v8/src/types.cc

625 lines
20 KiB
C++
Raw Normal View History

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "types.h"
#include "string-stream.h"
namespace v8 {
namespace internal {
template<class Config>
int TypeImpl<Config>::NumClasses() {
if (this->IsClass()) {
return 1;
} else if (this->IsUnion()) {
UnionedHandle unioned = this->AsUnion();
int result = 0;
for (int i = 0; i < Config::union_length(unioned); ++i) {
if (Config::union_get(unioned, i)->IsClass()) ++result;
}
return result;
} else {
return 0;
}
}
template<class Config>
int TypeImpl<Config>::NumConstants() {
if (this->IsConstant()) {
return 1;
} else if (this->IsUnion()) {
UnionedHandle unioned = this->AsUnion();
int result = 0;
for (int i = 0; i < Config::union_length(unioned); ++i) {
if (Config::union_get(unioned, i)->IsConstant()) ++result;
}
return result;
} else {
return 0;
}
}
template<class Config> template<class T>
typename TypeImpl<Config>::TypeHandle
TypeImpl<Config>::Iterator<T>::get_type() {
ASSERT(!Done());
return type_->IsUnion() ? Config::union_get(type_->AsUnion(), index_) : type_;
}
// C++ cannot specialise nested templates, so we have to go through this
// contortion with an auxiliary template to simulate it.
template<class Config, class T>
struct TypeImplIteratorAux {
static bool matches(typename TypeImpl<Config>::TypeHandle type);
static i::Handle<T> current(typename TypeImpl<Config>::TypeHandle type);
};
template<class Config>
struct TypeImplIteratorAux<Config, i::Map> {
static bool matches(typename TypeImpl<Config>::TypeHandle type) {
return type->IsClass();
}
static i::Handle<i::Map> current(typename TypeImpl<Config>::TypeHandle type) {
return type->AsClass();
}
};
template<class Config>
struct TypeImplIteratorAux<Config, i::Object> {
static bool matches(typename TypeImpl<Config>::TypeHandle type) {
return type->IsConstant();
}
static i::Handle<i::Object> current(
typename TypeImpl<Config>::TypeHandle type) {
return type->AsConstant();
}
};
template<class Config> template<class T>
bool TypeImpl<Config>::Iterator<T>::matches(TypeHandle type) {
return TypeImplIteratorAux<Config, T>::matches(type);
}
template<class Config> template<class T>
i::Handle<T> TypeImpl<Config>::Iterator<T>::Current() {
return TypeImplIteratorAux<Config, T>::current(get_type());
}
template<class Config> template<class T>
void TypeImpl<Config>::Iterator<T>::Advance() {
++index_;
if (type_->IsUnion()) {
UnionedHandle unioned = type_->AsUnion();
for (; index_ < Config::union_length(unioned); ++index_) {
if (matches(Config::union_get(unioned, index_))) return;
}
} else if (index_ == 0 && matches(type_)) {
return;
}
index_ = -1;
}
// Get the smallest bitset subsuming this type.
template<class Config>
int TypeImpl<Config>::LubBitset() {
if (this->IsBitset()) {
return this->AsBitset();
} else if (this->IsUnion()) {
UnionedHandle unioned = this->AsUnion();
int bitset = kNone;
for (int i = 0; i < Config::union_length(unioned); ++i) {
bitset |= Config::union_get(unioned, i)->LubBitset();
}
return bitset;
} else if (this->IsClass()) {
return LubBitset(*this->AsClass());
} else {
return LubBitset(*this->AsConstant());
}
}
template<class Config>
int TypeImpl<Config>::LubBitset(i::Object* value) {
if (value->IsSmi()) return kSmi;
i::Map* map = i::HeapObject::cast(value)->map();
if (map->instance_type() == HEAP_NUMBER_TYPE) {
int32_t i;
uint32_t u;
if (value->ToInt32(&i)) return Smi::IsValid(i) ? kSmi : kOtherSigned32;
if (value->ToUint32(&u)) return kUnsigned32;
return kDouble;
}
if (map->instance_type() == ODDBALL_TYPE) {
if (value->IsUndefined()) return kUndefined;
if (value->IsNull()) return kNull;
if (value->IsBoolean()) return kBoolean;
if (value->IsTheHole()) return kAny; // TODO(rossberg): kNone?
UNREACHABLE();
}
return LubBitset(map);
}
template<class Config>
int TypeImpl<Config>::LubBitset(i::Map* map) {
switch (map->instance_type()) {
case STRING_TYPE:
case ASCII_STRING_TYPE:
case CONS_STRING_TYPE:
case CONS_ASCII_STRING_TYPE:
case SLICED_STRING_TYPE:
case SLICED_ASCII_STRING_TYPE:
case EXTERNAL_STRING_TYPE:
case EXTERNAL_ASCII_STRING_TYPE:
case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
case SHORT_EXTERNAL_STRING_TYPE:
case SHORT_EXTERNAL_ASCII_STRING_TYPE:
case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
case INTERNALIZED_STRING_TYPE:
case ASCII_INTERNALIZED_STRING_TYPE:
case CONS_INTERNALIZED_STRING_TYPE:
case CONS_ASCII_INTERNALIZED_STRING_TYPE:
case EXTERNAL_INTERNALIZED_STRING_TYPE:
case EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE:
case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
case SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE:
case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
return kString;
case SYMBOL_TYPE:
return kSymbol;
case ODDBALL_TYPE:
return kOddball;
case HEAP_NUMBER_TYPE:
return kDouble;
case JS_VALUE_TYPE:
case JS_DATE_TYPE:
case JS_OBJECT_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
case JS_GENERATOR_OBJECT_TYPE:
case JS_MODULE_TYPE:
case JS_GLOBAL_OBJECT_TYPE:
case JS_BUILTINS_OBJECT_TYPE:
case JS_GLOBAL_PROXY_TYPE:
case JS_ARRAY_BUFFER_TYPE:
case JS_TYPED_ARRAY_TYPE:
case JS_DATA_VIEW_TYPE:
case JS_SET_TYPE:
case JS_MAP_TYPE:
case JS_WEAK_MAP_TYPE:
case JS_WEAK_SET_TYPE:
if (map->is_undetectable()) return kUndetectable;
return kOtherObject;
case JS_ARRAY_TYPE:
return kArray;
case JS_FUNCTION_TYPE:
return kFunction;
case JS_REGEXP_TYPE:
return kRegExp;
case JS_PROXY_TYPE:
case JS_FUNCTION_PROXY_TYPE:
return kProxy;
case MAP_TYPE:
// When compiling stub templates, the meta map is used as a place holder
// for the actual map with which the template is later instantiated.
// We treat it as a kind of type variable whose upper bound is Any.
// TODO(rossberg): for caching of CompareNilIC stubs to work correctly,
// we must exclude Undetectable here. This makes no sense, really,
// because it means that the template isn't actually parametric.
// Also, it doesn't apply elsewhere. 8-(
// We ought to find a cleaner solution for compiling stubs parameterised
// over type or class variables, esp ones with bounds...
return kDetectable;
case DECLARED_ACCESSOR_INFO_TYPE:
case EXECUTABLE_ACCESSOR_INFO_TYPE:
case ACCESSOR_PAIR_TYPE:
case FIXED_ARRAY_TYPE:
return kInternal;
default:
UNREACHABLE();
return kNone;
}
}
// Get the largest bitset subsumed by this type.
template<class Config>
int TypeImpl<Config>::GlbBitset() {
if (this->IsBitset()) {
return this->AsBitset();
} else if (this->IsUnion()) {
// All but the first are non-bitsets and thus would yield kNone anyway.
return Config::union_get(this->AsUnion(), 0)->GlbBitset();
} else {
return kNone;
}
}
// Most precise _current_ type of a value (usually its class).
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::OfCurrently(
i::Handle<i::Object> value, Region* region) {
if (value->IsSmi()) return Smi(region);
i::Map* map = i::HeapObject::cast(*value)->map();
if (map->instance_type() == HEAP_NUMBER_TYPE ||
map->instance_type() == ODDBALL_TYPE) {
return Of(value, region);
}
return Class(i::handle(map), region);
}
// Check this <= that.
template<class Config>
bool TypeImpl<Config>::SlowIs(TypeImpl* that) {
// Fast path for bitsets.
if (this->IsNone()) return true;
if (that->IsBitset()) {
return (this->LubBitset() | that->AsBitset()) == that->AsBitset();
}
if (that->IsClass()) {
return this->IsClass() && *this->AsClass() == *that->AsClass();
}
if (that->IsConstant()) {
return this->IsConstant() && *this->AsConstant() == *that->AsConstant();
}
// (T1 \/ ... \/ Tn) <= T <=> (T1 <= T) /\ ... /\ (Tn <= T)
if (this->IsUnion()) {
UnionedHandle unioned = this->AsUnion();
for (int i = 0; i < Config::union_length(unioned); ++i) {
TypeHandle this_i = Config::union_get(unioned, i);
if (!this_i->Is(that)) return false;
}
return true;
}
// T <= (T1 \/ ... \/ Tn) <=> (T <= T1) \/ ... \/ (T <= Tn)
// (iff T is not a union)
ASSERT(!this->IsUnion());
if (that->IsUnion()) {
UnionedHandle unioned = that->AsUnion();
for (int i = 0; i < Config::union_length(unioned); ++i) {
TypeHandle that_i = Config::union_get(unioned, i);
if (this->Is(that_i)) return true;
if (this->IsBitset()) break; // Fast fail, only first field is a bitset.
}
return false;
}
return false;
}
template<class Config>
bool TypeImpl<Config>::IsCurrently(TypeImpl* that) {
return this->Is(that) ||
(this->IsConstant() && that->IsClass() &&
this->AsConstant()->IsHeapObject() &&
i::HeapObject::cast(*this->AsConstant())->map() == *that->AsClass());
}
// Check this overlaps that.
template<class Config>
bool TypeImpl<Config>::Maybe(TypeImpl* that) {
// Fast path for bitsets.
if (this->IsBitset()) {
return (this->AsBitset() & that->LubBitset()) != 0;
}
if (that->IsBitset()) {
return (this->LubBitset() & that->AsBitset()) != 0;
}
// (T1 \/ ... \/ Tn) overlaps T <=> (T1 overlaps T) \/ ... \/ (Tn overlaps T)
if (this->IsUnion()) {
UnionedHandle unioned = this->AsUnion();
for (int i = 0; i < Config::union_length(unioned); ++i) {
TypeHandle this_i = Config::union_get(unioned, i);
if (this_i->Maybe(that)) return true;
}
return false;
}
// T overlaps (T1 \/ ... \/ Tn) <=> (T overlaps T1) \/ ... \/ (T overlaps Tn)
if (that->IsUnion()) {
UnionedHandle unioned = that->AsUnion();
for (int i = 0; i < Config::union_length(unioned); ++i) {
TypeHandle that_i = Config::union_get(unioned, i);
if (this->Maybe(that_i)) return true;
}
return false;
}
ASSERT(!this->IsUnion() && !that->IsUnion());
if (this->IsClass()) {
return that->IsClass() && *this->AsClass() == *that->AsClass();
}
if (this->IsConstant()) {
return that->IsConstant() && *this->AsConstant() == *that->AsConstant();
}
return false;
}
template<class Config>
bool TypeImpl<Config>::InUnion(UnionedHandle unioned, int current_size) {
ASSERT(!this->IsUnion());
for (int i = 0; i < current_size; ++i) {
TypeHandle type = Config::union_get(unioned, i);
if (this->Is(type)) return true;
}
return false;
}
// Get non-bitsets from this which are not subsumed by union, store at unioned,
// starting at index. Returns updated index.
template<class Config>
int TypeImpl<Config>::ExtendUnion(
UnionedHandle result, TypeHandle type, int current_size) {
int old_size = current_size;
if (type->IsClass() || type->IsConstant()) {
if (!type->InUnion(result, old_size)) {
Config::union_set(result, current_size++, type);
}
} else if (type->IsUnion()) {
UnionedHandle unioned = type->AsUnion();
for (int i = 0; i < Config::union_length(unioned); ++i) {
TypeHandle type = Config::union_get(unioned, i);
ASSERT(i == 0 ||
!(type->IsBitset() || type->Is(Config::union_get(unioned, 0))));
if (!type->IsBitset() && !type->InUnion(result, old_size)) {
Config::union_set(result, current_size++, type);
}
}
}
return current_size;
}
// Union is O(1) on simple bit unions, but O(n*m) on structured unions.
// TODO(rossberg): Should we use object sets somehow? Is it worth it?
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Union(
TypeHandle type1, TypeHandle type2, Region* region) {
// Fast case: bit sets.
if (type1->IsBitset() && type2->IsBitset()) {
return Config::from_bitset(type1->AsBitset() | type2->AsBitset(), region);
}
// Fast case: top or bottom types.
if (type1->IsAny()) return type1;
if (type2->IsAny()) return type2;
if (type1->IsNone()) return type2;
if (type2->IsNone()) return type1;
// Semi-fast case: Unioned objects are neither involved nor produced.
if (!(type1->IsUnion() || type2->IsUnion())) {
if (type1->Is(type2)) return type2;
if (type2->Is(type1)) return type1;
}
// Slow case: may need to produce a Unioned object.
int size = type1->IsBitset() || type2->IsBitset() ? 1 : 0;
if (!type1->IsBitset()) {
size += (type1->IsUnion() ? Config::union_length(type1->AsUnion()) : 1);
}
if (!type2->IsBitset()) {
size += (type2->IsUnion() ? Config::union_length(type2->AsUnion()) : 1);
}
ASSERT(size >= 2);
UnionedHandle unioned = Config::union_create(size, region);
size = 0;
int bitset = type1->GlbBitset() | type2->GlbBitset();
if (bitset != kNone) {
Config::union_set(unioned, size++, Config::from_bitset(bitset, region));
}
size = ExtendUnion(unioned, type1, size);
size = ExtendUnion(unioned, type2, size);
if (size == 1) {
return Config::union_get(unioned, 0);
} else {
Config::union_shrink(unioned, size);
return Config::from_union(unioned);
}
}
// Get non-bitsets from type which are also in other, store at unioned,
// starting at index. Returns updated index.
template<class Config>
int TypeImpl<Config>::ExtendIntersection(
UnionedHandle result, TypeHandle type, TypeHandle other, int current_size) {
int old_size = current_size;
if (type->IsClass() || type->IsConstant()) {
if (type->Is(other) && !type->InUnion(result, old_size)) {
Config::union_set(result, current_size++, type);
}
} else if (type->IsUnion()) {
UnionedHandle unioned = type->AsUnion();
for (int i = 0; i < Config::union_length(unioned); ++i) {
TypeHandle type = Config::union_get(unioned, i);
ASSERT(i == 0 ||
!(type->IsBitset() || type->Is(Config::union_get(unioned, 0))));
if (!type->IsBitset() && type->Is(other) &&
!type->InUnion(result, old_size)) {
Config::union_set(result, current_size++, type);
}
}
}
return current_size;
}
// Intersection is O(1) on simple bit unions, but O(n*m) on structured unions.
// TODO(rossberg): Should we use object sets somehow? Is it worth it?
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Intersect(
TypeHandle type1, TypeHandle type2, Region* region) {
// Fast case: bit sets.
if (type1->IsBitset() && type2->IsBitset()) {
return Config::from_bitset(type1->AsBitset() & type2->AsBitset(), region);
}
// Fast case: top or bottom types.
if (type1->IsNone()) return type1;
if (type2->IsNone()) return type2;
if (type1->IsAny()) return type2;
if (type2->IsAny()) return type1;
// Semi-fast case: Unioned objects are neither involved nor produced.
if (!(type1->IsUnion() || type2->IsUnion())) {
if (type1->Is(type2)) return type1;
if (type2->Is(type1)) return type2;
}
// Slow case: may need to produce a Unioned object.
int size = 0;
if (!type1->IsBitset()) {
size = (type1->IsUnion() ? Config::union_length(type1->AsUnion()) : 2);
}
if (!type2->IsBitset()) {
int size2 = (type2->IsUnion() ? Config::union_length(type2->AsUnion()) : 2);
size = (size == 0 ? size2 : Min(size, size2));
}
ASSERT(size >= 2);
UnionedHandle unioned = Config::union_create(size, region);
size = 0;
int bitset = type1->GlbBitset() & type2->GlbBitset();
if (bitset != kNone) {
Config::union_set(unioned, size++, Config::from_bitset(bitset, region));
}
size = ExtendIntersection(unioned, type1, type2, size);
size = ExtendIntersection(unioned, type2, type1, size);
if (size == 0) {
return None(region);
} else if (size == 1) {
return Config::union_get(unioned, 0);
} else {
Config::union_shrink(unioned, size);
return Config::from_union(unioned);
}
}
// TODO(rossberg): this does not belong here.
Representation Representation::FromType(Handle<Type> type) {
if (type->Is(Type::None())) return Representation::None();
if (type->Is(Type::Smi())) return Representation::Smi();
if (type->Is(Type::Signed32())) return Representation::Integer32();
if (type->Is(Type::Number())) return Representation::Double();
return Representation::Tagged();
}
#ifdef OBJECT_PRINT
template<class Config>
void TypeImpl<Config>::TypePrint() {
TypePrint(stdout);
PrintF(stdout, "\n");
Flush(stdout);
}
template<class Config>
const char* TypeImpl<Config>::bitset_name(int bitset) {
switch (bitset) {
#define PRINT_COMPOSED_TYPE(type, value) case k##type: return #type;
BITSET_TYPE_LIST(PRINT_COMPOSED_TYPE)
#undef PRINT_COMPOSED_TYPE
default:
return NULL;
}
}
template<class Config>
void TypeImpl<Config>::TypePrint(FILE* out) {
if (this->IsBitset()) {
int bitset = this->AsBitset();
const char* name = bitset_name(bitset);
if (name != NULL) {
PrintF(out, "%s", name);
} else {
bool is_first = true;
PrintF(out, "(");
for (int mask = 1; mask != 0; mask = mask << 1) {
if ((bitset & mask) != 0) {
if (!is_first) PrintF(out, " | ");
is_first = false;
PrintF(out, "%s", bitset_name(mask));
}
}
PrintF(out, ")");
}
} else if (this->IsConstant()) {
PrintF(out, "Constant(%p : ", static_cast<void*>(*this->AsConstant()));
Config::from_bitset(this->LubBitset())->TypePrint(out);
PrintF(")");
} else if (this->IsClass()) {
PrintF(out, "Class(%p < ", static_cast<void*>(*this->AsClass()));
Config::from_bitset(this->LubBitset())->TypePrint(out);
PrintF(")");
} else if (this->IsUnion()) {
PrintF(out, "(");
UnionedHandle unioned = this->AsUnion();
for (int i = 0; i < Config::union_length(unioned); ++i) {
TypeHandle type_i = Config::union_get(unioned, i);
if (i > 0) PrintF(out, " | ");
type_i->TypePrint(out);
}
PrintF(out, ")");
}
}
#endif
template class TypeImpl<ZoneTypeConfig>;
template class TypeImpl<ZoneTypeConfig>::Iterator<i::Map>;
template class TypeImpl<ZoneTypeConfig>::Iterator<i::Object>;
template class TypeImpl<HeapTypeConfig>;
template class TypeImpl<HeapTypeConfig>::Iterator<i::Map>;
template class TypeImpl<HeapTypeConfig>::Iterator<i::Object>;
} } // namespace v8::internal