum = DoubleRegisters::Number(desc);
|
2014-11-11 08:29:54 +00:00
|
|
|
if (regnum != kNoRegister) {
|
|
|
|
*value = sim_->get_double_from_d_register(regnum);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
|
|
|
|
// Check if a breakpoint can be set. If not return without any side-effects.
|
|
|
|
if (sim_->break_pc_ != NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the breakpoint.
|
|
|
|
sim_->break_pc_ = break_pc;
|
|
|
|
sim_->break_instr_ = break_pc->InstructionBits();
|
|
|
|
// Not setting the breakpoint instruction in the code itself. It will be set
|
|
|
|
// when the debugger shell continues.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
|
|
|
|
if (sim_->break_pc_ != NULL) {
|
|
|
|
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
|
|
|
}
|
|
|
|
|
|
|
|
sim_->break_pc_ = NULL;
|
|
|
|
sim_->break_instr_ = 0;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void PPCDebugger::UndoBreakpoints() {
|
|
|
|
if (sim_->break_pc_ != NULL) {
|
|
|
|
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void PPCDebugger::RedoBreakpoints() {
|
|
|
|
if (sim_->break_pc_ != NULL) {
|
|
|
|
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void PPCDebugger::Debug() {
|
|
|
|
intptr_t last_pc = -1;
|
|
|
|
bool done = false;
|
|
|
|
|
|
|
|
#define COMMAND_SIZE 63
|
|
|
|
#define ARG_SIZE 255
|
|
|
|
|
|
|
|
#define STR(a) #a
|
|
|
|
#define XSTR(a) STR(a)
|
|
|
|
|
|
|
|
char cmd[COMMAND_SIZE + 1];
|
|
|
|
char arg1[ARG_SIZE + 1];
|
|
|
|
char arg2[ARG_SIZE + 1];
|
|
|
|
char* argv[3] = {cmd, arg1, arg2};
|
|
|
|
|
|
|
|
// make sure to have a proper terminating character if reaching the limit
|
|
|
|
cmd[COMMAND_SIZE] = 0;
|
|
|
|
arg1[ARG_SIZE] = 0;
|
|
|
|
arg2[ARG_SIZE] = 0;
|
|
|
|
|
|
|
|
// Undo all set breakpoints while running in the debugger shell. This will
|
|
|
|
// make them invisible to all commands.
|
|
|
|
UndoBreakpoints();
|
|
|
|
// Disable tracing while simulating
|
|
|
|
bool trace = ::v8::internal::FLAG_trace_sim;
|
|
|
|
::v8::internal::FLAG_trace_sim = false;
|
|
|
|
|
|
|
|
while (!done && !sim_->has_bad_pc()) {
|
|
|
|
if (last_pc != sim_->get_pc()) {
|
|
|
|
disasm::NameConverter converter;
|
|
|
|
disasm::Disassembler dasm(converter);
|
|
|
|
// use a reasonably large buffer
|
|
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
|
|
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
|
|
|
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
|
|
|
|
last_pc = sim_->get_pc();
|
|
|
|
}
|
|
|
|
char* line = ReadLine("sim> ");
|
|
|
|
if (line == NULL) {
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
char* last_input = sim_->last_debugger_input();
|
|
|
|
if (strcmp(line, "\n") == 0 && last_input != NULL) {
|
|
|
|
line = last_input;
|
|
|
|
} else {
|
|
|
|
// Ownership is transferred to sim_;
|
|
|
|
sim_->set_last_debugger_input(line);
|
|
|
|
}
|
|
|
|
// Use sscanf to parse the individual parts of the command line. At the
|
|
|
|
// moment no command expects more than two parameters.
|
|
|
|
int argc = SScanF(line,
|
|
|
|
"%" XSTR(COMMAND_SIZE) "s "
|
|
|
|
"%" XSTR(ARG_SIZE) "s "
|
|
|
|
"%" XSTR(ARG_SIZE) "s",
|
|
|
|
cmd, arg1, arg2);
|
|
|
|
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
|
|
|
intptr_t value;
|
|
|
|
|
|
|
|
// If at a breakpoint, proceed past it.
|
|
|
|
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
|
|
|
->InstructionBits() == 0x7d821008) {
|
|
|
|
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
|
|
|
|
} else {
|
|
|
|
sim_->ExecuteInstruction(
|
|
|
|
reinterpret_cast<Instruction*>(sim_->get_pc()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
|
|
|
|
for (int i = 1; i < value; i++) {
|
|
|
|
disasm::NameConverter converter;
|
|
|
|
disasm::Disassembler dasm(converter);
|
|
|
|
// use a reasonably large buffer
|
|
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
|
|
dasm.InstructionDecode(buffer,
|
|
|
|
reinterpret_cast<byte*>(sim_->get_pc()));
|
|
|
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
|
|
|
|
buffer.start());
|
|
|
|
sim_->ExecuteInstruction(
|
|
|
|
reinterpret_cast<Instruction*>(sim_->get_pc()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
|
|
|
|
// If at a breakpoint, proceed past it.
|
|
|
|
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
|
|
|
->InstructionBits() == 0x7d821008) {
|
|
|
|
sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
|
|
|
|
} else {
|
|
|
|
// Execute the one instruction we broke at with breakpoints disabled.
|
|
|
|
sim_->ExecuteInstruction(
|
|
|
|
reinterpret_cast<Instruction*>(sim_->get_pc()));
|
|
|
|
}
|
|
|
|
// Leave the debugger shell.
|
|
|
|
done = true;
|
|
|
|
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
|
|
|
|
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
|
|
|
|
intptr_t value;
|
|
|
|
double dvalue;
|
|
|
|
if (strcmp(arg1, "all") == 0) {
|
|
|
|
for (int i = 0; i < kNumRegisters; i++) {
|
|
|
|
value = GetRegisterValue(i);
|
2015-10-05 19:45:34 +00:00
|
|
|
PrintF(" %3s: %08" V8PRIxPTR,
|
|
|
|
Register::from_code(i).ToString(), value);
|
2014-11-11 08:29:54 +00:00
|
|
|
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
|
|
|
(i % 2) == 0) {
|
|
|
|
dvalue = GetRegisterPairDoubleValue(i);
|
|
|
|
PrintF(" (%f)\n", dvalue);
|
|
|
|
} else if (i != 0 && !((i + 1) & 3)) {
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
|
|
|
|
" "
|
|
|
|
"ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
|
|
|
|
sim_->special_reg_pc_, sim_->special_reg_lr_,
|
|
|
|
sim_->special_reg_ctr_, sim_->special_reg_xer_,
|
|
|
|
sim_->condition_reg_);
|
|
|
|
} else if (strcmp(arg1, "alld") == 0) {
|
|
|
|
for (int i = 0; i < kNumRegisters; i++) {
|
|
|
|
value = GetRegisterValue(i);
|
|
|
|
PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
|
2015-10-05 19:45:34 +00:00
|
|
|
Register::from_code(i).ToString(), value, value);
|
2014-11-11 08:29:54 +00:00
|
|
|
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
|
|
|
(i % 2) == 0) {
|
|
|
|
dvalue = GetRegisterPairDoubleValue(i);
|
|
|
|
PrintF(" (%f)\n", dvalue);
|
|
|
|
} else if (!((i + 1) % 2)) {
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
|
|
|
|
" "
|
|
|
|
"ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
|
|
|
|
sim_->special_reg_pc_, sim_->special_reg_lr_,
|
|
|
|
sim_->special_reg_ctr_, sim_->special_reg_xer_,
|
|
|
|
sim_->condition_reg_);
|
|
|
|
} else if (strcmp(arg1, "allf") == 0) {
|
|
|
|
for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
|
|
|
|
dvalue = GetFPDoubleRegisterValue(i);
|
|
|
|
uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
2015-10-05 19:45:34 +00:00
|
|
|
PrintF("%3s: %f 0x%08x %08x\n",
|
|
|
|
DoubleRegister::from_code(i).ToString(), dvalue,
|
2014-11-11 08:29:54 +00:00
|
|
|
static_cast<uint32_t>(as_words >> 32),
|
|
|
|
static_cast<uint32_t>(as_words & 0xffffffff));
|
|
|
|
}
|
|
|
|
} else if (arg1[0] == 'r' &&
|
|
|
|
(arg1[1] >= '0' && arg1[1] <= '9' &&
|
|
|
|
(arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
|
|
|
|
arg1[3] == '\0')))) {
|
|
|
|
int regnum = strtoul(&arg1[1], 0, 10);
|
|
|
|
if (regnum != kNoRegister) {
|
|
|
|
value = GetRegisterValue(regnum);
|
|
|
|
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
|
|
|
value);
|
|
|
|
} else {
|
|
|
|
PrintF("%s unrecognized\n", arg1);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (GetValue(arg1, &value)) {
|
|
|
|
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
|
|
|
value);
|
|
|
|
} else if (GetFPDoubleValue(arg1, &dvalue)) {
|
|
|
|
uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
|
|
|
PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
|
|
|
|
static_cast<uint32_t>(as_words >> 32),
|
|
|
|
static_cast<uint32_t>(as_words & 0xffffffff));
|
|
|
|
} else {
|
|
|
|
PrintF("%s unrecognized\n", arg1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
PrintF("print <register>\n");
|
|
|
|
}
|
|
|
|
} else if ((strcmp(cmd, "po") == 0) ||
|
|
|
|
(strcmp(cmd, "printobject") == 0)) {
|
|
|
|
if (argc == 2) {
|
|
|
|
intptr_t value;
|
|
|
|
OFStream os(stdout);
|
|
|
|
if (GetValue(arg1, &value)) {
|
|
|
|
Object* obj = reinterpret_cast<Object*>(value);
|
|
|
|
os << arg1 << ": \n";
|
|
|
|
#ifdef DEBUG
|
|
|
|
obj->Print(os);
|
|
|
|
os << "\n";
|
|
|
|
#else
|
|
|
|
os << Brief(obj) << "\n";
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
os << arg1 << " unrecognized\n";
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
PrintF("printobject <value>\n");
|
|
|
|
}
|
|
|
|
} else if (strcmp(cmd, "setpc") == 0) {
|
|
|
|
intptr_t value;
|
|
|
|
|
|
|
|
if (!GetValue(arg1, &value)) {
|
|
|
|
PrintF("%s unrecognized\n", arg1);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
sim_->set_pc(value);
|
|
|
|
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
|
|
|
|
intptr_t* cur = NULL;
|
|
|
|
intptr_t* end = NULL;
|
|
|
|
int next_arg = 1;
|
|
|
|
|
|
|
|
if (strcmp(cmd, "stack") == 0) {
|
|
|
|
cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
|
|
|
|
} else { // "mem"
|
|
|
|
intptr_t value;
|
|
|
|
if (!GetValue(arg1, &value)) {
|
|
|
|
PrintF("%s unrecognized\n", arg1);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
cur = reinterpret_cast<intptr_t*>(value);
|
|
|
|
next_arg++;
|
|
|
|
}
|
|
|
|
|
|
|
|
intptr_t words; // likely inaccurate variable name for 64bit
|
|
|
|
if (argc == next_arg) {
|
|
|
|
words = 10;
|
|
|
|
} else {
|
|
|
|
if (!GetValue(argv[next_arg], &words)) {
|
|
|
|
words = 10;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
end = cur + words;
|
|
|
|
|
|
|
|
while (cur < end) {
|
|
|
|
PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
|
|
|
|
reinterpret_cast<intptr_t>(cur), *cur, *cur);
|
|
|
|
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
|
|
|
|
intptr_t value = *cur;
|
|
|
|
Heap* current_heap = v8::internal::Isolate::Current()->heap();
|
|
|
|
if (((value & 1) == 0) || current_heap->Contains(obj)) {
|
|
|
|
PrintF(" (");
|
|
|
|
if ((value & 1) == 0) {
|
|
|
|
PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
|
|
|
|
} else {
|
|
|
|
obj->ShortPrint();
|
|
|
|
}
|
|
|
|
PrintF(")");
|
|
|
|
}
|
|
|
|
PrintF("\n");
|
|
|
|
cur++;
|
|
|
|
}
|
|
|
|
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
|
|
|
|
disasm::NameConverter converter;
|
|
|
|
disasm::Disassembler dasm(converter);
|
|
|
|
// use a reasonably large buffer
|
|
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
|
|
|
|
|
|
byte* prev = NULL;
|
|
|
|
byte* cur = NULL;
|
|
|
|
byte* end = NULL;
|
|
|
|
|
|
|
|
if (argc == 1) {
|
|
|
|
cur = reinterpret_cast<byte*>(sim_->get_pc());
|
|
|
|
end = cur + (10 * Instruction::kInstrSize);
|
|
|
|
} else if (argc == 2) {
|
|
|
|
int regnum = Registers::Number(arg1);
|
|
|
|
if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
|
|
|
|
// The argument is an address or a register name.
|
|
|
|
intptr_t value;
|
|
|
|
if (GetValue(arg1, &value)) {
|
|
|
|
cur = reinterpret_cast<byte*>(value);
|
|
|
|
// Disassemble 10 instructions at <arg1>.
|
|
|
|
end = cur + (10 * Instruction::kInstrSize);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// The argument is the number of instructions.
|
|
|
|
intptr_t value;
|
|
|
|
if (GetValue(arg1, &value)) {
|
|
|
|
cur = reinterpret_cast<byte*>(sim_->get_pc());
|
|
|
|
// Disassemble <arg1> instructions.
|
|
|
|
end = cur + (value * Instruction::kInstrSize);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
intptr_t value1;
|
|
|
|
intptr_t value2;
|
|
|
|
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
|
|
|
|
cur = reinterpret_cast<byte*>(value1);
|
|
|
|
end = cur + (value2 * Instruction::kInstrSize);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while (cur < end) {
|
|
|
|
prev = cur;
|
|
|
|
cur += dasm.InstructionDecode(buffer, cur);
|
|
|
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
|
|
|
|
buffer.start());
|
|
|
|
}
|
|
|
|
} else if (strcmp(cmd, "gdb") == 0) {
|
|
|
|
PrintF("relinquishing control to gdb\n");
|
|
|
|
v8::base::OS::DebugBreak();
|
|
|
|
PrintF("regaining control from gdb\n");
|
|
|
|
} else if (strcmp(cmd, "break") == 0) {
|
|
|
|
if (argc == 2) {
|
|
|
|
intptr_t value;
|
|
|
|
if (GetValue(arg1, &value)) {
|
|
|
|
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
|
|
|
|
PrintF("setting breakpoint failed\n");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
PrintF("%s unrecognized\n", arg1);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
PrintF("break <address>\n");
|
|
|
|
}
|
|
|
|
} else if (strcmp(cmd, "del") == 0) {
|
|
|
|
if (!DeleteBreakpoint(NULL)) {
|
|
|
|
PrintF("deleting breakpoint failed\n");
|
|
|
|
}
|
|
|
|
} else if (strcmp(cmd, "cr") == 0) {
|
|
|
|
PrintF("Condition reg: %08x\n", sim_->condition_reg_);
|
|
|
|
} else if (strcmp(cmd, "lr") == 0) {
|
|
|
|
PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
|
|
|
|
} else if (strcmp(cmd, "ctr") == 0) {
|
|
|
|
PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
|
|
|
|
} else if (strcmp(cmd, "xer") == 0) {
|
|
|
|
PrintF("XER: %08x\n", sim_->special_reg_xer_);
|
|
|
|
} else if (strcmp(cmd, "fpscr") == 0) {
|
|
|
|
PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
|
|
|
|
} else if (strcmp(cmd, "stop") == 0) {
|
|
|
|
intptr_t value;
|
|
|
|
intptr_t stop_pc =
|
|
|
|
sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
|
|
|
|
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
|
|
|
|
Instruction* msg_address =
|
|
|
|
reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
|
|
|
|
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
|
|
|
|
// Remove the current stop.
|
|
|
|
if (sim_->isStopInstruction(stop_instr)) {
|
|
|
|
stop_instr->SetInstructionBits(kNopInstr);
|
|
|
|
msg_address->SetInstructionBits(kNopInstr);
|
|
|
|
} else {
|
|
|
|
PrintF("Not at debugger stop.\n");
|
|
|
|
}
|
|
|
|
} else if (argc == 3) {
|
|
|
|
// Print information about all/the specified breakpoint(s).
|
|
|
|
if (strcmp(arg1, "info") == 0) {
|
|
|
|
if (strcmp(arg2, "all") == 0) {
|
|
|
|
PrintF("Stop information:\n");
|
|
|
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
|
|
|
sim_->PrintStopInfo(i);
|
|
|
|
}
|
|
|
|
} else if (GetValue(arg2, &value)) {
|
|
|
|
sim_->PrintStopInfo(value);
|
|
|
|
} else {
|
|
|
|
PrintF("Unrecognized argument.\n");
|
|
|
|
}
|
|
|
|
} else if (strcmp(arg1, "enable") == 0) {
|
|
|
|
// Enable all/the specified breakpoint(s).
|
|
|
|
if (strcmp(arg2, "all") == 0) {
|
|
|
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
|
|
|
sim_->EnableStop(i);
|
|
|
|
}
|
|
|
|
} else if (GetValue(arg2, &value)) {
|
|
|
|
sim_->EnableStop(value);
|
|
|
|
} else {
|
|
|
|
PrintF("Unrecognized argument.\n");
|
|
|
|
}
|
|
|
|
} else if (strcmp(arg1, "disable") == 0) {
|
|
|
|
// Disable all/the specified breakpoint(s).
|
|
|
|
if (strcmp(arg2, "all") == 0) {
|
|
|
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
|
|
|
sim_->DisableStop(i);
|
|
|
|
}
|
|
|
|
} else if (GetValue(arg2, &value)) {
|
|
|
|
sim_->DisableStop(value);
|
|
|
|
} else {
|
|
|
|
PrintF("Unrecognized argument.\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
PrintF("Wrong usage. Use help command for more information.\n");
|
|
|
|
}
|
|
|
|
} else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
|
|
|
|
::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
|
|
|
|
PrintF("Trace of executed instructions is %s\n",
|
|
|
|
::v8::internal::FLAG_trace_sim ? "on" : "off");
|
|
|
|
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
|
|
|
|
PrintF("cont\n");
|
|
|
|
PrintF(" continue execution (alias 'c')\n");
|
|
|
|
PrintF("stepi [num instructions]\n");
|
|
|
|
PrintF(" step one/num instruction(s) (alias 'si')\n");
|
|
|
|
PrintF("print <register>\n");
|
|
|
|
PrintF(" print register content (alias 'p')\n");
|
|
|
|
PrintF(" use register name 'all' to display all integer registers\n");
|
|
|
|
PrintF(
|
|
|
|
" use register name 'alld' to display integer registers "
|
|
|
|
"with decimal values\n");
|
|
|
|
PrintF(" use register name 'rN' to display register number 'N'\n");
|
|
|
|
PrintF(" add argument 'fp' to print register pair double values\n");
|
|
|
|
PrintF(
|
|
|
|
" use register name 'allf' to display floating-point "
|
|
|
|
"registers\n");
|
|
|
|
PrintF("printobject <register>\n");
|
|
|
|
PrintF(" print an object from a register (alias 'po')\n");
|
|
|
|
PrintF("cr\n");
|
|
|
|
PrintF(" print condition register\n");
|
|
|
|
PrintF("lr\n");
|
|
|
|
PrintF(" print link register\n");
|
|
|
|
PrintF("ctr\n");
|
|
|
|
PrintF(" print ctr register\n");
|
|
|
|
PrintF("xer\n");
|
|
|
|
PrintF(" print XER\n");
|
|
|
|
PrintF("fpscr\n");
|
|
|
|
PrintF(" print FPSCR\n");
|
|
|
|
PrintF("stack [<num words>]\n");
|
|
|
|
PrintF(" dump stack content, default dump 10 words)\n");
|
|
|
|
PrintF("mem <address> [<num words>]\n");
|
|
|
|
PrintF(" dump memory content, default dump 10 words)\n");
|
|
|
|
PrintF("disasm [<instructions>]\n");
|
|
|
|
PrintF("disasm [<address/register>]\n");
|
|
|
|
PrintF("disasm [[<address/register>] <instructions>]\n");
|
|
|
|
PrintF(" disassemble code, default is 10 instructions\n");
|
|
|
|
PrintF(" from pc (alias 'di')\n");
|
|
|
|
PrintF("gdb\n");
|
|
|
|
PrintF(" enter gdb\n");
|
|
|
|
PrintF("break <address>\n");
|
|
|
|
PrintF(" set a break point on the address\n");
|
|
|
|
PrintF("del\n");
|
|
|
|
PrintF(" delete the breakpoint\n");
|
|
|
|
PrintF("trace (alias 't')\n");
|
|
|
|
PrintF(" toogle the tracing of all executed statements\n");
|
|
|
|
PrintF("stop feature:\n");
|
|
|
|
PrintF(" Description:\n");
|
|
|
|
PrintF(" Stops are debug instructions inserted by\n");
|
|
|
|
PrintF(" the Assembler::stop() function.\n");
|
|
|
|
PrintF(" When hitting a stop, the Simulator will\n");
|
|
|
|
PrintF(" stop and and give control to the PPCDebugger.\n");
|
|
|
|
PrintF(" The first %d stop codes are watched:\n",
|
|
|
|
Simulator::kNumOfWatchedStops);
|
|
|
|
PrintF(" - They can be enabled / disabled: the Simulator\n");
|
|
|
|
PrintF(" will / won't stop when hitting them.\n");
|
|
|
|
PrintF(" - The Simulator keeps track of how many times they \n");
|
|
|
|
PrintF(" are met. (See the info command.) Going over a\n");
|
|
|
|
PrintF(" disabled stop still increases its counter. \n");
|
|
|
|
PrintF(" Commands:\n");
|
|
|
|
PrintF(" stop info all/<code> : print infos about number <code>\n");
|
|
|
|
PrintF(" or all stop(s).\n");
|
|
|
|
PrintF(" stop enable/disable all/<code> : enables / disables\n");
|
|
|
|
PrintF(" all or number <code> stop(s)\n");
|
|
|
|
PrintF(" stop unstop\n");
|
|
|
|
PrintF(" ignore the stop instruction at the current location\n");
|
|
|
|
PrintF(" from now on\n");
|
|
|
|
} else {
|
|
|
|
PrintF("Unknown command: %s\n", cmd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add all the breakpoints back to stop execution and enter the debugger
|
|
|
|
// shell when hit.
|
|
|
|
RedoBreakpoints();
|
|
|
|
// Restore tracing
|
|
|
|
::v8::internal::FLAG_trace_sim = trace;
|
|
|
|
|
|
|
|
#undef COMMAND_SIZE
|
|
|
|
#undef ARG_SIZE
|
|
|
|
|
|
|
|
#undef STR
|
|
|
|
#undef XSTR
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool ICacheMatch(void* one, void* two) {
|
|
|
|
DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
|
|
|
|
DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
|
|
|
|
return one == two;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static uint32_t ICacheHash(void* key) {
|
|
|
|
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool AllOnOnePage(uintptr_t start, int size) {
|
|
|
|
intptr_t start_page = (start & ~CachePage::kPageMask);
|
|
|
|
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
|
|
|
|
return start_page == end_page;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::set_last_debugger_input(char* input) {
|
|
|
|
DeleteArray(last_debugger_input_);
|
|
|
|
last_debugger_input_ = input;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
|
|
|
|
size_t size) {
|
|
|
|
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
|
|
|
|
int intra_line = (start & CachePage::kLineMask);
|
|
|
|
start -= intra_line;
|
|
|
|
size += intra_line;
|
|
|
|
size = ((size - 1) | CachePage::kLineMask) + 1;
|
|
|
|
int offset = (start & CachePage::kPageMask);
|
|
|
|
while (!AllOnOnePage(start, size - 1)) {
|
|
|
|
int bytes_to_flush = CachePage::kPageSize - offset;
|
|
|
|
FlushOnePage(i_cache, start, bytes_to_flush);
|
|
|
|
start += bytes_to_flush;
|
|
|
|
size -= bytes_to_flush;
|
|
|
|
DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
|
|
|
|
offset = 0;
|
|
|
|
}
|
|
|
|
if (size != 0) {
|
|
|
|
FlushOnePage(i_cache, start, size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
|
|
|
|
v8::internal::HashMap::Entry* entry =
|
2015-04-13 19:01:15 +00:00
|
|
|
i_cache->LookupOrInsert(page, ICacheHash(page));
|
2014-11-11 08:29:54 +00:00
|
|
|
if (entry->value == NULL) {
|
|
|
|
CachePage* new_page = new CachePage();
|
|
|
|
entry->value = new_page;
|
|
|
|
}
|
|
|
|
return reinterpret_cast<CachePage*>(entry->value);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Flush from start up to and not including start + size.
|
|
|
|
void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
|
|
|
|
int size) {
|
|
|
|
DCHECK(size <= CachePage::kPageSize);
|
|
|
|
DCHECK(AllOnOnePage(start, size - 1));
|
|
|
|
DCHECK((start & CachePage::kLineMask) == 0);
|
|
|
|
DCHECK((size & CachePage::kLineMask) == 0);
|
|
|
|
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
|
|
|
|
int offset = (start & CachePage::kPageMask);
|
|
|
|
CachePage* cache_page = GetCachePage(i_cache, page);
|
|
|
|
char* valid_bytemap = cache_page->ValidityByte(offset);
|
|
|
|
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::CheckICache(v8::internal::HashMap* i_cache,
|
|
|
|
Instruction* instr) {
|
|
|
|
intptr_t address = reinterpret_cast<intptr_t>(instr);
|
|
|
|
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
|
|
|
|
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
|
|
|
|
int offset = (address & CachePage::kPageMask);
|
|
|
|
CachePage* cache_page = GetCachePage(i_cache, page);
|
|
|
|
char* cache_valid_byte = cache_page->ValidityByte(offset);
|
|
|
|
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
|
|
|
|
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
|
|
|
|
if (cache_hit) {
|
|
|
|
// Check that the data in memory matches the contents of the I-cache.
|
|
|
|
CHECK_EQ(0,
|
|
|
|
memcmp(reinterpret_cast<void*>(instr),
|
|
|
|
cache_page->CachedData(offset), Instruction::kInstrSize));
|
|
|
|
} else {
|
|
|
|
// Cache miss. Load memory into the cache.
|
|
|
|
memcpy(cached_line, line, CachePage::kLineLength);
|
|
|
|
*cache_valid_byte = CachePage::LINE_VALID;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::Initialize(Isolate* isolate) {
|
|
|
|
if (isolate->simulator_initialized()) return;
|
|
|
|
isolate->set_simulator_initialized(true);
|
|
|
|
::v8::internal::ExternalReference::set_redirector(isolate,
|
|
|
|
&RedirectExternalReference);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
|
|
|
|
i_cache_ = isolate_->simulator_i_cache();
|
|
|
|
if (i_cache_ == NULL) {
|
|
|
|
i_cache_ = new v8::internal::HashMap(&ICacheMatch);
|
|
|
|
isolate_->set_simulator_i_cache(i_cache_);
|
|
|
|
}
|
|
|
|
Initialize(isolate);
|
|
|
|
// Set up simulator support first. Some of this information is needed to
|
|
|
|
// setup the architecture state.
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
2015-06-11 07:07:37 +00:00
|
|
|
size_t stack_size = FLAG_sim_stack_size * KB;
|
2014-11-11 08:29:54 +00:00
|
|
|
#else
|
2015-06-11 07:07:37 +00:00
|
|
|
size_t stack_size = MB; // allocate 1MB for stack
|
2014-11-11 08:29:54 +00:00
|
|
|
#endif
|
2015-06-11 07:07:37 +00:00
|
|
|
stack_size += 2 * stack_protection_size_;
|
2014-11-11 08:29:54 +00:00
|
|
|
stack_ = reinterpret_cast<char*>(malloc(stack_size));
|
|
|
|
pc_modified_ = false;
|
|
|
|
icount_ = 0;
|
|
|
|
break_pc_ = NULL;
|
|
|
|
break_instr_ = 0;
|
|
|
|
|
|
|
|
// Set up architecture state.
|
|
|
|
// All registers are initialized to zero to start with.
|
|
|
|
for (int i = 0; i < kNumGPRs; i++) {
|
|
|
|
registers_[i] = 0;
|
|
|
|
}
|
|
|
|
condition_reg_ = 0;
|
|
|
|
fp_condition_reg_ = 0;
|
|
|
|
special_reg_pc_ = 0;
|
|
|
|
special_reg_lr_ = 0;
|
|
|
|
special_reg_ctr_ = 0;
|
|
|
|
|
|
|
|
// Initializing FP registers.
|
|
|
|
for (int i = 0; i < kNumFPRs; i++) {
|
|
|
|
fp_registers_[i] = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The sp is initialized to point to the bottom (high address) of the
|
|
|
|
// allocated stack area. To be safe in potential stack underflows we leave
|
|
|
|
// some buffer below.
|
2015-06-11 07:07:37 +00:00
|
|
|
registers_[sp] =
|
|
|
|
reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
|
2014-11-11 08:29:54 +00:00
|
|
|
InitializeCoverage();
|
|
|
|
|
|
|
|
last_debugger_input_ = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-05-20 05:56:06 +00:00
|
|
|
Simulator::~Simulator() { free(stack_); }
|
2014-11-11 08:29:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
// When the generated code calls an external reference we need to catch that in
|
|
|
|
// the simulator. The external reference will be a function compiled for the
|
|
|
|
// host architecture. We need to call that function instead of trying to
|
|
|
|
// execute it with the simulator. We do that by redirecting the external
|
|
|
|
// reference to a svc (Supervisor Call) instruction that is handled by
|
|
|
|
// the simulator. We write the original destination of the jump just at a known
|
|
|
|
// offset from the svc instruction so the simulator knows what to call.
|
|
|
|
class Redirection {
|
|
|
|
public:
|
|
|
|
Redirection(void* external_function, ExternalReference::Type type)
|
|
|
|
: external_function_(external_function),
|
|
|
|
swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
|
|
|
|
type_(type),
|
|
|
|
next_(NULL) {
|
|
|
|
Isolate* isolate = Isolate::Current();
|
|
|
|
next_ = isolate->simulator_redirection();
|
|
|
|
Simulator::current(isolate)->FlushICache(
|
|
|
|
isolate->simulator_i_cache(),
|
|
|
|
reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
|
|
|
|
isolate->set_simulator_redirection(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void* address_of_swi_instruction() {
|
|
|
|
return reinterpret_cast<void*>(&swi_instruction_);
|
|
|
|
}
|
|
|
|
|
|
|
|
void* external_function() { return external_function_; }
|
|
|
|
ExternalReference::Type type() { return type_; }
|
|
|
|
|
|
|
|
static Redirection* Get(void* external_function,
|
|
|
|
ExternalReference::Type type) {
|
|
|
|
Isolate* isolate = Isolate::Current();
|
|
|
|
Redirection* current = isolate->simulator_redirection();
|
|
|
|
for (; current != NULL; current = current->next_) {
|
|
|
|
if (current->external_function_ == external_function) {
|
|
|
|
DCHECK_EQ(current->type(), type);
|
|
|
|
return current;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return new Redirection(external_function, type);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
|
|
|
|
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
|
|
|
|
char* addr_of_redirection =
|
2015-06-17 09:06:44 +00:00
|
|
|
addr_of_swi - offsetof(Redirection, swi_instruction_);
|
2014-11-11 08:29:54 +00:00
|
|
|
return reinterpret_cast<Redirection*>(addr_of_redirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void* ReverseRedirection(intptr_t reg) {
|
|
|
|
Redirection* redirection = FromSwiInstruction(
|
|
|
|
reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
|
|
|
|
return redirection->external_function();
|
|
|
|
}
|
|
|
|
|
2015-05-20 05:56:06 +00:00
|
|
|
static void DeleteChain(Redirection* redirection) {
|
|
|
|
while (redirection != nullptr) {
|
|
|
|
Redirection* next = redirection->next_;
|
|
|
|
delete redirection;
|
|
|
|
redirection = next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-11 08:29:54 +00:00
|
|
|
private:
|
|
|
|
void* external_function_;
|
|
|
|
uint32_t swi_instruction_;
|
|
|
|
ExternalReference::Type type_;
|
|
|
|
Redirection* next_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2015-05-20 05:56:06 +00:00
|
|
|
// static
|
|
|
|
void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
|
|
|
|
Redirection::DeleteChain(first);
|
|
|
|
if (i_cache != nullptr) {
|
|
|
|
for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
|
|
|
|
entry = i_cache->Next(entry)) {
|
|
|
|
delete static_cast<CachePage*>(entry->value);
|
|
|
|
}
|
|
|
|
delete i_cache;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-11-11 08:29:54 +00:00
|
|
|
void* Simulator::RedirectExternalReference(void* external_function,
|
|
|
|
ExternalReference::Type type) {
|
|
|
|
Redirection* redirection = Redirection::Get(external_function, type);
|
|
|
|
return redirection->address_of_swi_instruction();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Get the active Simulator for the current thread.
|
|
|
|
Simulator* Simulator::current(Isolate* isolate) {
|
|
|
|
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
|
|
|
|
isolate->FindOrAllocatePerThreadDataForThisThread();
|
|
|
|
DCHECK(isolate_data != NULL);
|
|
|
|
|
|
|
|
Simulator* sim = isolate_data->simulator();
|
|
|
|
if (sim == NULL) {
|
|
|
|
// TODO(146): delete the simulator object when a thread/isolate goes away.
|
|
|
|
sim = new Simulator(isolate);
|
|
|
|
isolate_data->set_simulator(sim);
|
|
|
|
}
|
|
|
|
return sim;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Sets the register in the architecture state.
|
|
|
|
void Simulator::set_register(int reg, intptr_t value) {
|
|
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs));
|
|
|
|
registers_[reg] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Get the register from the architecture state.
|
|
|
|
intptr_t Simulator::get_register(int reg) const {
|
|
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs));
|
|
|
|
// Stupid code added to avoid bug in GCC.
|
|
|
|
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
|
|
|
if (reg >= kNumGPRs) return 0;
|
|
|
|
// End stupid code.
|
|
|
|
return registers_[reg];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double Simulator::get_double_from_register_pair(int reg) {
|
|
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
|
|
|
|
|
|
|
|
double dm_val = 0.0;
|
|
|
|
#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
|
|
|
|
// Read the bits from the unsigned integer register_[] array
|
|
|
|
// into the double precision floating point value and return it.
|
|
|
|
char buffer[sizeof(fp_registers_[0])];
|
|
|
|
memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
|
|
|
|
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
|
|
|
|
#endif
|
|
|
|
return (dm_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Raw access to the PC register.
|
|
|
|
void Simulator::set_pc(intptr_t value) {
|
|
|
|
pc_modified_ = true;
|
|
|
|
special_reg_pc_ = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Simulator::has_bad_pc() const {
|
|
|
|
return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Raw access to the PC register without the special adjustment when reading.
|
|
|
|
intptr_t Simulator::get_pc() const { return special_reg_pc_; }
|
|
|
|
|
|
|
|
|
|
|
|
// Runtime FP routines take:
|
|
|
|
// - two double arguments
|
|
|
|
// - one double argument and zero or one integer arguments.
|
|
|
|
// All are consructed here from d1, d2 and r3.
|
|
|
|
void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
|
|
|
|
*x = get_double_from_d_register(1);
|
|
|
|
*y = get_double_from_d_register(2);
|
|
|
|
*z = get_register(3);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// The return value is in d1.
|
2015-02-05 19:01:48 +00:00
|
|
|
void Simulator::SetFpResult(const double& result) {
|
|
|
|
set_d_register_from_double(1, result);
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
void Simulator::TrashCallerSaveRegisters() {
|
|
|
|
// We don't trash the registers with the return value.
|
|
|
|
#if 0 // A good idea to trash volatile registers, needs to be done
|
|
|
|
registers_[2] = 0x50Bad4U;
|
|
|
|
registers_[3] = 0x50Bad4U;
|
|
|
|
registers_[12] = 0x50Bad4U;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
|
|
|
|
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
|
|
|
return *ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
|
|
|
|
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
|
|
|
return *ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
|
|
|
|
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
|
|
|
*ptr = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
|
|
|
|
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
|
|
|
*ptr = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
|
|
|
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
|
|
|
return *ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
|
|
|
|
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
|
|
|
return *ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
|
|
|
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
|
|
|
*ptr = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
|
|
|
|
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
|
|
|
*ptr = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uint8_t Simulator::ReadBU(intptr_t addr) {
|
|
|
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
|
|
|
return *ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int8_t Simulator::ReadB(intptr_t addr) {
|
|
|
|
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
|
|
|
return *ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::WriteB(intptr_t addr, uint8_t value) {
|
|
|
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
|
|
|
*ptr = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::WriteB(intptr_t addr, int8_t value) {
|
|
|
|
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
|
|
|
*ptr = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
intptr_t* Simulator::ReadDW(intptr_t addr) {
|
|
|
|
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::WriteDW(intptr_t addr, int64_t value) {
|
|
|
|
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
|
|
|
|
*ptr = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the limit of the stack area to enable checking for stack overflows.
|
2015-08-27 14:01:50 +00:00
|
|
|
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
|
|
|
|
// The simulator uses a separate JS stack. If we have exhausted the C stack,
|
|
|
|
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
|
|
|
|
if (GetCurrentStackPosition() < c_limit) {
|
|
|
|
return reinterpret_cast<uintptr_t>(get_sp());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise the limit is the JS stack. Leave a safety margin to prevent
|
|
|
|
// overrunning the stack when pushing values.
|
2015-06-11 07:07:37 +00:00
|
|
|
return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
|
2014-11-11 08:29:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Unsupported instructions use Format to print an error and stop execution.
|
|
|
|
void Simulator::Format(Instruction* instr, const char* format) {
|
|
|
|
PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
|
|
|
|
reinterpret_cast<intptr_t>(instr), format);
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate C flag value for additions.
|
|
|
|
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
|
|
|
|
uint32_t uleft = static_cast<uint32_t>(left);
|
|
|
|
uint32_t uright = static_cast<uint32_t>(right);
|
|
|
|
uint32_t urest = 0xffffffffU - uleft;
|
|
|
|
|
|
|
|
return (uright > urest) ||
|
|
|
|
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate C flag value for subtractions.
|
|
|
|
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
|
|
|
|
uint32_t uleft = static_cast<uint32_t>(left);
|
|
|
|
uint32_t uright = static_cast<uint32_t>(right);
|
|
|
|
|
|
|
|
return (uright > uleft);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate V flag value for additions and subtractions.
|
|
|
|
bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
|
|
|
|
bool addition) {
|
|
|
|
bool overflow;
|
|
|
|
if (addition) {
|
|
|
|
// operands have the same sign
|
|
|
|
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
|
|
|
|
// and operands and result have different sign
|
|
|
|
&&
|
|
|
|
((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
|
|
|
} else {
|
|
|
|
// operands have different signs
|
|
|
|
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
|
|
|
|
// and first operand and result have different signs
|
|
|
|
&&
|
|
|
|
((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
|
|
|
}
|
|
|
|
return overflow;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-02-05 19:01:48 +00:00
|
|
|
#if V8_TARGET_ARCH_PPC64
|
2014-11-11 08:29:54 +00:00
|
|
|
struct ObjectPair {
|
|
|
|
intptr_t x;
|
|
|
|
intptr_t y;
|
|
|
|
};
|
|
|
|
|
2015-02-05 19:01:48 +00:00
|
|
|
|
|
|
|
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
|
|
|
|
*x = pair->x;
|
|
|
|
*y = pair->y;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
typedef uint64_t ObjectPair;
|
|
|
|
|
|
|
|
|
|
|
|
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
|
|
|
|
#if V8_TARGET_BIG_ENDIAN
|
|
|
|
*x = static_cast<int32_t>(*pair >> 32);
|
|
|
|
*y = static_cast<int32_t>(*pair);
|
|
|
|
#else
|
|
|
|
*x = static_cast<int32_t>(*pair);
|
|
|
|
*y = static_cast<int32_t>(*pair >> 32);
|
|
|
|
#endif
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
#endif
|
|
|
|
|
2015-02-05 19:01:48 +00:00
|
|
|
// Calls into the V8 runtime are based on this very simple interface.
|
|
|
|
// Note: To be able to return two values from some calls the code in
|
|
|
|
// runtime.cc uses the ObjectPair which is essentially two pointer
|
|
|
|
// values stuffed into a structure. With the code below we assume that
|
|
|
|
// all runtime calls return this pair. If they don't, the r4 result
|
|
|
|
// register contains a bogus value, which is fine because it is
|
|
|
|
// caller-saved.
|
|
|
|
typedef ObjectPair (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
|
|
|
|
intptr_t arg2, intptr_t arg3,
|
|
|
|
intptr_t arg4, intptr_t arg5);
|
|
|
|
|
2014-11-11 08:29:54 +00:00
|
|
|
// These prototypes handle the four types of FP calls.
|
|
|
|
typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
|
|
|
|
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
|
|
|
|
typedef double (*SimulatorRuntimeFPCall)(double darg0);
|
|
|
|
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
|
|
|
|
|
|
|
|
// This signature supports direct call in to API function native callback
|
|
|
|
// (refer to InvocationCallback in v8.h).
|
|
|
|
typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
|
|
|
|
typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
|
|
|
|
|
|
|
|
// This signature supports direct call to accessor getter callback.
|
|
|
|
typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
|
|
|
|
typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
|
|
|
|
intptr_t arg1, void* arg2);
|
|
|
|
|
|
|
|
// Software interrupt instructions are used by the simulator to call into the
|
|
|
|
// C-based V8 runtime.
|
|
|
|
void Simulator::SoftwareInterrupt(Instruction* instr) {
|
|
|
|
int svc = instr->SvcValue();
|
|
|
|
switch (svc) {
|
|
|
|
case kCallRtRedirected: {
|
|
|
|
// Check if stack is aligned. Error if not aligned is reported below to
|
|
|
|
// include information on the function called.
|
|
|
|
bool stack_aligned =
|
|
|
|
(get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
|
|
|
|
0;
|
|
|
|
Redirection* redirection = Redirection::FromSwiInstruction(instr);
|
|
|
|
const int kArgCount = 6;
|
|
|
|
int arg0_regnum = 3;
|
2015-02-05 19:01:48 +00:00
|
|
|
#if !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
|
2014-11-11 08:29:54 +00:00
|
|
|
intptr_t result_buffer = 0;
|
|
|
|
if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) {
|
|
|
|
result_buffer = get_register(r3);
|
|
|
|
arg0_regnum++;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
intptr_t arg[kArgCount];
|
|
|
|
for (int i = 0; i < kArgCount; i++) {
|
|
|
|
arg[i] = get_register(arg0_regnum + i);
|
|
|
|
}
|
|
|
|
bool fp_call =
|
|
|
|
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
|
|
|
|
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
|
|
|
|
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
|
|
|
|
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
|
|
|
|
// This is dodgy but it works because the C entry stubs are never moved.
|
|
|
|
// See comment in codegen-arm.cc and bug 1242173.
|
|
|
|
intptr_t saved_lr = special_reg_lr_;
|
|
|
|
intptr_t external =
|
|
|
|
reinterpret_cast<intptr_t>(redirection->external_function());
|
|
|
|
if (fp_call) {
|
|
|
|
double dval0, dval1; // one or two double parameters
|
|
|
|
intptr_t ival; // zero or one integer parameters
|
|
|
|
int iresult = 0; // integer return value
|
|
|
|
double dresult = 0; // double return value
|
|
|
|
GetFpArgs(&dval0, &dval1, &ival);
|
|
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
|
|
SimulatorRuntimeCall generic_target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
|
|
switch (redirection->type()) {
|
|
|
|
case ExternalReference::BUILTIN_FP_FP_CALL:
|
|
|
|
case ExternalReference::BUILTIN_COMPARE_CALL:
|
|
|
|
PrintF("Call to host function at %p with args %f, %f",
|
|
|
|
FUNCTION_ADDR(generic_target), dval0, dval1);
|
|
|
|
break;
|
|
|
|
case ExternalReference::BUILTIN_FP_CALL:
|
|
|
|
PrintF("Call to host function at %p with arg %f",
|
|
|
|
FUNCTION_ADDR(generic_target), dval0);
|
|
|
|
break;
|
|
|
|
case ExternalReference::BUILTIN_FP_INT_CALL:
|
|
|
|
PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
|
|
|
|
FUNCTION_ADDR(generic_target), dval0, ival);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (!stack_aligned) {
|
|
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
|
|
get_register(sp));
|
|
|
|
}
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
CHECK(stack_aligned);
|
|
|
|
switch (redirection->type()) {
|
|
|
|
case ExternalReference::BUILTIN_COMPARE_CALL: {
|
|
|
|
SimulatorRuntimeCompareCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
|
|
|
|
iresult = target(dval0, dval1);
|
|
|
|
set_register(r3, iresult);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ExternalReference::BUILTIN_FP_FP_CALL: {
|
|
|
|
SimulatorRuntimeFPFPCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
|
|
|
|
dresult = target(dval0, dval1);
|
|
|
|
SetFpResult(dresult);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ExternalReference::BUILTIN_FP_CALL: {
|
|
|
|
SimulatorRuntimeFPCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeFPCall>(external);
|
|
|
|
dresult = target(dval0);
|
|
|
|
SetFpResult(dresult);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ExternalReference::BUILTIN_FP_INT_CALL: {
|
|
|
|
SimulatorRuntimeFPIntCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
|
|
|
|
dresult = target(dval0, ival);
|
|
|
|
SetFpResult(dresult);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
|
|
switch (redirection->type()) {
|
|
|
|
case ExternalReference::BUILTIN_COMPARE_CALL:
|
|
|
|
PrintF("Returned %08x\n", iresult);
|
|
|
|
break;
|
|
|
|
case ExternalReference::BUILTIN_FP_FP_CALL:
|
|
|
|
case ExternalReference::BUILTIN_FP_CALL:
|
|
|
|
case ExternalReference::BUILTIN_FP_INT_CALL:
|
|
|
|
PrintF("Returned %f\n", dresult);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
|
|
|
|
// See callers of MacroAssembler::CallApiFunctionAndReturn for
|
|
|
|
// explanation of register usage.
|
|
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR,
|
|
|
|
reinterpret_cast<void*>(external), arg[0]);
|
|
|
|
if (!stack_aligned) {
|
|
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
|
|
get_register(sp));
|
|
|
|
}
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
CHECK(stack_aligned);
|
|
|
|
SimulatorRuntimeDirectApiCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
|
|
|
|
target(arg[0]);
|
|
|
|
} else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
|
|
|
|
// See callers of MacroAssembler::CallApiFunctionAndReturn for
|
|
|
|
// explanation of register usage.
|
|
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR
|
|
|
|
" %08" V8PRIxPTR,
|
|
|
|
reinterpret_cast<void*>(external), arg[0], arg[1]);
|
|
|
|
if (!stack_aligned) {
|
|
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
|
|
get_register(sp));
|
|
|
|
}
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
CHECK(stack_aligned);
|
|
|
|
SimulatorRuntimeProfilingApiCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
|
|
|
|
target(arg[0], Redirection::ReverseRedirection(arg[1]));
|
|
|
|
} else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
|
|
|
|
// See callers of MacroAssembler::CallApiFunctionAndReturn for
|
|
|
|
// explanation of register usage.
|
|
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR
|
|
|
|
" %08" V8PRIxPTR,
|
|
|
|
reinterpret_cast<void*>(external), arg[0], arg[1]);
|
|
|
|
if (!stack_aligned) {
|
|
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
|
|
get_register(sp));
|
|
|
|
}
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
CHECK(stack_aligned);
|
|
|
|
SimulatorRuntimeDirectGetterCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
|
|
|
|
#if !ABI_PASSES_HANDLES_IN_REGS
|
|
|
|
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
|
|
|
#endif
|
|
|
|
target(arg[0], arg[1]);
|
|
|
|
} else if (redirection->type() ==
|
|
|
|
ExternalReference::PROFILING_GETTER_CALL) {
|
|
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR
|
|
|
|
" %08" V8PRIxPTR " %08" V8PRIxPTR,
|
|
|
|
reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
|
|
|
|
if (!stack_aligned) {
|
|
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
|
|
get_register(sp));
|
|
|
|
}
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
CHECK(stack_aligned);
|
|
|
|
SimulatorRuntimeProfilingGetterCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
|
|
|
|
#if !ABI_PASSES_HANDLES_IN_REGS
|
|
|
|
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
|
|
|
#endif
|
|
|
|
target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
|
|
|
|
} else {
|
|
|
|
// builtin call.
|
|
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
|
|
SimulatorRuntimeCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
|
|
PrintF(
|
|
|
|
"Call to host function at %p,\n"
|
|
|
|
"\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
|
|
|
|
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
|
|
|
|
FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
|
|
|
|
arg[5]);
|
|
|
|
if (!stack_aligned) {
|
|
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
|
|
get_register(sp));
|
|
|
|
}
|
|
|
|
PrintF("\n");
|
|
|
|
}
|
|
|
|
CHECK(stack_aligned);
|
|
|
|
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
|
|
|
|
SimulatorRuntimeCall target =
|
|
|
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
2015-02-05 19:01:48 +00:00
|
|
|
ObjectPair result =
|
|
|
|
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
|
|
|
intptr_t x;
|
|
|
|
intptr_t y;
|
|
|
|
decodeObjectPair(&result, &x, &y);
|
2014-11-11 08:29:54 +00:00
|
|
|
if (::v8::internal::FLAG_trace_sim) {
|
2015-02-05 19:01:48 +00:00
|
|
|
PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
|
2014-11-11 08:29:54 +00:00
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
set_register(r3, x);
|
|
|
|
set_register(r4, y);
|
2014-11-11 08:29:54 +00:00
|
|
|
}
|
|
|
|
set_pc(saved_lr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case kBreakpoint: {
|
|
|
|
PPCDebugger dbg(this);
|
|
|
|
dbg.Debug();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// stop uses all codes greater than 1 << 23.
|
|
|
|
default: {
|
|
|
|
if (svc >= (1 << 23)) {
|
|
|
|
uint32_t code = svc & kStopCodeMask;
|
|
|
|
if (isWatchedStop(code)) {
|
|
|
|
IncreaseStopCounter(code);
|
|
|
|
}
|
|
|
|
// Stop if it is enabled, otherwise go on jumping over the stop
|
|
|
|
// and the message address.
|
|
|
|
if (isEnabledStop(code)) {
|
|
|
|
PPCDebugger dbg(this);
|
|
|
|
dbg.Stop(instr);
|
|
|
|
} else {
|
|
|
|
set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// This is not a valid svc code.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Stop helper functions.
|
|
|
|
bool Simulator::isStopInstruction(Instruction* instr) {
|
|
|
|
return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Simulator::isWatchedStop(uint32_t code) {
|
|
|
|
DCHECK(code <= kMaxStopCode);
|
|
|
|
return code < kNumOfWatchedStops;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Simulator::isEnabledStop(uint32_t code) {
|
|
|
|
DCHECK(code <= kMaxStopCode);
|
|
|
|
// Unwatched stops are always enabled.
|
|
|
|
return !isWatchedStop(code) ||
|
|
|
|
!(watched_stops_[code].count & kStopDisabledBit);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::EnableStop(uint32_t code) {
|
|
|
|
DCHECK(isWatchedStop(code));
|
|
|
|
if (!isEnabledStop(code)) {
|
|
|
|
watched_stops_[code].count &= ~kStopDisabledBit;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::DisableStop(uint32_t code) {
|
|
|
|
DCHECK(isWatchedStop(code));
|
|
|
|
if (isEnabledStop(code)) {
|
|
|
|
watched_stops_[code].count |= kStopDisabledBit;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::IncreaseStopCounter(uint32_t code) {
|
|
|
|
DCHECK(code <= kMaxStopCode);
|
|
|
|
DCHECK(isWatchedStop(code));
|
|
|
|
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
|
|
|
|
PrintF(
|
|
|
|
"Stop counter for code %i has overflowed.\n"
|
|
|
|
"Enabling this code and reseting the counter to 0.\n",
|
|
|
|
code);
|
|
|
|
watched_stops_[code].count = 0;
|
|
|
|
EnableStop(code);
|
|
|
|
} else {
|
|
|
|
watched_stops_[code].count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Print a stop status.
|
|
|
|
void Simulator::PrintStopInfo(uint32_t code) {
|
|
|
|
DCHECK(code <= kMaxStopCode);
|
|
|
|
if (!isWatchedStop(code)) {
|
|
|
|
PrintF("Stop not watched.");
|
|
|
|
} else {
|
|
|
|
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
|
|
|
|
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
|
|
|
|
// Don't print the state of unused breakpoints.
|
|
|
|
if (count != 0) {
|
|
|
|
if (watched_stops_[code].desc) {
|
|
|
|
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
|
|
|
|
state, count, watched_stops_[code].desc);
|
|
|
|
} else {
|
|
|
|
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
|
|
|
|
count);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::SetCR0(intptr_t result, bool setSO) {
|
|
|
|
int bf = 0;
|
|
|
|
if (result < 0) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (result > 0) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (result == 0) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
if (setSO) {
|
|
|
|
bf |= 0x10000000;
|
|
|
|
}
|
|
|
|
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-07-30 07:30:27 +00:00
|
|
|
void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
|
2014-11-11 08:29:54 +00:00
|
|
|
int bo = instr->Bits(25, 21) << 21;
|
|
|
|
int condition_bit = instr->Bits(20, 16);
|
|
|
|
int condition_mask = 0x80000000 >> condition_bit;
|
|
|
|
switch (bo) {
|
|
|
|
case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
|
|
|
|
case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
case BF: { // Branch if condition false
|
2015-07-30 07:30:27 +00:00
|
|
|
if (condition_reg_ & condition_mask) return;
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
|
|
|
|
case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
case BT: { // Branch if condition true
|
2015-07-30 07:30:27 +00:00
|
|
|
if (!(condition_reg_ & condition_mask)) return;
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case DCBNZ: // Decrement CTR; branch if CTR != 0
|
|
|
|
case DCBEZ: // Decrement CTR; branch if CTR == 0
|
|
|
|
special_reg_ctr_ -= 1;
|
2015-07-30 07:30:27 +00:00
|
|
|
if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
case BA: { // Branch always
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
UNIMPLEMENTED(); // Invalid encoding
|
|
|
|
}
|
2015-07-30 07:30:27 +00:00
|
|
|
|
|
|
|
intptr_t old_pc = get_pc();
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case BC_OFFSET: {
|
|
|
|
int offset = (instr->Bits(15, 2) << 18) >> 16;
|
|
|
|
set_pc(old_pc + offset);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case BC_LINK_REG:
|
|
|
|
set_pc(special_reg_lr_);
|
|
|
|
break;
|
|
|
|
case BC_CTR_REG:
|
|
|
|
set_pc(special_reg_ctr_);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (instr->Bit(0) == 1) { // LK flag set
|
|
|
|
special_reg_lr_ = old_pc + 4;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Handle execution based on instruction types.
|
|
|
|
void Simulator::ExecuteExt1(Instruction* instr) {
|
|
|
|
switch (instr->Bits(10, 1) << 1) {
|
|
|
|
case MCRF:
|
|
|
|
UNIMPLEMENTED(); // Not used by V8.
|
2015-07-30 07:30:27 +00:00
|
|
|
case BCLRX:
|
|
|
|
ExecuteBranchConditional(instr, BC_LINK_REG);
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
2015-07-30 07:30:27 +00:00
|
|
|
case BCCTRX:
|
|
|
|
ExecuteBranchConditional(instr, BC_CTR_REG);
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
case CRNOR:
|
|
|
|
case RFI:
|
|
|
|
case CRANDC:
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
case ISYNC: {
|
|
|
|
// todo - simulate isync
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CRXOR: {
|
|
|
|
int bt = instr->Bits(25, 21);
|
|
|
|
int ba = instr->Bits(20, 16);
|
|
|
|
int bb = instr->Bits(15, 11);
|
|
|
|
int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
|
|
|
|
int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
|
|
|
|
int bt_val = ba_val ^ bb_val;
|
|
|
|
bt_val = bt_val << (31 - bt); // shift bit to correct destination
|
|
|
|
condition_reg_ &= ~(0x80000000 >> bt);
|
|
|
|
condition_reg_ |= bt_val;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CREQV: {
|
|
|
|
int bt = instr->Bits(25, 21);
|
|
|
|
int ba = instr->Bits(20, 16);
|
|
|
|
int bb = instr->Bits(15, 11);
|
|
|
|
int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
|
|
|
|
int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
|
|
|
|
int bt_val = 1 - (ba_val ^ bb_val);
|
|
|
|
bt_val = bt_val << (31 - bt); // shift bit to correct destination
|
|
|
|
condition_reg_ &= ~(0x80000000 >> bt);
|
|
|
|
condition_reg_ |= bt_val;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CRNAND:
|
|
|
|
case CRAND:
|
|
|
|
case CRORC:
|
|
|
|
case CROR:
|
|
|
|
default: {
|
|
|
|
UNIMPLEMENTED(); // Not used by V8.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
|
|
|
|
bool found = true;
|
|
|
|
|
|
|
|
int opcode = instr->Bits(10, 1) << 1;
|
|
|
|
switch (opcode) {
|
|
|
|
case SRWX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uint32_t rs_val = get_register(rs);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t result = rs_val >> (rb_val & 0x3f);
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case SRDX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t result = rs_val >> (rb_val & 0x7f);
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
case SRAW: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int32_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t result = rs_val >> (rb_val & 0x3f);
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case SRAD: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t result = rs_val >> (rb_val & 0x7f);
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
case SRAWIX: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int sh = instr->Bits(15, 11);
|
|
|
|
int32_t rs_val = get_register(rs);
|
|
|
|
intptr_t result = rs_val >> sh;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case EXTSW: {
|
|
|
|
const int shift = kBitsPerPointer - 32;
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t ra_val = (rs_val << shift) >> shift;
|
|
|
|
set_register(ra, ra_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(ra_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
case EXTSH: {
|
|
|
|
const int shift = kBitsPerPointer - 16;
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t ra_val = (rs_val << shift) >> shift;
|
|
|
|
set_register(ra, ra_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(ra_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case EXTSB: {
|
|
|
|
const int shift = kBitsPerPointer - 8;
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t ra_val = (rs_val << shift) >> shift;
|
|
|
|
set_register(ra, ra_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(ra_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case LFSUX:
|
|
|
|
case LFSX: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
int32_t val = ReadW(ra_val + rb_val, instr);
|
|
|
|
float* fptr = reinterpret_cast<float*>(&val);
|
|
|
|
set_d_register_from_double(frt, static_cast<double>(*fptr));
|
|
|
|
if (opcode == LFSUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case LFDUX:
|
|
|
|
case LFDX: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val));
|
|
|
|
set_d_register(frt, *dptr);
|
2014-11-11 08:29:54 +00:00
|
|
|
if (opcode == LFDUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case STFSUX: {
|
|
|
|
case STFSX:
|
|
|
|
int frs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
float frs_val = static_cast<float>(get_double_from_d_register(frs));
|
|
|
|
int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
|
|
|
|
WriteW(ra_val + rb_val, *p, instr);
|
|
|
|
if (opcode == STFSUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case STFDUX: {
|
|
|
|
case STFDX:
|
|
|
|
int frs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t frs_val = get_d_register(frs);
|
|
|
|
WriteDW(ra_val + rb_val, frs_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
if (opcode == STFDUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2015-10-16 17:42:43 +00:00
|
|
|
case POPCNTW: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
uintptr_t count = 0;
|
|
|
|
int n = 0;
|
|
|
|
uintptr_t bit = 0x80000000;
|
|
|
|
for (; n < 32; n++) {
|
|
|
|
if (bit & rs_val) count++;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
set_register(ra, count);
|
|
|
|
break;
|
|
|
|
}
|
2015-11-10 23:05:51 +00:00
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case POPCNTD: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
uintptr_t count = 0;
|
|
|
|
int n = 0;
|
|
|
|
uintptr_t bit = 0x8000000000000000UL;
|
|
|
|
for (; n < 64; n++) {
|
|
|
|
if (bit & rs_val) count++;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
set_register(ra, count);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
2014-11-11 08:29:54 +00:00
|
|
|
case SYNC: {
|
|
|
|
// todo - simulate sync
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ICBI: {
|
|
|
|
// todo - simulate icbi
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
found = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (found) return found;
|
|
|
|
|
|
|
|
found = true;
|
|
|
|
opcode = instr->Bits(10, 2) << 2;
|
|
|
|
switch (opcode) {
|
|
|
|
case SRADIX: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t result = rs_val >> sh;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
found = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
|
|
|
|
bool found = true;
|
|
|
|
|
|
|
|
int opcode = instr->Bits(9, 1) << 1;
|
|
|
|
switch (opcode) {
|
|
|
|
case TW: {
|
|
|
|
// used for call redirection in simulation mode
|
|
|
|
SoftwareInterrupt(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CMP: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int cr = instr->Bits(25, 23);
|
|
|
|
uint32_t bf = 0;
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
int L = instr->Bit(21);
|
|
|
|
if (L) {
|
|
|
|
#endif
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
if (ra_val < rb_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > rb_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == rb_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
} else {
|
|
|
|
int32_t ra_val = get_register(ra);
|
|
|
|
int32_t rb_val = get_register(rb);
|
|
|
|
if (ra_val < rb_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > rb_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == rb_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
|
|
|
uint32_t condition = bf >> (cr * 4);
|
|
|
|
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case SUBFCX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
// int oe = instr->Bit(10);
|
|
|
|
uintptr_t ra_val = get_register(ra);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
uintptr_t alu_out = ~ra_val + rb_val + 1;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
// If the sign of rb and alu_out don't match, carry = 0
|
|
|
|
if ((alu_out ^ rb_val) & 0x80000000) {
|
|
|
|
special_reg_xer_ &= ~0xF0000000;
|
|
|
|
} else {
|
|
|
|
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
|
|
|
|
}
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ADDCX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
// int oe = instr->Bit(10);
|
|
|
|
uintptr_t ra_val = get_register(ra);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
uintptr_t alu_out = ra_val + rb_val;
|
|
|
|
// Check overflow
|
|
|
|
if (~ra_val < rb_val) {
|
|
|
|
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
|
|
|
|
} else {
|
|
|
|
special_reg_xer_ &= ~0xF0000000;
|
|
|
|
}
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(static_cast<intptr_t>(alu_out));
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MULHWX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
|
|
|
|
int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
|
|
|
|
int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
|
|
|
|
alu_out >>= 32;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(static_cast<intptr_t>(alu_out));
|
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MULHWUX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
|
|
|
|
uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
|
|
|
|
uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
|
|
|
|
alu_out >>= 32;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(static_cast<intptr_t>(alu_out));
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case NEGX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
intptr_t alu_out = 1 + ~ra_val;
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
intptr_t one = 1; // work-around gcc
|
|
|
|
intptr_t kOverflowVal = (one << 63);
|
|
|
|
#else
|
|
|
|
intptr_t kOverflowVal = kMinInt;
|
|
|
|
#endif
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(10)) { // OE bit set
|
|
|
|
if (ra_val == kOverflowVal) {
|
|
|
|
special_reg_xer_ |= 0xC0000000; // set SO,OV
|
|
|
|
} else {
|
|
|
|
special_reg_xer_ &= ~0x40000000; // clear OV
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
bool setSO = (special_reg_xer_ & 0x80000000);
|
|
|
|
SetCR0(alu_out, setSO);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case SLWX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uint32_t rs_val = get_register(rs);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
uint32_t result = rs_val << (rb_val & 0x3f);
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case SLDX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
uintptr_t result = rs_val << (rb_val & 0x7f);
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MFVSRD: {
|
|
|
|
DCHECK(!instr->Bit(0));
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t frt_val = get_d_register(frt);
|
|
|
|
set_register(ra, frt_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MFVSRWZ: {
|
|
|
|
DCHECK(!instr->Bit(0));
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t frt_val = get_d_register(frt);
|
|
|
|
set_register(ra, static_cast<uint32_t>(frt_val));
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MTVSRD: {
|
|
|
|
DCHECK(!instr->Bit(0));
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int64_t ra_val = get_register(ra);
|
2015-02-05 19:01:48 +00:00
|
|
|
set_d_register(frt, ra_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MTVSRWA: {
|
|
|
|
DCHECK(!instr->Bit(0));
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int64_t ra_val = static_cast<int32_t>(get_register(ra));
|
2015-02-05 19:01:48 +00:00
|
|
|
set_d_register(frt, ra_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MTVSRWZ: {
|
|
|
|
DCHECK(!instr->Bit(0));
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
|
2015-02-05 19:01:48 +00:00
|
|
|
set_d_register(frt, ra_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
default: {
|
|
|
|
found = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-02-05 19:01:48 +00:00
|
|
|
bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
|
|
|
|
bool found = true;
|
2014-11-11 08:29:54 +00:00
|
|
|
int opcode = instr->Bits(9, 1) << 1;
|
|
|
|
switch (opcode) {
|
|
|
|
case CNTLZWX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
uintptr_t count = 0;
|
|
|
|
int n = 0;
|
|
|
|
uintptr_t bit = 0x80000000;
|
|
|
|
for (; n < 32; n++) {
|
|
|
|
if (bit & rs_val) break;
|
|
|
|
count++;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
set_register(ra, count);
|
|
|
|
if (instr->Bit(0)) { // RC Bit set
|
|
|
|
int bf = 0;
|
|
|
|
if (count > 0) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (count == 0) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case CNTLZDX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
uintptr_t count = 0;
|
|
|
|
int n = 0;
|
|
|
|
uintptr_t bit = 0x8000000000000000UL;
|
|
|
|
for (; n < 64; n++) {
|
|
|
|
if (bit & rs_val) break;
|
|
|
|
count++;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
set_register(ra, count);
|
|
|
|
if (instr->Bit(0)) { // RC Bit set
|
|
|
|
int bf = 0;
|
|
|
|
if (count > 0) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (count == 0) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
case ANDX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = rs_val & rb_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC Bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ANDCX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = rs_val & ~rb_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC Bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CMPL: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int cr = instr->Bits(25, 23);
|
|
|
|
uint32_t bf = 0;
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
int L = instr->Bit(21);
|
|
|
|
if (L) {
|
|
|
|
#endif
|
|
|
|
uintptr_t ra_val = get_register(ra);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
if (ra_val < rb_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > rb_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == rb_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
} else {
|
|
|
|
uint32_t ra_val = get_register(ra);
|
|
|
|
uint32_t rb_val = get_register(rb);
|
|
|
|
if (ra_val < rb_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > rb_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == rb_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
|
|
|
uint32_t condition = bf >> (cr * 4);
|
|
|
|
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case SUBFX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
// int oe = instr->Bit(10);
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = rb_val - ra_val;
|
|
|
|
// todo - figure out underflow
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC Bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ADDZEX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
if (special_reg_xer_ & 0x20000000) {
|
|
|
|
ra_val += 1;
|
|
|
|
}
|
|
|
|
set_register(rt, ra_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(ra_val);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case NORX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = ~(rs_val | rb_val);
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MULLW: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
|
|
|
|
int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
|
|
|
|
int32_t alu_out = ra_val * rb_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case MULLD: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int64_t ra_val = get_register(ra);
|
|
|
|
int64_t rb_val = get_register(rb);
|
|
|
|
int64_t alu_out = ra_val * rb_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
case DIVW: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int32_t ra_val = get_register(ra);
|
|
|
|
int32_t rb_val = get_register(rb);
|
|
|
|
bool overflow = (ra_val == kMinInt && rb_val == -1);
|
|
|
|
// result is undefined if divisor is zero or if operation
|
|
|
|
// is 0x80000000 / -1.
|
|
|
|
int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(10)) { // OE bit set
|
|
|
|
if (overflow) {
|
|
|
|
special_reg_xer_ |= 0xC0000000; // set SO,OV
|
|
|
|
} else {
|
|
|
|
special_reg_xer_ &= ~0x40000000; // clear OV
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
bool setSO = (special_reg_xer_ & 0x80000000);
|
|
|
|
SetCR0(alu_out, setSO);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
case DIVWU: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uint32_t ra_val = get_register(ra);
|
|
|
|
uint32_t rb_val = get_register(rb);
|
|
|
|
bool overflow = (rb_val == 0);
|
|
|
|
// result is undefined if divisor is zero
|
|
|
|
uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(10)) { // OE bit set
|
|
|
|
if (overflow) {
|
|
|
|
special_reg_xer_ |= 0xC0000000; // set SO,OV
|
|
|
|
} else {
|
|
|
|
special_reg_xer_ &= ~0x40000000; // clear OV
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
bool setSO = (special_reg_xer_ & 0x80000000);
|
|
|
|
SetCR0(alu_out, setSO);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case DIVD: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int64_t ra_val = get_register(ra);
|
|
|
|
int64_t rb_val = get_register(rb);
|
|
|
|
int64_t one = 1; // work-around gcc
|
|
|
|
int64_t kMinLongLong = (one << 63);
|
|
|
|
// result is undefined if divisor is zero or if operation
|
|
|
|
// is 0x80000000_00000000 / -1.
|
|
|
|
int64_t alu_out =
|
|
|
|
(rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
|
|
|
|
? -1
|
|
|
|
: ra_val / rb_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
case DIVDU: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uint64_t ra_val = get_register(ra);
|
|
|
|
uint64_t rb_val = get_register(rb);
|
|
|
|
// result is undefined if divisor is zero
|
|
|
|
uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
#endif
|
|
|
|
case ADDX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
// int oe = instr->Bit(10);
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = ra_val + rb_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
// todo - handle OE bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case XORX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = rs_val ^ rb_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ORX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = rs_val | rb_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
case ORC: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t alu_out = rs_val | ~rb_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(alu_out);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
case MFSPR: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int spr = instr->Bits(20, 11);
|
|
|
|
if (spr != 256) {
|
|
|
|
UNIMPLEMENTED(); // Only LRLR supported
|
|
|
|
}
|
|
|
|
set_register(rt, special_reg_lr_);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MTSPR: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
intptr_t rt_val = get_register(rt);
|
|
|
|
int spr = instr->Bits(20, 11);
|
|
|
|
if (spr == 256) {
|
|
|
|
special_reg_lr_ = rt_val;
|
|
|
|
} else if (spr == 288) {
|
|
|
|
special_reg_ctr_ = rt_val;
|
|
|
|
} else if (spr == 32) {
|
|
|
|
special_reg_xer_ = rt_val;
|
|
|
|
} else {
|
|
|
|
UNIMPLEMENTED(); // Only LR supported
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MFCR: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
set_register(rt, condition_reg_);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case STWUX:
|
|
|
|
case STWX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int32_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
WriteW(ra_val + rb_val, rs_val, instr);
|
|
|
|
if (opcode == STWUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case STBUX:
|
|
|
|
case STBX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int8_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
WriteB(ra_val + rb_val, rs_val);
|
|
|
|
if (opcode == STBUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case STHUX:
|
|
|
|
case STHX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int16_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
WriteH(ra_val + rb_val, rs_val, instr);
|
|
|
|
if (opcode == STHUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case LWZX:
|
|
|
|
case LWZUX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
set_register(rt, ReadWU(ra_val + rb_val, instr));
|
|
|
|
if (opcode == LWZUX) {
|
|
|
|
DCHECK(ra != 0 && ra != rt);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
2015-02-05 19:01:48 +00:00
|
|
|
case LWAX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
set_register(rt, ReadW(ra_val + rb_val, instr));
|
|
|
|
break;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
case LDX:
|
|
|
|
case LDUX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t* result = ReadDW(ra_val + rb_val);
|
|
|
|
set_register(rt, *result);
|
|
|
|
if (opcode == LDUX) {
|
|
|
|
DCHECK(ra != 0 && ra != rt);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case STDX:
|
|
|
|
case STDUX: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
WriteDW(ra_val + rb_val, rs_val);
|
|
|
|
if (opcode == STDUX) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
case LBZX:
|
|
|
|
case LBZUX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
|
|
|
|
if (opcode == LBZUX) {
|
|
|
|
DCHECK(ra != 0 && ra != rt);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case LHZX:
|
|
|
|
case LHZUX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
|
|
|
|
if (opcode == LHZUX) {
|
|
|
|
DCHECK(ra != 0 && ra != rt);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
case LHAX:
|
|
|
|
case LHAUX: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
set_register(rt, ReadH(ra_val + rb_val, instr));
|
|
|
|
if (opcode == LHAUX) {
|
|
|
|
DCHECK(ra != 0 && ra != rt);
|
|
|
|
set_register(ra, ra_val + rb_val);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
case DCBF: {
|
|
|
|
// todo - simulate dcbf
|
|
|
|
break;
|
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
default: {
|
|
|
|
found = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::ExecuteExt2_5bit(Instruction* instr) {
|
|
|
|
int opcode = instr->Bits(5, 1) << 1;
|
|
|
|
switch (opcode) {
|
|
|
|
case ISEL: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
int condition_bit = instr->RCValue();
|
|
|
|
int condition_mask = 0x80000000 >> condition_bit;
|
|
|
|
intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
|
|
|
|
intptr_t rb_val = get_register(rb);
|
|
|
|
intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
|
|
|
|
set_register(rt, value);
|
|
|
|
break;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
default: {
|
|
|
|
PrintF("Unimplemented: %08x\n", instr->InstructionBits());
|
|
|
|
UNIMPLEMENTED(); // Not used by V8.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::ExecuteExt2(Instruction* instr) {
|
|
|
|
// Check first the 10-1 bit versions
|
|
|
|
if (ExecuteExt2_10bit(instr)) return;
|
|
|
|
// Now look at the lesser encodings
|
|
|
|
if (ExecuteExt2_9bit_part1(instr)) return;
|
2015-02-05 19:01:48 +00:00
|
|
|
if (ExecuteExt2_9bit_part2(instr)) return;
|
|
|
|
ExecuteExt2_5bit(instr);
|
2014-11-11 08:29:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-11-11 02:16:32 +00:00
|
|
|
void Simulator::ExecuteExt3(Instruction* instr) {
|
|
|
|
int opcode = instr->Bits(10, 1) << 1;
|
|
|
|
switch (opcode) {
|
|
|
|
case FCFID: {
|
|
|
|
// fcfids
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double t_val = get_double_from_d_register(frb);
|
|
|
|
int64_t* frb_val_p = reinterpret_cast<int64_t*>(&t_val);
|
|
|
|
double frt_val = static_cast<float>(*frb_val_p);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
UNIMPLEMENTED(); // Not used by V8.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2014-11-11 08:29:54 +00:00
|
|
|
void Simulator::ExecuteExt4(Instruction* instr) {
|
|
|
|
switch (instr->Bits(5, 1) << 1) {
|
|
|
|
case FDIV: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = fra_val / frb_val;
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FSUB: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = fra_val - frb_val;
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FADD: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = fra_val + frb_val;
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FSQRT: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
2015-01-20 13:53:34 +00:00
|
|
|
double frt_val = fast_sqrt(frb_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FSEL: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
int frc = instr->RCValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frc_val = get_double_from_d_register(frc);
|
|
|
|
double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FMUL: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frc = instr->RCValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frc_val = get_double_from_d_register(frc);
|
|
|
|
double frt_val = fra_val * frc_val;
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FMSUB: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
int frc = instr->RCValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frc_val = get_double_from_d_register(frc);
|
|
|
|
double frt_val = (fra_val * frc_val) - frb_val;
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FMADD: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
int frc = instr->RCValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frc_val = get_double_from_d_register(frc);
|
|
|
|
double frt_val = (fra_val * frc_val) + frb_val;
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int opcode = instr->Bits(10, 1) << 1;
|
|
|
|
switch (opcode) {
|
|
|
|
case FCMPU: {
|
|
|
|
int fra = instr->RAValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double fra_val = get_double_from_d_register(fra);
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
int cr = instr->Bits(25, 23);
|
|
|
|
int bf = 0;
|
|
|
|
if (fra_val < frb_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (fra_val > frb_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (fra_val == frb_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
if (std::isunordered(fra_val, frb_val)) {
|
|
|
|
bf |= 0x10000000;
|
|
|
|
}
|
|
|
|
int condition_mask = 0xF0000000 >> (cr * 4);
|
|
|
|
int condition = bf >> (cr * 4);
|
|
|
|
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
|
|
|
return;
|
|
|
|
}
|
2015-02-05 19:01:48 +00:00
|
|
|
case FRIN: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = std::round(frb_val);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
// UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FRIZ: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = std::trunc(frb_val);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
// UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FRIP: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = std::ceil(frb_val);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
// UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FRIM: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = std::floor(frb_val);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
// UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
case FRSP: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
2015-02-05 19:01:48 +00:00
|
|
|
// frsp round 8-byte double-precision value to
|
|
|
|
// single-precision value
|
2014-11-11 08:29:54 +00:00
|
|
|
double frb_val = get_double_from_d_register(frb);
|
2015-02-05 19:01:48 +00:00
|
|
|
double frt_val = static_cast<float>(frb_val);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
// UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FCFID: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double t_val = get_double_from_d_register(frb);
|
|
|
|
int64_t* frb_val_p = reinterpret_cast<int64_t*>(&t_val);
|
|
|
|
double frt_val = static_cast<double>(*frb_val_p);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FCTID: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
int64_t frt_val;
|
|
|
|
int64_t one = 1; // work-around gcc
|
|
|
|
int64_t kMinLongLong = (one << 63);
|
|
|
|
int64_t kMaxLongLong = kMinLongLong - 1;
|
|
|
|
|
|
|
|
if (frb_val > kMaxLongLong) {
|
|
|
|
frt_val = kMaxLongLong;
|
|
|
|
} else if (frb_val < kMinLongLong) {
|
|
|
|
frt_val = kMinLongLong;
|
|
|
|
} else {
|
|
|
|
switch (fp_condition_reg_ & kFPRoundingModeMask) {
|
|
|
|
case kRoundToZero:
|
|
|
|
frt_val = (int64_t)frb_val;
|
|
|
|
break;
|
|
|
|
case kRoundToPlusInf:
|
|
|
|
frt_val = (int64_t)std::ceil(frb_val);
|
|
|
|
break;
|
|
|
|
case kRoundToMinusInf:
|
|
|
|
frt_val = (int64_t)std::floor(frb_val);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
frt_val = (int64_t)frb_val;
|
|
|
|
UNIMPLEMENTED(); // Not used by V8.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
double* p = reinterpret_cast<double*>(&frt_val);
|
|
|
|
set_d_register_from_double(frt, *p);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FCTIDZ: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
int64_t frt_val;
|
|
|
|
int64_t one = 1; // work-around gcc
|
|
|
|
int64_t kMinLongLong = (one << 63);
|
|
|
|
int64_t kMaxLongLong = kMinLongLong - 1;
|
|
|
|
|
|
|
|
if (frb_val > kMaxLongLong) {
|
|
|
|
frt_val = kMaxLongLong;
|
|
|
|
} else if (frb_val < kMinLongLong) {
|
|
|
|
frt_val = kMinLongLong;
|
|
|
|
} else {
|
|
|
|
frt_val = (int64_t)frb_val;
|
|
|
|
}
|
|
|
|
double* p = reinterpret_cast<double*>(&frt_val);
|
|
|
|
set_d_register_from_double(frt, *p);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FCTIW:
|
|
|
|
case FCTIWZ: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
int64_t frt_val;
|
|
|
|
if (frb_val > kMaxInt) {
|
|
|
|
frt_val = kMaxInt;
|
|
|
|
} else if (frb_val < kMinInt) {
|
|
|
|
frt_val = kMinInt;
|
|
|
|
} else {
|
|
|
|
if (opcode == FCTIWZ) {
|
|
|
|
frt_val = (int64_t)frb_val;
|
|
|
|
} else {
|
|
|
|
switch (fp_condition_reg_ & kFPRoundingModeMask) {
|
|
|
|
case kRoundToZero:
|
|
|
|
frt_val = (int64_t)frb_val;
|
|
|
|
break;
|
|
|
|
case kRoundToPlusInf:
|
|
|
|
frt_val = (int64_t)std::ceil(frb_val);
|
|
|
|
break;
|
|
|
|
case kRoundToMinusInf:
|
|
|
|
frt_val = (int64_t)std::floor(frb_val);
|
|
|
|
break;
|
|
|
|
case kRoundToNearest:
|
|
|
|
frt_val = (int64_t)lround(frb_val);
|
|
|
|
|
|
|
|
// Round to even if exactly halfway. (lround rounds up)
|
|
|
|
if (std::fabs(static_cast<double>(frt_val) - frb_val) == 0.5 &&
|
|
|
|
(frt_val % 2)) {
|
|
|
|
frt_val += ((frt_val > 0) ? -1 : 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
DCHECK(false);
|
|
|
|
frt_val = (int64_t)frb_val;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
double* p = reinterpret_cast<double*>(&frt_val);
|
|
|
|
set_d_register_from_double(frt, *p);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FNEG: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = -frb_val;
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FMR: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t frb_val = get_d_register(frb);
|
|
|
|
set_d_register(frt, frb_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
case MTFSFI: {
|
|
|
|
int bf = instr->Bits(25, 23);
|
|
|
|
int imm = instr->Bits(15, 12);
|
|
|
|
int fp_condition_mask = 0xF0000000 >> (bf * 4);
|
|
|
|
fp_condition_reg_ &= ~fp_condition_mask;
|
|
|
|
fp_condition_reg_ |= (imm << (28 - (bf * 4)));
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
condition_reg_ &= 0xF0FFFFFF;
|
|
|
|
condition_reg_ |= (imm << 23);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case MTFSF: {
|
|
|
|
int frb = instr->RBValue();
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t frb_dval = get_d_register(frb);
|
|
|
|
int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff);
|
2014-11-11 08:29:54 +00:00
|
|
|
int l = instr->Bits(25, 25);
|
|
|
|
if (l == 1) {
|
|
|
|
fp_condition_reg_ = frb_ival;
|
|
|
|
} else {
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
// int w = instr->Bits(16, 16);
|
|
|
|
// int flm = instr->Bits(24, 17);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case MFFS: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int64_t lval = static_cast<int64_t>(fp_condition_reg_);
|
2015-02-05 19:01:48 +00:00
|
|
|
set_d_register(frt, lval);
|
2014-11-11 08:29:54 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
case FABS: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int frb = instr->RBValue();
|
|
|
|
double frb_val = get_double_from_d_register(frb);
|
|
|
|
double frt_val = std::fabs(frb_val);
|
|
|
|
set_d_register_from_double(frt, frt_val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
UNIMPLEMENTED(); // Not used by V8.
|
|
|
|
}
|
|
|
|
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
void Simulator::ExecuteExt5(Instruction* instr) {
|
|
|
|
switch (instr->Bits(4, 2) << 2) {
|
|
|
|
case RLDICL: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
|
|
|
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
|
|
|
DCHECK(sh >= 0 && sh <= 63);
|
|
|
|
DCHECK(mb >= 0 && mb <= 63);
|
2015-03-04 05:53:05 +00:00
|
|
|
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
|
2014-11-11 08:29:54 +00:00
|
|
|
uintptr_t mask = 0xffffffffffffffff >> mb;
|
|
|
|
result &= mask;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case RLDICR: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
|
|
|
int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
|
|
|
DCHECK(sh >= 0 && sh <= 63);
|
|
|
|
DCHECK(me >= 0 && me <= 63);
|
2015-03-04 05:53:05 +00:00
|
|
|
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
|
2014-11-11 08:29:54 +00:00
|
|
|
uintptr_t mask = 0xffffffffffffffff << (63 - me);
|
|
|
|
result &= mask;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case RLDIC: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
|
|
|
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
|
|
|
DCHECK(sh >= 0 && sh <= 63);
|
|
|
|
DCHECK(mb >= 0 && mb <= 63);
|
2015-03-04 05:53:05 +00:00
|
|
|
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
|
2014-11-11 08:29:54 +00:00
|
|
|
uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
|
|
|
|
result &= mask;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
case RLDIMI: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
|
|
|
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
|
|
|
int me = 63 - sh;
|
2015-03-04 05:53:05 +00:00
|
|
|
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
|
2014-11-11 08:29:54 +00:00
|
|
|
uintptr_t mask = 0;
|
|
|
|
if (mb < me + 1) {
|
|
|
|
uintptr_t bit = 0x8000000000000000 >> mb;
|
|
|
|
for (; mb <= me; mb++) {
|
|
|
|
mask |= bit;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
} else if (mb == me + 1) {
|
|
|
|
mask = 0xffffffffffffffff;
|
|
|
|
} else { // mb > me+1
|
|
|
|
uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested
|
|
|
|
mask = 0xffffffffffffffff;
|
|
|
|
for (; me < mb; me++) {
|
|
|
|
mask ^= bit;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result &= mask;
|
|
|
|
ra_val &= ~mask;
|
|
|
|
result |= ra_val;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
switch (instr->Bits(4, 1) << 1) {
|
|
|
|
case RLDCL: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uintptr_t rs_val = get_register(rs);
|
|
|
|
uintptr_t rb_val = get_register(rb);
|
|
|
|
int sh = (rb_val & 0x3f);
|
|
|
|
int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
|
|
|
DCHECK(sh >= 0 && sh <= 63);
|
|
|
|
DCHECK(mb >= 0 && mb <= 63);
|
2015-03-04 05:53:05 +00:00
|
|
|
uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
|
2014-11-11 08:29:54 +00:00
|
|
|
uintptr_t mask = 0xffffffffffffffff >> mb;
|
|
|
|
result &= mask;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
UNIMPLEMENTED(); // Not used by V8.
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::ExecuteGeneric(Instruction* instr) {
|
|
|
|
int opcode = instr->OpcodeValue() << 26;
|
|
|
|
switch (opcode) {
|
|
|
|
case SUBFIC: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
int32_t im_val = instr->Bits(15, 0);
|
|
|
|
im_val = SIGN_EXT_IMM16(im_val);
|
|
|
|
intptr_t alu_out = im_val - ra_val;
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
// todo - handle RC bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CMPLI: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
uint32_t im_val = instr->Bits(15, 0);
|
|
|
|
int cr = instr->Bits(25, 23);
|
|
|
|
uint32_t bf = 0;
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
int L = instr->Bit(21);
|
|
|
|
if (L) {
|
|
|
|
#endif
|
|
|
|
uintptr_t ra_val = get_register(ra);
|
|
|
|
if (ra_val < im_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > im_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == im_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
} else {
|
|
|
|
uint32_t ra_val = get_register(ra);
|
|
|
|
if (ra_val < im_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > im_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == im_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
|
|
|
uint32_t condition = bf >> (cr * 4);
|
|
|
|
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CMPI: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int32_t im_val = instr->Bits(15, 0);
|
|
|
|
im_val = SIGN_EXT_IMM16(im_val);
|
|
|
|
int cr = instr->Bits(25, 23);
|
|
|
|
uint32_t bf = 0;
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
int L = instr->Bit(21);
|
|
|
|
if (L) {
|
|
|
|
#endif
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
if (ra_val < im_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > im_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == im_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
} else {
|
|
|
|
int32_t ra_val = get_register(ra);
|
|
|
|
if (ra_val < im_val) {
|
|
|
|
bf |= 0x80000000;
|
|
|
|
}
|
|
|
|
if (ra_val > im_val) {
|
|
|
|
bf |= 0x40000000;
|
|
|
|
}
|
|
|
|
if (ra_val == im_val) {
|
|
|
|
bf |= 0x20000000;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
|
|
|
uint32_t condition = bf >> (cr * 4);
|
|
|
|
condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ADDIC: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
uintptr_t ra_val = get_register(ra);
|
|
|
|
uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
uintptr_t alu_out = ra_val + im_val;
|
|
|
|
// Check overflow
|
|
|
|
if (~ra_val < im_val) {
|
|
|
|
special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
|
|
|
|
} else {
|
|
|
|
special_reg_xer_ &= ~0xF0000000;
|
|
|
|
}
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ADDI: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
intptr_t alu_out;
|
|
|
|
if (ra == 0) {
|
|
|
|
alu_out = im_val;
|
|
|
|
} else {
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
alu_out = ra_val + im_val;
|
|
|
|
}
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
// todo - handle RC bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ADDIS: {
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int32_t im_val = (instr->Bits(15, 0) << 16);
|
|
|
|
intptr_t alu_out;
|
|
|
|
if (ra == 0) { // treat r0 as zero
|
|
|
|
alu_out = im_val;
|
|
|
|
} else {
|
|
|
|
intptr_t ra_val = get_register(ra);
|
|
|
|
alu_out = ra_val + im_val;
|
|
|
|
}
|
|
|
|
set_register(rt, alu_out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case BCX: {
|
2015-07-30 07:30:27 +00:00
|
|
|
ExecuteBranchConditional(instr, BC_OFFSET);
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
case BX: {
|
|
|
|
int offset = (instr->Bits(25, 2) << 8) >> 6;
|
|
|
|
if (instr->Bit(0) == 1) { // LK flag set
|
|
|
|
special_reg_lr_ = get_pc() + 4;
|
|
|
|
}
|
|
|
|
set_pc(get_pc() + offset);
|
|
|
|
// todo - AA flag
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case EXT1: {
|
|
|
|
ExecuteExt1(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RLWIMIX: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
uint32_t rs_val = get_register(rs);
|
|
|
|
int32_t ra_val = get_register(ra);
|
|
|
|
int sh = instr->Bits(15, 11);
|
|
|
|
int mb = instr->Bits(10, 6);
|
|
|
|
int me = instr->Bits(5, 1);
|
2015-03-04 05:53:05 +00:00
|
|
|
uint32_t result = base::bits::RotateLeft32(rs_val, sh);
|
2014-11-11 08:29:54 +00:00
|
|
|
int mask = 0;
|
|
|
|
if (mb < me + 1) {
|
|
|
|
int bit = 0x80000000 >> mb;
|
|
|
|
for (; mb <= me; mb++) {
|
|
|
|
mask |= bit;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
} else if (mb == me + 1) {
|
|
|
|
mask = 0xffffffff;
|
|
|
|
} else { // mb > me+1
|
|
|
|
int bit = 0x80000000 >> (me + 1); // needs to be tested
|
|
|
|
mask = 0xffffffff;
|
|
|
|
for (; me < mb; me++) {
|
|
|
|
mask ^= bit;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result &= mask;
|
|
|
|
ra_val &= ~mask;
|
|
|
|
result |= ra_val;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RLWINMX:
|
|
|
|
case RLWNMX: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
uint32_t rs_val = get_register(rs);
|
|
|
|
int sh = 0;
|
|
|
|
if (opcode == RLWINMX) {
|
|
|
|
sh = instr->Bits(15, 11);
|
|
|
|
} else {
|
|
|
|
int rb = instr->RBValue();
|
|
|
|
uint32_t rb_val = get_register(rb);
|
|
|
|
sh = (rb_val & 0x1f);
|
|
|
|
}
|
|
|
|
int mb = instr->Bits(10, 6);
|
|
|
|
int me = instr->Bits(5, 1);
|
2015-03-04 05:53:05 +00:00
|
|
|
uint32_t result = base::bits::RotateLeft32(rs_val, sh);
|
2014-11-11 08:29:54 +00:00
|
|
|
int mask = 0;
|
|
|
|
if (mb < me + 1) {
|
|
|
|
int bit = 0x80000000 >> mb;
|
|
|
|
for (; mb <= me; mb++) {
|
|
|
|
mask |= bit;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
} else if (mb == me + 1) {
|
|
|
|
mask = 0xffffffff;
|
|
|
|
} else { // mb > me+1
|
|
|
|
int bit = 0x80000000 >> (me + 1); // needs to be tested
|
|
|
|
mask = 0xffffffff;
|
|
|
|
for (; me < mb; me++) {
|
|
|
|
mask ^= bit;
|
|
|
|
bit >>= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result &= mask;
|
|
|
|
set_register(ra, result);
|
|
|
|
if (instr->Bit(0)) { // RC bit set
|
|
|
|
SetCR0(result);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ORI: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
uint32_t im_val = instr->Bits(15, 0);
|
|
|
|
intptr_t alu_out = rs_val | im_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ORIS: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
uint32_t im_val = instr->Bits(15, 0);
|
|
|
|
intptr_t alu_out = rs_val | (im_val << 16);
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case XORI: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
uint32_t im_val = instr->Bits(15, 0);
|
|
|
|
intptr_t alu_out = rs_val ^ im_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
// todo - set condition based SO bit
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case XORIS: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
uint32_t im_val = instr->Bits(15, 0);
|
|
|
|
intptr_t alu_out = rs_val ^ (im_val << 16);
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ANDIx: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
uint32_t im_val = instr->Bits(15, 0);
|
|
|
|
intptr_t alu_out = rs_val & im_val;
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
SetCR0(alu_out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ANDISx: {
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
intptr_t rs_val = get_register(rs);
|
|
|
|
uint32_t im_val = instr->Bits(15, 0);
|
|
|
|
intptr_t alu_out = rs_val & (im_val << 16);
|
|
|
|
set_register(ra, alu_out);
|
|
|
|
SetCR0(alu_out);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case EXT2: {
|
|
|
|
ExecuteExt2(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case LWZU:
|
|
|
|
case LWZ: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
set_register(rt, ReadWU(ra_val + offset, instr));
|
|
|
|
if (opcode == LWZU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case LBZU:
|
|
|
|
case LBZ: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
set_register(rt, ReadB(ra_val + offset) & 0xFF);
|
|
|
|
if (opcode == LBZU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case STWU:
|
|
|
|
case STW: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int32_t rs_val = get_register(rs);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
WriteW(ra_val + offset, rs_val, instr);
|
|
|
|
if (opcode == STWU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
// printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case STBU:
|
|
|
|
case STB: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int8_t rs_val = get_register(rs);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
WriteB(ra_val + offset, rs_val);
|
|
|
|
if (opcode == STBU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case LHZU:
|
|
|
|
case LHZ: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
|
|
|
|
set_register(rt, result);
|
|
|
|
if (opcode == LHZU) {
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case LHA:
|
|
|
|
case LHAU: {
|
2015-02-05 19:01:48 +00:00
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
intptr_t result = ReadH(ra_val + offset, instr);
|
|
|
|
set_register(rt, result);
|
|
|
|
if (opcode == LHAU) {
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case STHU:
|
|
|
|
case STH: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int16_t rs_val = get_register(rs);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
WriteH(ra_val + offset, rs_val, instr);
|
|
|
|
if (opcode == STHU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case LMW:
|
|
|
|
case STMW: {
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case LFSU:
|
|
|
|
case LFS: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int32_t val = ReadW(ra_val + offset, instr);
|
|
|
|
float* fptr = reinterpret_cast<float*>(&val);
|
|
|
|
set_d_register_from_double(frt, static_cast<double>(*fptr));
|
|
|
|
if (opcode == LFSU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case LFDU:
|
|
|
|
case LFD: {
|
|
|
|
int frt = instr->RTValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset));
|
|
|
|
set_d_register(frt, *dptr);
|
2014-11-11 08:29:54 +00:00
|
|
|
if (opcode == LFDU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case STFSU: {
|
|
|
|
case STFS:
|
|
|
|
int frs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
float frs_val = static_cast<float>(get_double_from_d_register(frs));
|
|
|
|
int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
|
|
|
|
WriteW(ra_val + offset, *p, instr);
|
|
|
|
if (opcode == STFSU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case STFDU:
|
|
|
|
case STFD: {
|
|
|
|
int frs = instr->RSValue();
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
|
|
|
intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
2015-02-05 19:01:48 +00:00
|
|
|
int64_t frs_val = get_d_register(frs);
|
|
|
|
WriteDW(ra_val + offset, frs_val);
|
2014-11-11 08:29:54 +00:00
|
|
|
if (opcode == STFDU) {
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2015-11-11 02:16:32 +00:00
|
|
|
case EXT3: {
|
|
|
|
ExecuteExt3(instr);
|
|
|
|
break;
|
|
|
|
}
|
2014-11-11 08:29:54 +00:00
|
|
|
case EXT4: {
|
|
|
|
ExecuteExt4(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
|
|
case EXT5: {
|
|
|
|
ExecuteExt5(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case LD: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rt = instr->RTValue();
|
|
|
|
int64_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
|
|
|
|
switch (instr->Bits(1, 0)) {
|
|
|
|
case 0: { // ld
|
|
|
|
intptr_t* result = ReadDW(ra_val + offset);
|
|
|
|
set_register(rt, *result);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: { // ldu
|
|
|
|
intptr_t* result = ReadDW(ra_val + offset);
|
|
|
|
set_register(rt, *result);
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: { // lwa
|
|
|
|
intptr_t result = ReadW(ra_val + offset, instr);
|
|
|
|
set_register(rt, result);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case STD: {
|
|
|
|
int ra = instr->RAValue();
|
|
|
|
int rs = instr->RSValue();
|
|
|
|
int64_t ra_val = ra == 0 ? 0 : get_register(ra);
|
|
|
|
int64_t rs_val = get_register(rs);
|
|
|
|
int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
|
|
|
|
WriteDW(ra_val + offset, rs_val);
|
|
|
|
if (instr->Bit(0) == 1) { // This is the STDU form
|
|
|
|
DCHECK(ra != 0);
|
|
|
|
set_register(ra, ra_val + offset);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
default: {
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // NOLINT
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::Trace(Instruction* instr) {
|
|
|
|
disasm::NameConverter converter;
|
|
|
|
disasm::Disassembler dasm(converter);
|
|
|
|
// use a reasonably large buffer
|
|
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
|
|
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
|
|
|
|
PrintF("%05d %08" V8PRIxPTR " %s\n", icount_,
|
|
|
|
reinterpret_cast<intptr_t>(instr), buffer.start());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Executes the current instruction.
|
|
|
|
void Simulator::ExecuteInstruction(Instruction* instr) {
|
|
|
|
if (v8::internal::FLAG_check_icache) {
|
|
|
|
CheckICache(isolate_->simulator_i_cache(), instr);
|
|
|
|
}
|
|
|
|
pc_modified_ = false;
|
|
|
|
if (::v8::internal::FLAG_trace_sim) {
|
|
|
|
Trace(instr);
|
|
|
|
}
|
|
|
|
int opcode = instr->OpcodeValue() << 26;
|
|
|
|
if (opcode == TWI) {
|
|
|
|
SoftwareInterrupt(instr);
|
|
|
|
} else {
|
|
|
|
ExecuteGeneric(instr);
|
|
|
|
}
|
|
|
|
if (!pc_modified_) {
|
|
|
|
set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::Execute() {
|
|
|
|
// Get the PC to simulate. Cannot use the accessor here as we need the
|
|
|
|
// raw PC value and not the one used as input to arithmetic instructions.
|
|
|
|
intptr_t program_counter = get_pc();
|
|
|
|
|
|
|
|
if (::v8::internal::FLAG_stop_sim_at == 0) {
|
|
|
|
// Fast version of the dispatch loop without checking whether the simulator
|
|
|
|
// should be stopping at a particular executed instruction.
|
|
|
|
while (program_counter != end_sim_pc) {
|
|
|
|
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
|
|
|
icount_++;
|
|
|
|
ExecuteInstruction(instr);
|
|
|
|
program_counter = get_pc();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
|
|
|
|
// we reach the particular instuction count.
|
|
|
|
while (program_counter != end_sim_pc) {
|
|
|
|
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
|
|
|
icount_++;
|
|
|
|
if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
|
|
|
|
PPCDebugger dbg(this);
|
|
|
|
dbg.Debug();
|
|
|
|
} else {
|
|
|
|
ExecuteInstruction(instr);
|
|
|
|
}
|
|
|
|
program_counter = get_pc();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::CallInternal(byte* entry) {
|
2015-08-27 14:01:50 +00:00
|
|
|
// Adjust JS-based stack limit to C-based stack limit.
|
|
|
|
isolate_->stack_guard()->AdjustStackLimitForSimulator();
|
|
|
|
|
2014-11-11 08:29:54 +00:00
|
|
|
// Prepare to execute the code at entry
|
|
|
|
#if ABI_USES_FUNCTION_DESCRIPTORS
|
|
|
|
// entry is the function descriptor
|
|
|
|
set_pc(*(reinterpret_cast<intptr_t*>(entry)));
|
|
|
|
#else
|
|
|
|
// entry is the instruction address
|
|
|
|
set_pc(reinterpret_cast<intptr_t>(entry));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Put down marker for end of simulation. The simulator will stop simulation
|
|
|
|
// when the PC reaches this value. By saving the "end simulation" value into
|
|
|
|
// the LR the simulation stops when returning to this call point.
|
|
|
|
special_reg_lr_ = end_sim_pc;
|
|
|
|
|
|
|
|
// Remember the values of non-volatile registers.
|
|
|
|
intptr_t r2_val = get_register(r2);
|
|
|
|
intptr_t r13_val = get_register(r13);
|
|
|
|
intptr_t r14_val = get_register(r14);
|
|
|
|
intptr_t r15_val = get_register(r15);
|
|
|
|
intptr_t r16_val = get_register(r16);
|
|
|
|
intptr_t r17_val = get_register(r17);
|
|
|
|
intptr_t r18_val = get_register(r18);
|
|
|
|
intptr_t r19_val = get_register(r19);
|
|
|
|
intptr_t r20_val = get_register(r20);
|
|
|
|
intptr_t r21_val = get_register(r21);
|
|
|
|
intptr_t r22_val = get_register(r22);
|
|
|
|
intptr_t r23_val = get_register(r23);
|
|
|
|
intptr_t r24_val = get_register(r24);
|
|
|
|
intptr_t r25_val = get_register(r25);
|
|
|
|
intptr_t r26_val = get_register(r26);
|
|
|
|
intptr_t r27_val = get_register(r27);
|
|
|
|
intptr_t r28_val = get_register(r28);
|
|
|
|
intptr_t r29_val = get_register(r29);
|
|
|
|
intptr_t r30_val = get_register(r30);
|
|
|
|
intptr_t r31_val = get_register(fp);
|
|
|
|
|
|
|
|
// Set up the non-volatile registers with a known value. To be able to check
|
|
|
|
// that they are preserved properly across JS execution.
|
|
|
|
intptr_t callee_saved_value = icount_;
|
|
|
|
set_register(r2, callee_saved_value);
|
|
|
|
set_register(r13, callee_saved_value);
|
|
|
|
set_register(r14, callee_saved_value);
|
|
|
|
set_register(r15, callee_saved_value);
|
|
|
|
set_register(r16, callee_saved_value);
|
|
|
|
set_register(r17, callee_saved_value);
|
|
|
|
set_register(r18, callee_saved_value);
|
|
|
|
set_register(r19, callee_saved_value);
|
|
|
|
set_register(r20, callee_saved_value);
|
|
|
|
set_register(r21, callee_saved_value);
|
|
|
|
set_register(r22, callee_saved_value);
|
|
|
|
set_register(r23, callee_saved_value);
|
|
|
|
set_register(r24, callee_saved_value);
|
|
|
|
set_register(r25, callee_saved_value);
|
|
|
|
set_register(r26, callee_saved_value);
|
|
|
|
set_register(r27, callee_saved_value);
|
|
|
|
set_register(r28, callee_saved_value);
|
|
|
|
set_register(r29, callee_saved_value);
|
|
|
|
set_register(r30, callee_saved_value);
|
|
|
|
set_register(fp, callee_saved_value);
|
|
|
|
|
|
|
|
// Start the simulation
|
|
|
|
Execute();
|
|
|
|
|
|
|
|
// Check that the non-volatile registers have been preserved.
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r2));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r13));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r14));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r15));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r16));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r17));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r18));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r19));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r20));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r21));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r22));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r23));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r24));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r25));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r26));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r27));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r28));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r29));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(r30));
|
|
|
|
CHECK_EQ(callee_saved_value, get_register(fp));
|
|
|
|
|
|
|
|
// Restore non-volatile registers with the original value.
|
|
|
|
set_register(r2, r2_val);
|
|
|
|
set_register(r13, r13_val);
|
|
|
|
set_register(r14, r14_val);
|
|
|
|
set_register(r15, r15_val);
|
|
|
|
set_register(r16, r16_val);
|
|
|
|
set_register(r17, r17_val);
|
|
|
|
set_register(r18, r18_val);
|
|
|
|
set_register(r19, r19_val);
|
|
|
|
set_register(r20, r20_val);
|
|
|
|
set_register(r21, r21_val);
|
|
|
|
set_register(r22, r22_val);
|
|
|
|
set_register(r23, r23_val);
|
|
|
|
set_register(r24, r24_val);
|
|
|
|
set_register(r25, r25_val);
|
|
|
|
set_register(r26, r26_val);
|
|
|
|
set_register(r27, r27_val);
|
|
|
|
set_register(r28, r28_val);
|
|
|
|
set_register(r29, r29_val);
|
|
|
|
set_register(r30, r30_val);
|
|
|
|
set_register(fp, r31_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
|
|
|
|
va_list parameters;
|
|
|
|
va_start(parameters, argument_count);
|
|
|
|
// Set up arguments
|
|
|
|
|
|
|
|
// First eight arguments passed in registers r3-r10.
|
|
|
|
int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
|
|
|
|
int stack_arg_count = argument_count - reg_arg_count;
|
|
|
|
for (int i = 0; i < reg_arg_count; i++) {
|
|
|
|
set_register(i + 3, va_arg(parameters, intptr_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remaining arguments passed on stack.
|
|
|
|
intptr_t original_stack = get_register(sp);
|
|
|
|
// Compute position of stack on entry to generated code.
|
|
|
|
intptr_t entry_stack =
|
|
|
|
(original_stack -
|
|
|
|
(kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
|
|
|
|
if (base::OS::ActivationFrameAlignment() != 0) {
|
|
|
|
entry_stack &= -base::OS::ActivationFrameAlignment();
|
|
|
|
}
|
|
|
|
// Store remaining arguments on stack, from low to high memory.
|
|
|
|
// +2 is a hack for the LR slot + old SP on PPC
|
|
|
|
intptr_t* stack_argument =
|
|
|
|
reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
|
|
|
|
for (int i = 0; i < stack_arg_count; i++) {
|
|
|
|
stack_argument[i] = va_arg(parameters, intptr_t);
|
|
|
|
}
|
|
|
|
va_end(parameters);
|
|
|
|
set_register(sp, entry_stack);
|
|
|
|
|
|
|
|
CallInternal(entry);
|
|
|
|
|
|
|
|
// Pop stack passed arguments.
|
|
|
|
CHECK_EQ(entry_stack, get_register(sp));
|
|
|
|
set_register(sp, original_stack);
|
|
|
|
|
|
|
|
intptr_t result = get_register(r3);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Simulator::CallFP(byte* entry, double d0, double d1) {
|
|
|
|
set_d_register_from_double(1, d0);
|
|
|
|
set_d_register_from_double(2, d1);
|
|
|
|
CallInternal(entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
|
|
|
|
CallFP(entry, d0, d1);
|
|
|
|
int32_t result = get_register(r3);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
|
|
|
|
CallFP(entry, d0, d1);
|
|
|
|
return get_double_from_d_register(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uintptr_t Simulator::PushAddress(uintptr_t address) {
|
|
|
|
uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
|
|
|
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
|
|
|
|
*stack_slot = address;
|
|
|
|
set_register(sp, new_sp);
|
|
|
|
return new_sp;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
uintptr_t Simulator::PopAddress() {
|
|
|
|
uintptr_t current_sp = get_register(sp);
|
|
|
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
|
|
|
|
uintptr_t address = *stack_slot;
|
|
|
|
set_register(sp, current_sp + sizeof(uintptr_t));
|
|
|
|
return address;
|
|
|
|
}
|
2015-06-01 22:46:54 +00:00
|
|
|
} // namespace internal
|
|
|
|
} // namespace v8
|
2014-11-11 08:29:54 +00:00
|
|
|
|
|
|
|
#endif // USE_SIMULATOR
|
|
|
|
#endif // V8_TARGET_ARCH_PPC
|