v8/test/cctest/compiler/test-control-reducer.cc

1520 lines
40 KiB
C++
Raw Normal View History

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "src/base/bits.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/control-reducer.h"
#include "src/compiler/graph.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node-properties.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
static const size_t kNumLeafs = 4;
enum Decision { kFalse, kUnknown, kTrue };
// TODO(titzer): convert this whole file into unit tests.
static int CheckInputs(Node* node, Node* i0 = NULL, Node* i1 = NULL,
Node* i2 = NULL) {
int count = 3;
if (i2 == NULL) count = 2;
if (i1 == NULL) count = 1;
if (i0 == NULL) count = 0;
CHECK_EQ(count, node->InputCount());
if (i0 != NULL) CHECK_EQ(i0, node->InputAt(0));
if (i1 != NULL) CHECK_EQ(i1, node->InputAt(1));
if (i2 != NULL) CHECK_EQ(i2, node->InputAt(2));
return count;
}
static int CheckMerge(Node* node, Node* i0 = NULL, Node* i1 = NULL,
Node* i2 = NULL) {
CHECK_EQ(IrOpcode::kMerge, node->opcode());
int count = CheckInputs(node, i0, i1, i2);
CHECK_EQ(count, node->op()->ControlInputCount());
return count;
}
static int CheckLoop(Node* node, Node* i0 = NULL, Node* i1 = NULL,
Node* i2 = NULL) {
CHECK_EQ(IrOpcode::kLoop, node->opcode());
int count = CheckInputs(node, i0, i1, i2);
CHECK_EQ(count, node->op()->ControlInputCount());
return count;
}
bool IsUsedBy(Node* a, Node* b) {
auto const uses = a->uses();
return std::find(uses.begin(), uses.end(), b) != uses.end();
}
// A helper for all tests dealing with ControlTester.
class ControlReducerTester : HandleAndZoneScope {
public:
ControlReducerTester()
: isolate(main_isolate()),
common(main_zone()),
graph(main_zone()),
jsgraph(main_isolate(), &graph, &common, NULL, NULL),
start(graph.NewNode(common.Start(1))),
end(graph.NewNode(common.End(), start)),
p0(graph.NewNode(common.Parameter(0), start)),
zero(jsgraph.Int32Constant(0)),
one(jsgraph.OneConstant()),
half(jsgraph.Constant(0.5)),
self(graph.NewNode(common.Int32Constant(0xaabbccdd))),
dead(graph.NewNode(common.Dead())) {
graph.SetEnd(end);
graph.SetStart(start);
leaf[0] = zero;
leaf[1] = one;
leaf[2] = half;
leaf[3] = p0;
}
Isolate* isolate;
CommonOperatorBuilder common;
Graph graph;
JSGraph jsgraph;
Node* start;
Node* end;
Node* p0;
Node* zero;
Node* one;
Node* half;
Node* self;
Node* dead;
Node* leaf[kNumLeafs];
Node* Phi(Node* a) {
return SetSelfReferences(graph.NewNode(op(1, false), a, start));
}
Node* Phi(Node* a, Node* b) {
return SetSelfReferences(graph.NewNode(op(2, false), a, b, start));
}
Node* Phi(Node* a, Node* b, Node* c) {
return SetSelfReferences(graph.NewNode(op(3, false), a, b, c, start));
}
Node* Phi(Node* a, Node* b, Node* c, Node* d) {
return SetSelfReferences(graph.NewNode(op(4, false), a, b, c, d, start));
}
Node* EffectPhi(Node* a) {
return SetSelfReferences(graph.NewNode(op(1, true), a, start));
}
Node* EffectPhi(Node* a, Node* b) {
return SetSelfReferences(graph.NewNode(op(2, true), a, b, start));
}
Node* EffectPhi(Node* a, Node* b, Node* c) {
return SetSelfReferences(graph.NewNode(op(3, true), a, b, c, start));
}
Node* EffectPhi(Node* a, Node* b, Node* c, Node* d) {
return SetSelfReferences(graph.NewNode(op(4, true), a, b, c, d, start));
}
Node* SetSelfReferences(Node* node) {
for (Edge edge : node->input_edges()) {
if (edge.to() == self) node->ReplaceInput(edge.index(), node);
}
return node;
}
const Operator* op(int count, bool effect) {
return effect ? common.EffectPhi(count) : common.Phi(kMachAnyTagged, count);
}
void Trim() { ControlReducer::TrimGraph(main_zone(), &jsgraph); }
void ReduceGraph() {
ControlReducer::ReduceGraph(main_zone(), &jsgraph, &common);
}
// Checks one-step reduction of a phi.
void ReducePhi(Node* expect, Node* phi) {
Node* result = ControlReducer::ReducePhiForTesting(&jsgraph, &common, phi);
CHECK_EQ(expect, result);
ReducePhiIterative(expect, phi); // iterative should give the same result.
}
// Checks one-step reduction of a phi.
void ReducePhiNonIterative(Node* expect, Node* phi) {
Node* result = ControlReducer::ReducePhiForTesting(&jsgraph, &common, phi);
CHECK_EQ(expect, result);
}
void ReducePhiIterative(Node* expect, Node* phi) {
p0->ReplaceInput(0, start); // hack: parameters may be trimmed.
Node* ret = graph.NewNode(common.Return(), phi, start, start);
Node* end = graph.NewNode(common.End(), ret);
graph.SetEnd(end);
ControlReducer::ReduceGraph(main_zone(), &jsgraph, &common);
CheckInputs(end, ret);
CheckInputs(ret, expect, start, start);
}
void ReduceMerge(Node* expect, Node* merge) {
Node* result = ControlReducer::ReduceMerge(&jsgraph, &common, merge);
CHECK_EQ(expect, result);
}
void ReduceMergeIterative(Node* expect, Node* merge) {
p0->ReplaceInput(0, start); // hack: parameters may be trimmed.
Node* end = graph.NewNode(common.End(), merge);
graph.SetEnd(end);
ReduceGraph();
CheckInputs(end, expect);
}
void ReduceBranch(Decision expected, Node* branch) {
Node* control = branch->InputAt(1);
for (Node* use : branch->uses()) {
if (use->opcode() == IrOpcode::kIfTrue) {
Node* result =
ControlReducer::ReduceIfNodeForTesting(&jsgraph, &common, use);
if (expected == kTrue) CHECK_EQ(control, result);
if (expected == kFalse) CHECK_EQ(IrOpcode::kDead, result->opcode());
if (expected == kUnknown) CHECK_EQ(use, result);
} else if (use->opcode() == IrOpcode::kIfFalse) {
Node* result =
ControlReducer::ReduceIfNodeForTesting(&jsgraph, &common, use);
if (expected == kFalse) CHECK_EQ(control, result);
if (expected == kTrue) CHECK_EQ(IrOpcode::kDead, result->opcode());
if (expected == kUnknown) CHECK_EQ(use, result);
} else {
UNREACHABLE();
}
}
}
Node* Return(Node* val, Node* effect, Node* control) {
Node* ret = graph.NewNode(common.Return(), val, effect, control);
end->ReplaceInput(0, ret);
return ret;
}
};
TEST(Trim1_live) {
ControlReducerTester T;
CHECK(IsUsedBy(T.start, T.p0));
T.graph.SetEnd(T.p0);
T.Trim();
CHECK(IsUsedBy(T.start, T.p0));
CheckInputs(T.p0, T.start);
}
TEST(Trim1_dead) {
ControlReducerTester T;
CHECK(IsUsedBy(T.start, T.p0));
T.Trim();
CHECK(!IsUsedBy(T.start, T.p0));
CHECK(!T.p0->InputAt(0));
}
TEST(Trim2_live) {
ControlReducerTester T;
Node* phi =
T.graph.NewNode(T.common.Phi(kMachAnyTagged, 2), T.one, T.half, T.start);
CHECK(IsUsedBy(T.one, phi));
CHECK(IsUsedBy(T.half, phi));
CHECK(IsUsedBy(T.start, phi));
T.graph.SetEnd(phi);
T.Trim();
CHECK(IsUsedBy(T.one, phi));
CHECK(IsUsedBy(T.half, phi));
CHECK(IsUsedBy(T.start, phi));
CheckInputs(phi, T.one, T.half, T.start);
}
TEST(Trim2_dead) {
ControlReducerTester T;
Node* phi =
T.graph.NewNode(T.common.Phi(kMachAnyTagged, 2), T.one, T.half, T.start);
CHECK(IsUsedBy(T.one, phi));
CHECK(IsUsedBy(T.half, phi));
CHECK(IsUsedBy(T.start, phi));
T.Trim();
CHECK(!IsUsedBy(T.one, phi));
CHECK(!IsUsedBy(T.half, phi));
CHECK(!IsUsedBy(T.start, phi));
CHECK(!phi->InputAt(0));
CHECK(!phi->InputAt(1));
CHECK(!phi->InputAt(2));
}
TEST(Trim_chain1) {
ControlReducerTester T;
const int kDepth = 15;
Node* live[kDepth];
Node* dead[kDepth];
Node* end = T.start;
for (int i = 0; i < kDepth; i++) {
live[i] = end = T.graph.NewNode(T.common.Merge(1), end);
dead[i] = T.graph.NewNode(T.common.Merge(1), end);
}
// end -> live[last] -> live[last-1] -> ... -> start
// dead[last] ^ dead[last-1] ^ ... ^
T.graph.SetEnd(end);
T.Trim();
for (int i = 0; i < kDepth; i++) {
CHECK(!IsUsedBy(live[i], dead[i]));
CHECK(!dead[i]->InputAt(0));
CHECK_EQ(i == 0 ? T.start : live[i - 1], live[i]->InputAt(0));
}
}
TEST(Trim_chain2) {
ControlReducerTester T;
const int kDepth = 15;
Node* live[kDepth];
Node* dead[kDepth];
Node* l = T.start;
Node* d = T.start;
for (int i = 0; i < kDepth; i++) {
live[i] = l = T.graph.NewNode(T.common.Merge(1), l);
dead[i] = d = T.graph.NewNode(T.common.Merge(1), d);
}
// end -> live[last] -> live[last-1] -> ... -> start
// dead[last] -> dead[last-1] -> ... -> start
T.graph.SetEnd(l);
T.Trim();
CHECK(!IsUsedBy(T.start, dead[0]));
for (int i = 0; i < kDepth; i++) {
CHECK_EQ(i == 0 ? NULL : dead[i - 1], dead[i]->InputAt(0));
CHECK_EQ(i == 0 ? T.start : live[i - 1], live[i]->InputAt(0));
}
}
TEST(Trim_cycle1) {
ControlReducerTester T;
Node* loop = T.graph.NewNode(T.common.Loop(1), T.start, T.start);
loop->ReplaceInput(1, loop);
Node* end = T.graph.NewNode(T.common.End(), loop);
T.graph.SetEnd(end);
CHECK(IsUsedBy(T.start, loop));
CHECK(IsUsedBy(loop, end));
CHECK(IsUsedBy(loop, loop));
T.Trim();
// nothing should have happened to the loop itself.
CHECK(IsUsedBy(T.start, loop));
CHECK(IsUsedBy(loop, end));
CHECK(IsUsedBy(loop, loop));
CheckInputs(loop, T.start, loop);
CheckInputs(end, loop);
}
TEST(Trim_cycle2) {
ControlReducerTester T;
Node* loop = T.graph.NewNode(T.common.Loop(2), T.start, T.start);
loop->ReplaceInput(1, loop);
Node* end = T.graph.NewNode(T.common.End(), loop);
Node* phi =
T.graph.NewNode(T.common.Phi(kMachAnyTagged, 2), T.one, T.half, loop);
T.graph.SetEnd(end);
CHECK(IsUsedBy(T.start, loop));
CHECK(IsUsedBy(loop, end));
CHECK(IsUsedBy(loop, loop));
CHECK(IsUsedBy(loop, phi));
CHECK(IsUsedBy(T.one, phi));
CHECK(IsUsedBy(T.half, phi));
T.Trim();
// nothing should have happened to the loop itself.
CHECK(IsUsedBy(T.start, loop));
CHECK(IsUsedBy(loop, end));
CHECK(IsUsedBy(loop, loop));
CheckInputs(loop, T.start, loop);
CheckInputs(end, loop);
// phi should have been trimmed away.
CHECK(!IsUsedBy(loop, phi));
CHECK(!IsUsedBy(T.one, phi));
CHECK(!IsUsedBy(T.half, phi));
CHECK(!phi->InputAt(0));
CHECK(!phi->InputAt(1));
CHECK(!phi->InputAt(2));
}
void CheckTrimConstant(ControlReducerTester* T, Node* k) {
Node* phi = T->graph.NewNode(T->common.Phi(kMachInt32, 1), k, T->start);
CHECK(IsUsedBy(k, phi));
T->Trim();
CHECK(!IsUsedBy(k, phi));
CHECK(!phi->InputAt(0));
CHECK(!phi->InputAt(1));
}
TEST(Trim_constants) {
ControlReducerTester T;
int32_t int32_constants[] = {
0, -1, -2, 2, 2, 3, 3, 4, 4, 5, 5, 4, 5, 6, 6, 7, 8, 7, 8, 9,
0, -11, -12, 12, 12, 13, 13, 14, 14, 15, 15, 14, 15, 6, 6, 7, 8, 7, 8, 9};
for (size_t i = 0; i < arraysize(int32_constants); i++) {
CheckTrimConstant(&T, T.jsgraph.Int32Constant(int32_constants[i]));
CheckTrimConstant(&T, T.jsgraph.Float64Constant(int32_constants[i]));
CheckTrimConstant(&T, T.jsgraph.Constant(int32_constants[i]));
}
Node* other_constants[] = {
T.jsgraph.UndefinedConstant(), T.jsgraph.TheHoleConstant(),
T.jsgraph.TrueConstant(), T.jsgraph.FalseConstant(),
T.jsgraph.NullConstant(), T.jsgraph.ZeroConstant(),
T.jsgraph.OneConstant(), T.jsgraph.NaNConstant(),
T.jsgraph.Constant(21), T.jsgraph.Constant(22.2)};
for (size_t i = 0; i < arraysize(other_constants); i++) {
CheckTrimConstant(&T, other_constants[i]);
}
}
TEST(CReducePhi1) {
ControlReducerTester R;
R.ReducePhi(R.leaf[0], R.Phi(R.leaf[0]));
R.ReducePhi(R.leaf[1], R.Phi(R.leaf[1]));
R.ReducePhi(R.leaf[2], R.Phi(R.leaf[2]));
R.ReducePhi(R.leaf[3], R.Phi(R.leaf[3]));
}
TEST(CReducePhi1_dead) {
ControlReducerTester R;
R.ReducePhi(R.leaf[0], R.Phi(R.leaf[0], R.dead));
R.ReducePhi(R.leaf[1], R.Phi(R.leaf[1], R.dead));
R.ReducePhi(R.leaf[2], R.Phi(R.leaf[2], R.dead));
R.ReducePhi(R.leaf[3], R.Phi(R.leaf[3], R.dead));
R.ReducePhi(R.leaf[0], R.Phi(R.dead, R.leaf[0]));
R.ReducePhi(R.leaf[1], R.Phi(R.dead, R.leaf[1]));
R.ReducePhi(R.leaf[2], R.Phi(R.dead, R.leaf[2]));
R.ReducePhi(R.leaf[3], R.Phi(R.dead, R.leaf[3]));
}
TEST(CReducePhi1_dead2) {
ControlReducerTester R;
R.ReducePhi(R.leaf[0], R.Phi(R.leaf[0], R.dead, R.dead));
R.ReducePhi(R.leaf[0], R.Phi(R.dead, R.leaf[0], R.dead));
R.ReducePhi(R.leaf[0], R.Phi(R.dead, R.dead, R.leaf[0]));
}
TEST(CReducePhi2a) {
ControlReducerTester R;
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(a, a));
}
}
TEST(CReducePhi2b) {
ControlReducerTester R;
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(R.self, a));
R.ReducePhi(a, R.Phi(a, R.self));
}
}
TEST(CReducePhi2c) {
ControlReducerTester R;
for (size_t i = 1; i < kNumLeafs; i++) {
Node* a = R.leaf[i], *b = R.leaf[0];
Node* phi1 = R.Phi(b, a);
R.ReducePhi(phi1, phi1);
Node* phi2 = R.Phi(a, b);
R.ReducePhi(phi2, phi2);
}
}
TEST(CReducePhi2_dead) {
ControlReducerTester R;
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(a, a, R.dead));
R.ReducePhi(a, R.Phi(a, R.dead, a));
R.ReducePhi(a, R.Phi(R.dead, a, a));
}
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(R.self, a));
R.ReducePhi(a, R.Phi(a, R.self));
R.ReducePhi(a, R.Phi(R.self, a, R.dead));
R.ReducePhi(a, R.Phi(a, R.self, R.dead));
}
for (size_t i = 1; i < kNumLeafs; i++) {
Node* a = R.leaf[i], *b = R.leaf[0];
Node* phi1 = R.Phi(b, a, R.dead);
R.ReducePhiNonIterative(phi1, phi1);
Node* phi2 = R.Phi(a, b, R.dead);
R.ReducePhiNonIterative(phi2, phi2);
}
}
TEST(CReducePhi3) {
ControlReducerTester R;
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(a, a, a));
}
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(R.self, a, a));
R.ReducePhi(a, R.Phi(a, R.self, a));
R.ReducePhi(a, R.Phi(a, a, R.self));
}
for (size_t i = 1; i < kNumLeafs; i++) {
Node* a = R.leaf[i], *b = R.leaf[0];
Node* phi1 = R.Phi(b, a, a);
R.ReducePhi(phi1, phi1);
Node* phi2 = R.Phi(a, b, a);
R.ReducePhi(phi2, phi2);
Node* phi3 = R.Phi(a, a, b);
R.ReducePhi(phi3, phi3);
}
}
TEST(CReducePhi4) {
ControlReducerTester R;
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(a, a, a, a));
}
for (size_t i = 0; i < kNumLeafs; i++) {
Node* a = R.leaf[i];
R.ReducePhi(a, R.Phi(R.self, a, a, a));
R.ReducePhi(a, R.Phi(a, R.self, a, a));
R.ReducePhi(a, R.Phi(a, a, R.self, a));
R.ReducePhi(a, R.Phi(a, a, a, R.self));
R.ReducePhi(a, R.Phi(R.self, R.self, a, a));
R.ReducePhi(a, R.Phi(a, R.self, R.self, a));
R.ReducePhi(a, R.Phi(a, a, R.self, R.self));
R.ReducePhi(a, R.Phi(R.self, a, a, R.self));
}
for (size_t i = 1; i < kNumLeafs; i++) {
Node* a = R.leaf[i], *b = R.leaf[0];
Node* phi1 = R.Phi(b, a, a, a);
R.ReducePhi(phi1, phi1);
Node* phi2 = R.Phi(a, b, a, a);
R.ReducePhi(phi2, phi2);
Node* phi3 = R.Phi(a, a, b, a);
R.ReducePhi(phi3, phi3);
Node* phi4 = R.Phi(a, a, a, b);
R.ReducePhi(phi4, phi4);
}
}
TEST(CReducePhi_iterative1) {
ControlReducerTester R;
R.ReducePhiIterative(R.leaf[0], R.Phi(R.leaf[0], R.Phi(R.leaf[0])));
R.ReducePhiIterative(R.leaf[0], R.Phi(R.Phi(R.leaf[0]), R.leaf[0]));
}
TEST(CReducePhi_iterative2) {
ControlReducerTester R;
R.ReducePhiIterative(R.leaf[0], R.Phi(R.Phi(R.leaf[0]), R.Phi(R.leaf[0])));
}
TEST(CReducePhi_iterative3) {
ControlReducerTester R;
R.ReducePhiIterative(R.leaf[0],
R.Phi(R.leaf[0], R.Phi(R.leaf[0], R.leaf[0])));
R.ReducePhiIterative(R.leaf[0],
R.Phi(R.Phi(R.leaf[0], R.leaf[0]), R.leaf[0]));
}
TEST(CReducePhi_iterative4) {
ControlReducerTester R;
R.ReducePhiIterative(R.leaf[0], R.Phi(R.Phi(R.leaf[0], R.leaf[0]),
R.Phi(R.leaf[0], R.leaf[0])));
Node* p1 = R.Phi(R.leaf[0], R.leaf[0]);
R.ReducePhiIterative(R.leaf[0], R.Phi(p1, p1));
Node* p2 = R.Phi(R.leaf[0], R.leaf[0], R.leaf[0]);
R.ReducePhiIterative(R.leaf[0], R.Phi(p2, p2, p2));
Node* p3 = R.Phi(R.leaf[0], R.leaf[0], R.leaf[0]);
R.ReducePhiIterative(R.leaf[0], R.Phi(p3, p3, R.leaf[0]));
}
TEST(CReducePhi_iterative_self1) {
ControlReducerTester R;
R.ReducePhiIterative(R.leaf[0], R.Phi(R.leaf[0], R.Phi(R.leaf[0], R.self)));
R.ReducePhiIterative(R.leaf[0], R.Phi(R.Phi(R.leaf[0], R.self), R.leaf[0]));
}
TEST(CReducePhi_iterative_self2) {
ControlReducerTester R;
R.ReducePhiIterative(
R.leaf[0], R.Phi(R.Phi(R.leaf[0], R.self), R.Phi(R.leaf[0], R.self)));
R.ReducePhiIterative(
R.leaf[0], R.Phi(R.Phi(R.self, R.leaf[0]), R.Phi(R.self, R.leaf[0])));
Node* p1 = R.Phi(R.leaf[0], R.self);
R.ReducePhiIterative(R.leaf[0], R.Phi(p1, p1));
Node* p2 = R.Phi(R.self, R.leaf[0]);
R.ReducePhiIterative(R.leaf[0], R.Phi(p2, p2));
}
TEST(EReducePhi1) {
ControlReducerTester R;
R.ReducePhi(R.leaf[0], R.EffectPhi(R.leaf[0]));
R.ReducePhi(R.leaf[1], R.EffectPhi(R.leaf[1]));
R.ReducePhi(R.leaf[2], R.EffectPhi(R.leaf[2]));
R.ReducePhi(R.leaf[3], R.EffectPhi(R.leaf[3]));
}
TEST(EReducePhi1_dead) {
ControlReducerTester R;
R.ReducePhi(R.leaf[0], R.EffectPhi(R.leaf[0], R.dead));
R.ReducePhi(R.leaf[1], R.EffectPhi(R.leaf[1], R.dead));
R.ReducePhi(R.leaf[2], R.EffectPhi(R.leaf[2], R.dead));
R.ReducePhi(R.leaf[3], R.EffectPhi(R.leaf[3], R.dead));
R.ReducePhi(R.leaf[0], R.EffectPhi(R.dead, R.leaf[0]));
R.ReducePhi(R.leaf[1], R.EffectPhi(R.dead, R.leaf[1]));
R.ReducePhi(R.leaf[2], R.EffectPhi(R.dead, R.leaf[2]));
R.ReducePhi(R.leaf[3], R.EffectPhi(R.dead, R.leaf[3]));
}
TEST(EReducePhi1_dead2) {
ControlReducerTester R;
R.ReducePhi(R.leaf[0], R.EffectPhi(R.leaf[0], R.dead, R.dead));
R.ReducePhi(R.leaf[0], R.EffectPhi(R.dead, R.leaf[0], R.dead));
R.ReducePhi(R.leaf[0], R.EffectPhi(R.dead, R.dead, R.leaf[0]));
}
TEST(CMergeReduce_simple1) {
ControlReducerTester R;
Node* merge = R.graph.NewNode(R.common.Merge(1), R.start);
R.ReduceMerge(R.start, merge);
}
TEST(CMergeReduce_simple2) {
ControlReducerTester R;
Node* merge1 = R.graph.NewNode(R.common.Merge(1), R.start);
Node* merge2 = R.graph.NewNode(R.common.Merge(1), merge1);
R.ReduceMerge(merge1, merge2);
R.ReduceMergeIterative(R.start, merge2);
}
TEST(CMergeReduce_none1) {
ControlReducerTester R;
Node* merge = R.graph.NewNode(R.common.Merge(2), R.start, R.start);
R.ReduceMerge(merge, merge);
}
TEST(CMergeReduce_none2) {
ControlReducerTester R;
Node* t = R.graph.NewNode(R.common.IfTrue(), R.start);
Node* f = R.graph.NewNode(R.common.IfFalse(), R.start);
Node* merge = R.graph.NewNode(R.common.Merge(2), t, f);
R.ReduceMerge(merge, merge);
}
TEST(CMergeReduce_self3) {
ControlReducerTester R;
Node* merge =
R.SetSelfReferences(R.graph.NewNode(R.common.Merge(2), R.start, R.self));
R.ReduceMerge(merge, merge);
}
TEST(CMergeReduce_dead1) {
ControlReducerTester R;
Node* merge = R.graph.NewNode(R.common.Merge(2), R.start, R.dead);
R.ReduceMerge(R.start, merge);
}
TEST(CMergeReduce_dead2) {
ControlReducerTester R;
Node* merge1 = R.graph.NewNode(R.common.Merge(1), R.start);
Node* merge2 = R.graph.NewNode(R.common.Merge(2), merge1, R.dead);
R.ReduceMerge(merge1, merge2);
R.ReduceMergeIterative(R.start, merge2);
}
TEST(CMergeReduce_dead_rm1a) {
ControlReducerTester R;
for (int i = 0; i < 3; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(3), R.start, R.start, R.start);
merge->ReplaceInput(i, R.dead);
R.ReduceMerge(merge, merge);
CheckMerge(merge, R.start, R.start);
}
}
TEST(CMergeReduce_dead_rm1b) {
ControlReducerTester R;
Node* t = R.graph.NewNode(R.common.IfTrue(), R.start);
Node* f = R.graph.NewNode(R.common.IfFalse(), R.start);
for (int i = 0; i < 2; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(3), R.dead, R.dead, R.dead);
for (int j = i + 1; j < 3; j++) {
merge->ReplaceInput(i, t);
merge->ReplaceInput(j, f);
R.ReduceMerge(merge, merge);
CheckMerge(merge, t, f);
}
}
}
TEST(CMergeReduce_dead_rm2) {
ControlReducerTester R;
for (int i = 0; i < 3; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(3), R.dead, R.dead, R.dead);
merge->ReplaceInput(i, R.start);
R.ReduceMerge(R.start, merge);
}
}
TEST(CLoopReduce_dead_rm1) {
ControlReducerTester R;
for (int i = 0; i < 3; i++) {
Node* loop = R.graph.NewNode(R.common.Loop(3), R.dead, R.start, R.start);
R.ReduceMerge(loop, loop);
CheckLoop(loop, R.start, R.start);
}
}
TEST(CMergeReduce_edit_phi1) {
ControlReducerTester R;
for (int i = 0; i < 3; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(3), R.start, R.start, R.start);
merge->ReplaceInput(i, R.dead);
Node* phi = R.graph.NewNode(R.common.Phi(kMachAnyTagged, 3), R.leaf[0],
R.leaf[1], R.leaf[2], merge);
R.ReduceMerge(merge, merge);
CHECK_EQ(IrOpcode::kPhi, phi->opcode());
CHECK_EQ(2, phi->op()->ValueInputCount());
CHECK_EQ(3, phi->InputCount());
CHECK_EQ(R.leaf[i < 1 ? 1 : 0], phi->InputAt(0));
CHECK_EQ(R.leaf[i < 2 ? 2 : 1], phi->InputAt(1));
CHECK_EQ(merge, phi->InputAt(2));
}
}
TEST(CMergeReduce_edit_effect_phi1) {
ControlReducerTester R;
for (int i = 0; i < 3; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(3), R.start, R.start, R.start);
merge->ReplaceInput(i, R.dead);
Node* phi = R.graph.NewNode(R.common.EffectPhi(3), R.leaf[0], R.leaf[1],
R.leaf[2], merge);
R.ReduceMerge(merge, merge);
CHECK_EQ(IrOpcode::kEffectPhi, phi->opcode());
CHECK_EQ(0, phi->op()->ValueInputCount());
CHECK_EQ(2, phi->op()->EffectInputCount());
CHECK_EQ(3, phi->InputCount());
CHECK_EQ(R.leaf[i < 1 ? 1 : 0], phi->InputAt(0));
CHECK_EQ(R.leaf[i < 2 ? 2 : 1], phi->InputAt(1));
CHECK_EQ(merge, phi->InputAt(2));
}
}
static const int kSelectorSize = 4;
// Helper to select K of N nodes according to a mask, useful for the test below.
struct Selector {
int mask;
int count;
explicit Selector(int m) {
mask = m;
count = v8::base::bits::CountPopulation32(m);
}
bool is_selected(int i) { return (mask & (1 << i)) != 0; }
void CheckNode(Node* node, IrOpcode::Value opcode, Node** inputs,
Node* control) {
CHECK_EQ(opcode, node->opcode());
CHECK_EQ(count + (control != NULL ? 1 : 0), node->InputCount());
int index = 0;
for (int i = 0; i < kSelectorSize; i++) {
if (mask & (1 << i)) {
CHECK_EQ(inputs[i], node->InputAt(index++));
}
}
CHECK_EQ(count, index);
if (control != NULL) CHECK_EQ(control, node->InputAt(index++));
}
int single_index() {
CHECK_EQ(1, count);
return WhichPowerOf2(mask);
}
};
TEST(CMergeReduce_exhaustive_4) {
ControlReducerTester R;
Node* controls[] = {
R.graph.NewNode(R.common.Start(1)), R.graph.NewNode(R.common.Start(2)),
R.graph.NewNode(R.common.Start(3)), R.graph.NewNode(R.common.Start(4))};
Node* values[] = {R.jsgraph.Int32Constant(11), R.jsgraph.Int32Constant(22),
R.jsgraph.Int32Constant(33), R.jsgraph.Int32Constant(44)};
Node* effects[] = {
R.jsgraph.Float64Constant(123.4), R.jsgraph.Float64Constant(223.4),
R.jsgraph.Float64Constant(323.4), R.jsgraph.Float64Constant(423.4)};
for (int mask = 0; mask < (1 << (kSelectorSize - 1)); mask++) {
// Reduce a single merge with a given mask.
Node* merge = R.graph.NewNode(R.common.Merge(4), controls[0], controls[1],
controls[2], controls[3]);
Node* phi = R.graph.NewNode(R.common.Phi(kMachAnyTagged, 4), values[0],
values[1], values[2], values[3], merge);
Node* ephi = R.graph.NewNode(R.common.EffectPhi(4), effects[0], effects[1],
effects[2], effects[3], merge);
Node* phi_use =
R.graph.NewNode(R.common.Phi(kMachAnyTagged, 1), phi, R.start);
Node* ephi_use = R.graph.NewNode(R.common.EffectPhi(1), ephi, R.start);
Selector selector(mask);
for (int i = 0; i < kSelectorSize; i++) { // set up dead merge inputs.
if (!selector.is_selected(i)) merge->ReplaceInput(i, R.dead);
}
Node* result = ControlReducer::ReduceMerge(&R.jsgraph, &R.common, merge);
int count = selector.count;
if (count == 0) {
// result should be dead.
CHECK_EQ(IrOpcode::kDead, result->opcode());
} else if (count == 1) {
// merge should be replaced with one of the controls.
CHECK_EQ(controls[selector.single_index()], result);
// Phis should have been directly replaced.
CHECK_EQ(values[selector.single_index()], phi_use->InputAt(0));
CHECK_EQ(effects[selector.single_index()], ephi_use->InputAt(0));
} else {
// Otherwise, nodes should be edited in place.
CHECK_EQ(merge, result);
selector.CheckNode(merge, IrOpcode::kMerge, controls, NULL);
selector.CheckNode(phi, IrOpcode::kPhi, values, merge);
selector.CheckNode(ephi, IrOpcode::kEffectPhi, effects, merge);
CHECK_EQ(phi, phi_use->InputAt(0));
CHECK_EQ(ephi, ephi_use->InputAt(0));
CHECK_EQ(count, phi->op()->ValueInputCount());
CHECK_EQ(count + 1, phi->InputCount());
CHECK_EQ(count, ephi->op()->EffectInputCount());
CHECK_EQ(count + 1, ephi->InputCount());
}
}
}
TEST(CMergeReduce_edit_many_phis1) {
ControlReducerTester R;
const int kPhiCount = 10;
Node* phis[kPhiCount];
for (int i = 0; i < 3; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(3), R.start, R.start, R.start);
merge->ReplaceInput(i, R.dead);
for (int j = 0; j < kPhiCount; j++) {
phis[j] = R.graph.NewNode(R.common.Phi(kMachAnyTagged, 3), R.leaf[0],
R.leaf[1], R.leaf[2], merge);
}
R.ReduceMerge(merge, merge);
for (int j = 0; j < kPhiCount; j++) {
Node* phi = phis[j];
CHECK_EQ(IrOpcode::kPhi, phi->opcode());
CHECK_EQ(2, phi->op()->ValueInputCount());
CHECK_EQ(3, phi->InputCount());
CHECK_EQ(R.leaf[i < 1 ? 1 : 0], phi->InputAt(0));
CHECK_EQ(R.leaf[i < 2 ? 2 : 1], phi->InputAt(1));
CHECK_EQ(merge, phi->InputAt(2));
}
}
}
TEST(CMergeReduce_simple_chain1) {
ControlReducerTester R;
for (int i = 0; i < 5; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(1), R.start);
for (int j = 0; j < i; j++) {
merge = R.graph.NewNode(R.common.Merge(1), merge);
}
R.ReduceMergeIterative(R.start, merge);
}
}
TEST(CMergeReduce_dead_chain1) {
ControlReducerTester R;
for (int i = 0; i < 5; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(1), R.dead);
for (int j = 0; j < i; j++) {
merge = R.graph.NewNode(R.common.Merge(1), merge);
}
Node* end = R.graph.NewNode(R.common.End(), merge);
R.graph.SetEnd(end);
R.ReduceGraph();
CHECK(merge->IsDead());
CHECK(!end->InputAt(0)); // end dies.
}
}
TEST(CMergeReduce_dead_chain2) {
ControlReducerTester R;
for (int i = 0; i < 5; i++) {
Node* merge = R.graph.NewNode(R.common.Merge(1), R.start);
for (int j = 0; j < i; j++) {
merge = R.graph.NewNode(R.common.Merge(2), merge, R.dead);
}
R.ReduceMergeIterative(R.start, merge);
}
}
struct Branch {
Node* branch;
Node* if_true;
Node* if_false;
Branch(ControlReducerTester& R, Node* cond, Node* control = NULL) {
if (control == NULL) control = R.start;
branch = R.graph.NewNode(R.common.Branch(), cond, control);
if_true = R.graph.NewNode(R.common.IfTrue(), branch);
if_false = R.graph.NewNode(R.common.IfFalse(), branch);
}
};
// TODO(titzer): use the diamonds from src/compiler/diamond.h here.
struct Diamond {
Node* branch;
Node* if_true;
Node* if_false;
Node* merge;
Node* phi;
Diamond(ControlReducerTester& R, Node* cond) {
branch = R.graph.NewNode(R.common.Branch(), cond, R.start);
if_true = R.graph.NewNode(R.common.IfTrue(), branch);
if_false = R.graph.NewNode(R.common.IfFalse(), branch);
merge = R.graph.NewNode(R.common.Merge(2), if_true, if_false);
phi = NULL;
}
Diamond(ControlReducerTester& R, Node* cond, Node* tv, Node* fv) {
branch = R.graph.NewNode(R.common.Branch(), cond, R.start);
if_true = R.graph.NewNode(R.common.IfTrue(), branch);
if_false = R.graph.NewNode(R.common.IfFalse(), branch);
merge = R.graph.NewNode(R.common.Merge(2), if_true, if_false);
phi = R.graph.NewNode(R.common.Phi(kMachAnyTagged, 2), tv, fv, merge);
}
void chain(Diamond& that) { branch->ReplaceInput(1, that.merge); }
// Nest {this} into either the if_true or if_false branch of {that}.
void nest(Diamond& that, bool if_true) {
if (if_true) {
branch->ReplaceInput(1, that.if_true);
that.merge->ReplaceInput(0, merge);
} else {
branch->ReplaceInput(1, that.if_false);
that.merge->ReplaceInput(1, merge);
}
}
};
struct While {
Node* branch;
Node* if_true;
Node* exit;
Node* loop;
While(ControlReducerTester& R, Node* cond) {
loop = R.graph.NewNode(R.common.Loop(2), R.start, R.start);
branch = R.graph.NewNode(R.common.Branch(), cond, loop);
if_true = R.graph.NewNode(R.common.IfTrue(), branch);
exit = R.graph.NewNode(R.common.IfFalse(), branch);
loop->ReplaceInput(1, if_true);
}
void chain(Node* control) { loop->ReplaceInput(0, control); }
};
TEST(CBranchReduce_none1) {
ControlReducerTester R;
Diamond d(R, R.p0);
R.ReduceBranch(kUnknown, d.branch);
}
TEST(CBranchReduce_none2) {
ControlReducerTester R;
Diamond d1(R, R.p0);
Diamond d2(R, R.p0);
d2.chain(d1);
R.ReduceBranch(kUnknown, d2.branch);
}
TEST(CBranchReduce_true) {
ControlReducerTester R;
Node* true_values[] = {
R.one, R.jsgraph.Int32Constant(2),
R.jsgraph.Int32Constant(0x7fffffff), R.jsgraph.Constant(1.0),
R.jsgraph.Constant(22.1), R.jsgraph.TrueConstant()};
for (size_t i = 0; i < arraysize(true_values); i++) {
Diamond d(R, true_values[i]);
R.ReduceBranch(kTrue, d.branch);
}
}
TEST(CBranchReduce_false) {
ControlReducerTester R;
Node* false_values[] = {R.zero, R.jsgraph.Constant(0.0),
R.jsgraph.Constant(-0.0), R.jsgraph.FalseConstant()};
for (size_t i = 0; i < arraysize(false_values); i++) {
Diamond d(R, false_values[i]);
R.ReduceBranch(kFalse, d.branch);
}
}
TEST(CDiamondReduce_true) {
ControlReducerTester R;
Diamond d1(R, R.one);
R.ReduceMergeIterative(R.start, d1.merge);
}
TEST(CDiamondReduce_false) {
ControlReducerTester R;
Diamond d2(R, R.zero);
R.ReduceMergeIterative(R.start, d2.merge);
}
TEST(CChainedDiamondsReduce_true_false) {
ControlReducerTester R;
Diamond d1(R, R.one);
Diamond d2(R, R.zero);
d2.chain(d1);
R.ReduceMergeIterative(R.start, d2.merge);
}
TEST(CChainedDiamondsReduce_x_false) {
ControlReducerTester R;
Diamond d1(R, R.p0);
Diamond d2(R, R.zero);
d2.chain(d1);
R.ReduceMergeIterative(d1.merge, d2.merge);
}
TEST(CChainedDiamondsReduce_false_x) {
ControlReducerTester R;
Diamond d1(R, R.zero);
Diamond d2(R, R.p0);
d2.chain(d1);
R.ReduceMergeIterative(d2.merge, d2.merge);
CheckInputs(d2.branch, R.p0, R.start);
}
TEST(CChainedDiamondsReduce_phi1) {
ControlReducerTester R;
Diamond d1(R, R.zero, R.one, R.zero); // foldable branch, phi.
Diamond d2(R, d1.phi);
d2.chain(d1);
R.ReduceMergeIterative(R.start, d2.merge);
}
TEST(CChainedDiamondsReduce_phi2) {
ControlReducerTester R;
Diamond d1(R, R.p0, R.one, R.one); // redundant phi.
Diamond d2(R, d1.phi);
d2.chain(d1);
R.ReduceMergeIterative(d1.merge, d2.merge);
}
TEST(CNestedDiamondsReduce_true_true_false) {
ControlReducerTester R;
Diamond d1(R, R.one);
Diamond d2(R, R.zero);
d2.nest(d1, true);
R.ReduceMergeIterative(R.start, d1.merge);
}
TEST(CNestedDiamondsReduce_false_true_false) {
ControlReducerTester R;
Diamond d1(R, R.one);
Diamond d2(R, R.zero);
d2.nest(d1, false);
R.ReduceMergeIterative(R.start, d1.merge);
}
TEST(CNestedDiamonds_xyz) {
ControlReducerTester R;
for (int a = 0; a < 2; a++) {
for (int b = 0; b < 2; b++) {
for (int c = 0; c < 2; c++) {
Diamond d1(R, R.jsgraph.Int32Constant(a));
Diamond d2(R, R.jsgraph.Int32Constant(b));
d2.nest(d1, c);
R.ReduceMergeIterative(R.start, d1.merge);
}
}
}
}
TEST(CDeadLoop1) {
ControlReducerTester R;
Node* loop = R.graph.NewNode(R.common.Loop(1), R.start);
Branch b(R, R.p0, loop);
loop->ReplaceInput(0, b.if_true); // loop is not connected to start.
Node* merge = R.graph.NewNode(R.common.Merge(2), R.start, b.if_false);
R.ReduceMergeIterative(R.start, merge);
CHECK(b.if_true->IsDead());
CHECK(b.if_false->IsDead());
}
TEST(CDeadLoop2) {
ControlReducerTester R;
While w(R, R.p0);
Diamond d(R, R.zero);
// if (0) { while (p0) ; } else { }
w.branch->ReplaceInput(1, d.if_true);
d.merge->ReplaceInput(0, w.exit);
R.ReduceMergeIterative(R.start, d.merge);
CHECK(d.if_true->IsDead());
CHECK(d.if_false->IsDead());
}
TEST(Return1) {
ControlReducerTester R;
Node* ret = R.Return(R.one, R.start, R.start);
R.ReduceGraph();
CheckInputs(R.graph.end(), ret);
CheckInputs(ret, R.one, R.start, R.start);
}
TEST(Return2) {
ControlReducerTester R;
Diamond d(R, R.one);
Node* ret = R.Return(R.half, R.start, d.merge);
R.ReduceGraph();
CHECK(d.branch->IsDead());
CHECK(d.if_true->IsDead());
CHECK(d.if_false->IsDead());
CHECK(d.merge->IsDead());
CheckInputs(R.graph.end(), ret);
CheckInputs(ret, R.half, R.start, R.start);
}
TEST(Return_true1) {
ControlReducerTester R;
Diamond d(R, R.one, R.half, R.zero);
Node* ret = R.Return(d.phi, R.start, d.merge);
R.ReduceGraph();
CHECK(d.branch->IsDead());
CHECK(d.if_true->IsDead());
CHECK(d.if_false->IsDead());
CHECK(d.merge->IsDead());
CHECK(d.phi->IsDead());
CheckInputs(R.graph.end(), ret);
CheckInputs(ret, R.half, R.start, R.start);
}
TEST(Return_false1) {
ControlReducerTester R;
Diamond d(R, R.zero, R.one, R.half);
Node* ret = R.Return(d.phi, R.start, d.merge);
R.ReduceGraph();
CHECK(d.branch->IsDead());
CHECK(d.if_true->IsDead());
CHECK(d.if_false->IsDead());
CHECK(d.merge->IsDead());
CHECK(d.phi->IsDead());
CheckInputs(R.graph.end(), ret);
CheckInputs(ret, R.half, R.start, R.start);
}
void CheckDeadDiamond(Diamond& d) {
CHECK(d.branch->IsDead());
CHECK(d.if_true->IsDead());
CHECK(d.if_false->IsDead());
CHECK(d.merge->IsDead());
if (d.phi != NULL) CHECK(d.phi->IsDead());
}
void CheckLiveDiamond(Diamond& d, bool live_phi = true) {
CheckInputs(d.merge, d.if_true, d.if_false);
CheckInputs(d.if_true, d.branch);
CheckInputs(d.if_false, d.branch);
if (d.phi != NULL) {
if (live_phi) {
CHECK_EQ(3, d.phi->InputCount());
CHECK_EQ(d.merge, d.phi->InputAt(2));
} else {
CHECK(d.phi->IsDead());
}
}
}
TEST(Return_effect1) {
ControlReducerTester R;
Diamond d(R, R.one);
Node* e1 = R.jsgraph.Float64Constant(-100.1);
Node* e2 = R.jsgraph.Float64Constant(+100.1);
Node* effect = R.graph.NewNode(R.common.EffectPhi(2), e1, e2, d.merge);
Node* ret = R.Return(R.p0, effect, d.merge);
R.ReduceGraph();
CheckDeadDiamond(d);
CHECK(effect->IsDead());
CheckInputs(R.graph.end(), ret);
CheckInputs(ret, R.p0, e1, R.start);
}
TEST(Return_nested_diamonds1) {
ControlReducerTester R;
Diamond d1(R, R.p0, R.one, R.zero);
Diamond d2(R, R.p0);
Diamond d3(R, R.p0);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // nothing should happen.
CheckInputs(ret, d1.phi, R.start, d1.merge);
CheckInputs(d1.phi, R.one, R.zero, d1.merge);
CheckInputs(d1.merge, d2.merge, d3.merge);
CheckLiveDiamond(d2);
CheckLiveDiamond(d3);
}
TEST(Return_nested_diamonds_true1) {
ControlReducerTester R;
Diamond d1(R, R.one, R.one, R.zero);
Diamond d2(R, R.p0);
Diamond d3(R, R.p0);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // d1 gets folded true.
CheckInputs(ret, R.one, R.start, d2.merge);
CheckInputs(d2.branch, R.p0, R.start);
CheckDeadDiamond(d1);
CheckLiveDiamond(d2);
CheckDeadDiamond(d3);
}
TEST(Return_nested_diamonds_false1) {
ControlReducerTester R;
Diamond d1(R, R.zero, R.one, R.zero);
Diamond d2(R, R.p0);
Diamond d3(R, R.p0);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // d1 gets folded false.
CheckInputs(ret, R.zero, R.start, d3.merge);
CheckInputs(d3.branch, R.p0, R.start);
CheckDeadDiamond(d1);
CheckDeadDiamond(d2);
CheckLiveDiamond(d3);
}
TEST(Return_nested_diamonds_true_true1) {
ControlReducerTester R;
Diamond d1(R, R.one, R.one, R.zero);
Diamond d2(R, R.one);
Diamond d3(R, R.p0);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // d1 and d2 both get folded true.
CheckInputs(ret, R.one, R.start, R.start);
CheckDeadDiamond(d1);
CheckDeadDiamond(d2);
CheckDeadDiamond(d3);
}
TEST(Return_nested_diamonds_true_false1) {
ControlReducerTester R;
Diamond d1(R, R.one, R.one, R.zero);
Diamond d2(R, R.zero);
Diamond d3(R, R.p0);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // d1 gets folded true and d2 gets folded false.
CheckInputs(ret, R.one, R.start, R.start);
CheckDeadDiamond(d1);
CheckDeadDiamond(d2);
CheckDeadDiamond(d3);
}
TEST(Return_nested_diamonds2) {
ControlReducerTester R;
Node* x2 = R.jsgraph.Float64Constant(11.1);
Node* y2 = R.jsgraph.Float64Constant(22.2);
Node* x3 = R.jsgraph.Float64Constant(33.3);
Node* y3 = R.jsgraph.Float64Constant(44.4);
Diamond d2(R, R.p0, x2, y2);
Diamond d3(R, R.p0, x3, y3);
Diamond d1(R, R.p0, d2.phi, d3.phi);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // nothing should happen.
CheckInputs(ret, d1.phi, R.start, d1.merge);
CheckInputs(d1.phi, d2.phi, d3.phi, d1.merge);
CheckInputs(d1.merge, d2.merge, d3.merge);
CheckLiveDiamond(d2);
CheckLiveDiamond(d3);
}
TEST(Return_nested_diamonds_true2) {
ControlReducerTester R;
Node* x2 = R.jsgraph.Float64Constant(11.1);
Node* y2 = R.jsgraph.Float64Constant(22.2);
Node* x3 = R.jsgraph.Float64Constant(33.3);
Node* y3 = R.jsgraph.Float64Constant(44.4);
Diamond d2(R, R.p0, x2, y2);
Diamond d3(R, R.p0, x3, y3);
Diamond d1(R, R.one, d2.phi, d3.phi);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // d1 gets folded true.
CheckInputs(ret, d2.phi, R.start, d2.merge);
CheckInputs(d2.branch, R.p0, R.start);
CheckDeadDiamond(d1);
CheckLiveDiamond(d2);
CheckDeadDiamond(d3);
}
TEST(Return_nested_diamonds_true_true2) {
ControlReducerTester R;
Node* x2 = R.jsgraph.Float64Constant(11.1);
Node* y2 = R.jsgraph.Float64Constant(22.2);
Node* x3 = R.jsgraph.Float64Constant(33.3);
Node* y3 = R.jsgraph.Float64Constant(44.4);
Diamond d2(R, R.one, x2, y2);
Diamond d3(R, R.p0, x3, y3);
Diamond d1(R, R.one, d2.phi, d3.phi);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // d1 gets folded true.
CheckInputs(ret, x2, R.start, R.start);
CheckDeadDiamond(d1);
CheckDeadDiamond(d2);
CheckDeadDiamond(d3);
}
TEST(Return_nested_diamonds_true_false2) {
ControlReducerTester R;
Node* x2 = R.jsgraph.Float64Constant(11.1);
Node* y2 = R.jsgraph.Float64Constant(22.2);
Node* x3 = R.jsgraph.Float64Constant(33.3);
Node* y3 = R.jsgraph.Float64Constant(44.4);
Diamond d2(R, R.zero, x2, y2);
Diamond d3(R, R.p0, x3, y3);
Diamond d1(R, R.one, d2.phi, d3.phi);
d2.nest(d1, true);
d3.nest(d1, false);
Node* ret = R.Return(d1.phi, R.start, d1.merge);
R.ReduceGraph(); // d1 gets folded true.
CheckInputs(ret, y2, R.start, R.start);
CheckDeadDiamond(d1);
CheckDeadDiamond(d2);
CheckDeadDiamond(d3);
}