v8/src/objects-debug.cc

1369 lines
37 KiB
C++
Raw Normal View History

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "disassembler.h"
#include "disasm.h"
#include "jsregexp.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
static const char* TypeToString(InstanceType type);
void Object::Print() {
if (IsSmi()) {
Smi::cast(this)->SmiPrint();
} else if (IsFailure()) {
Failure::cast(this)->FailurePrint();
} else {
HeapObject::cast(this)->HeapObjectPrint();
}
Flush();
}
void Object::PrintLn() {
Print();
PrintF("\n");
}
void Object::Verify() {
if (IsSmi()) {
Smi::cast(this)->SmiVerify();
} else if (IsFailure()) {
Failure::cast(this)->FailureVerify();
} else {
HeapObject::cast(this)->HeapObjectVerify();
}
}
void Object::VerifyPointer(Object* p) {
if (p->IsHeapObject()) {
HeapObject::VerifyHeapPointer(p);
} else {
ASSERT(p->IsSmi());
}
}
void Smi::SmiVerify() {
ASSERT(IsSmi());
}
void Failure::FailureVerify() {
ASSERT(IsFailure());
}
void HeapObject::PrintHeader(const char* id) {
PrintF("%p: [%s]\n", this, id);
}
void HeapObject::HeapObjectPrint() {
InstanceType instance_type = map()->instance_type();
HandleScope scope;
if (instance_type < FIRST_NONSTRING_TYPE) {
String::cast(this)->StringPrint();
return;
}
switch (instance_type) {
case MAP_TYPE:
Map::cast(this)->MapPrint();
break;
case HEAP_NUMBER_TYPE:
HeapNumber::cast(this)->HeapNumberPrint();
break;
case FIXED_ARRAY_TYPE:
FixedArray::cast(this)->FixedArrayPrint();
break;
case BYTE_ARRAY_TYPE:
ByteArray::cast(this)->ByteArrayPrint();
break;
case PIXEL_ARRAY_TYPE:
PixelArray::cast(this)->PixelArrayPrint();
break;
case EXTERNAL_BYTE_ARRAY_TYPE:
ExternalByteArray::cast(this)->ExternalByteArrayPrint();
break;
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
ExternalUnsignedByteArray::cast(this)->ExternalUnsignedByteArrayPrint();
break;
case EXTERNAL_SHORT_ARRAY_TYPE:
ExternalShortArray::cast(this)->ExternalShortArrayPrint();
break;
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
ExternalUnsignedShortArray::cast(this)->ExternalUnsignedShortArrayPrint();
break;
case EXTERNAL_INT_ARRAY_TYPE:
ExternalIntArray::cast(this)->ExternalIntArrayPrint();
break;
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
ExternalUnsignedIntArray::cast(this)->ExternalUnsignedIntArrayPrint();
break;
case EXTERNAL_FLOAT_ARRAY_TYPE:
ExternalFloatArray::cast(this)->ExternalFloatArrayPrint();
break;
case FILLER_TYPE:
PrintF("filler");
break;
case JS_OBJECT_TYPE: // fall through
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
case JS_ARRAY_TYPE:
case JS_REGEXP_TYPE:
JSObject::cast(this)->JSObjectPrint();
break;
case ODDBALL_TYPE:
Oddball::cast(this)->to_string()->Print();
break;
case JS_FUNCTION_TYPE:
JSFunction::cast(this)->JSFunctionPrint();
break;
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
case JS_GLOBAL_PROXY_TYPE:
JSGlobalProxy::cast(this)->JSGlobalProxyPrint();
break;
case JS_GLOBAL_OBJECT_TYPE:
JSGlobalObject::cast(this)->JSGlobalObjectPrint();
break;
case JS_BUILTINS_OBJECT_TYPE:
JSBuiltinsObject::cast(this)->JSBuiltinsObjectPrint();
break;
case JS_VALUE_TYPE:
PrintF("Value wrapper around:");
JSValue::cast(this)->value()->Print();
break;
case CODE_TYPE:
Code::cast(this)->CodePrint();
break;
case PROXY_TYPE:
Proxy::cast(this)->ProxyPrint();
break;
case SHARED_FUNCTION_INFO_TYPE:
SharedFunctionInfo::cast(this)->SharedFunctionInfoPrint();
break;
case JS_GLOBAL_PROPERTY_CELL_TYPE:
JSGlobalPropertyCell::cast(this)->JSGlobalPropertyCellPrint();
break;
#define MAKE_STRUCT_CASE(NAME, Name, name) \
case NAME##_TYPE: \
Name::cast(this)->Name##Print(); \
break;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default:
PrintF("UNKNOWN TYPE %d", map()->instance_type());
UNREACHABLE();
break;
}
}
void HeapObject::HeapObjectVerify() {
InstanceType instance_type = map()->instance_type();
if (instance_type < FIRST_NONSTRING_TYPE) {
String::cast(this)->StringVerify();
return;
}
switch (instance_type) {
case MAP_TYPE:
Map::cast(this)->MapVerify();
break;
case HEAP_NUMBER_TYPE:
HeapNumber::cast(this)->HeapNumberVerify();
break;
case FIXED_ARRAY_TYPE:
FixedArray::cast(this)->FixedArrayVerify();
break;
case BYTE_ARRAY_TYPE:
ByteArray::cast(this)->ByteArrayVerify();
break;
case PIXEL_ARRAY_TYPE:
PixelArray::cast(this)->PixelArrayVerify();
break;
case EXTERNAL_BYTE_ARRAY_TYPE:
ExternalByteArray::cast(this)->ExternalByteArrayVerify();
break;
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
ExternalUnsignedByteArray::cast(this)->ExternalUnsignedByteArrayVerify();
break;
case EXTERNAL_SHORT_ARRAY_TYPE:
ExternalShortArray::cast(this)->ExternalShortArrayVerify();
break;
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
ExternalUnsignedShortArray::cast(this)->
ExternalUnsignedShortArrayVerify();
break;
case EXTERNAL_INT_ARRAY_TYPE:
ExternalIntArray::cast(this)->ExternalIntArrayVerify();
break;
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
ExternalUnsignedIntArray::cast(this)->ExternalUnsignedIntArrayVerify();
break;
case EXTERNAL_FLOAT_ARRAY_TYPE:
ExternalFloatArray::cast(this)->ExternalFloatArrayVerify();
break;
case CODE_TYPE:
Code::cast(this)->CodeVerify();
break;
case ODDBALL_TYPE:
Oddball::cast(this)->OddballVerify();
break;
case JS_OBJECT_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
JSObject::cast(this)->JSObjectVerify();
break;
case JS_VALUE_TYPE:
JSValue::cast(this)->JSValueVerify();
break;
case JS_FUNCTION_TYPE:
JSFunction::cast(this)->JSFunctionVerify();
break;
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
case JS_GLOBAL_PROXY_TYPE:
JSGlobalProxy::cast(this)->JSGlobalProxyVerify();
break;
case JS_GLOBAL_OBJECT_TYPE:
JSGlobalObject::cast(this)->JSGlobalObjectVerify();
break;
case JS_BUILTINS_OBJECT_TYPE:
JSBuiltinsObject::cast(this)->JSBuiltinsObjectVerify();
break;
case JS_GLOBAL_PROPERTY_CELL_TYPE:
JSGlobalPropertyCell::cast(this)->JSGlobalPropertyCellVerify();
break;
case JS_ARRAY_TYPE:
JSArray::cast(this)->JSArrayVerify();
break;
case JS_REGEXP_TYPE:
JSRegExp::cast(this)->JSRegExpVerify();
break;
case FILLER_TYPE:
break;
case PROXY_TYPE:
Proxy::cast(this)->ProxyVerify();
break;
case SHARED_FUNCTION_INFO_TYPE:
SharedFunctionInfo::cast(this)->SharedFunctionInfoVerify();
break;
#define MAKE_STRUCT_CASE(NAME, Name, name) \
case NAME##_TYPE: \
Name::cast(this)->Name##Verify(); \
break;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default:
UNREACHABLE();
break;
}
}
void HeapObject::VerifyHeapPointer(Object* p) {
ASSERT(p->IsHeapObject());
ASSERT(Heap::Contains(HeapObject::cast(p)));
}
void HeapNumber::HeapNumberVerify() {
ASSERT(IsHeapNumber());
}
void ByteArray::ByteArrayPrint() {
PrintF("byte array, data starts at %p", GetDataStartAddress());
}
void PixelArray::PixelArrayPrint() {
PrintF("pixel array");
}
void ExternalByteArray::ExternalByteArrayPrint() {
PrintF("external byte array");
}
void ExternalUnsignedByteArray::ExternalUnsignedByteArrayPrint() {
PrintF("external unsigned byte array");
}
void ExternalShortArray::ExternalShortArrayPrint() {
PrintF("external short array");
}
void ExternalUnsignedShortArray::ExternalUnsignedShortArrayPrint() {
PrintF("external unsigned short array");
}
void ExternalIntArray::ExternalIntArrayPrint() {
PrintF("external int array");
}
void ExternalUnsignedIntArray::ExternalUnsignedIntArrayPrint() {
PrintF("external unsigned int array");
}
void ExternalFloatArray::ExternalFloatArrayPrint() {
PrintF("external float array");
}
void ByteArray::ByteArrayVerify() {
ASSERT(IsByteArray());
}
void PixelArray::PixelArrayVerify() {
ASSERT(IsPixelArray());
}
void ExternalByteArray::ExternalByteArrayVerify() {
ASSERT(IsExternalByteArray());
}
void ExternalUnsignedByteArray::ExternalUnsignedByteArrayVerify() {
ASSERT(IsExternalUnsignedByteArray());
}
void ExternalShortArray::ExternalShortArrayVerify() {
ASSERT(IsExternalShortArray());
}
void ExternalUnsignedShortArray::ExternalUnsignedShortArrayVerify() {
ASSERT(IsExternalUnsignedShortArray());
}
void ExternalIntArray::ExternalIntArrayVerify() {
ASSERT(IsExternalIntArray());
}
void ExternalUnsignedIntArray::ExternalUnsignedIntArrayVerify() {
ASSERT(IsExternalUnsignedIntArray());
}
void ExternalFloatArray::ExternalFloatArrayVerify() {
ASSERT(IsExternalFloatArray());
}
void JSObject::PrintProperties() {
if (HasFastProperties()) {
DescriptorArray* descs = map()->instance_descriptors();
for (int i = 0; i < descs->number_of_descriptors(); i++) {
PrintF(" ");
descs->GetKey(i)->StringPrint();
PrintF(": ");
switch (descs->GetType(i)) {
case FIELD: {
int index = descs->GetFieldIndex(i);
FastPropertyAt(index)->ShortPrint();
PrintF(" (field at offset %d)\n", index);
break;
}
case CONSTANT_FUNCTION:
descs->GetConstantFunction(i)->ShortPrint();
PrintF(" (constant function)\n");
break;
case CALLBACKS:
descs->GetCallbacksObject(i)->ShortPrint();
PrintF(" (callback)\n");
break;
case MAP_TRANSITION:
PrintF(" (map transition)\n");
break;
case CONSTANT_TRANSITION:
PrintF(" (constant transition)\n");
break;
case NULL_DESCRIPTOR:
PrintF(" (null descriptor)\n");
break;
default:
UNREACHABLE();
break;
}
}
} else {
property_dictionary()->Print();
}
}
void JSObject::PrintElements() {
switch (GetElementsKind()) {
case FAST_ELEMENTS: {
// Print in array notation for non-sparse arrays.
FixedArray* p = FixedArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: ", i);
p->get(i)->ShortPrint();
PrintF("\n");
}
break;
}
case PIXEL_ELEMENTS: {
PixelArray* p = PixelArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %d\n", i, p->get(i));
}
break;
}
case EXTERNAL_BYTE_ELEMENTS: {
ExternalByteArray* p = ExternalByteArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %d\n", i, static_cast<int>(p->get(i)));
}
break;
}
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
ExternalUnsignedByteArray* p =
ExternalUnsignedByteArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %d\n", i, static_cast<int>(p->get(i)));
}
break;
}
case EXTERNAL_SHORT_ELEMENTS: {
ExternalShortArray* p = ExternalShortArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %d\n", i, static_cast<int>(p->get(i)));
}
break;
}
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
ExternalUnsignedShortArray* p =
ExternalUnsignedShortArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %d\n", i, static_cast<int>(p->get(i)));
}
break;
}
case EXTERNAL_INT_ELEMENTS: {
ExternalIntArray* p = ExternalIntArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %d\n", i, static_cast<int>(p->get(i)));
}
break;
}
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
ExternalUnsignedIntArray* p =
ExternalUnsignedIntArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %d\n", i, static_cast<int>(p->get(i)));
}
break;
}
case EXTERNAL_FLOAT_ELEMENTS: {
ExternalFloatArray* p = ExternalFloatArray::cast(elements());
for (int i = 0; i < p->length(); i++) {
PrintF(" %d: %f\n", i, p->get(i));
}
break;
}
case DICTIONARY_ELEMENTS:
elements()->Print();
break;
default:
UNREACHABLE();
break;
}
}
void JSObject::JSObjectPrint() {
PrintF("%p: [JSObject]\n", this);
PrintF(" - map = %p\n", map());
PrintF(" - prototype = %p\n", GetPrototype());
PrintF(" {\n");
PrintProperties();
PrintElements();
PrintF(" }\n");
}
void JSObject::JSObjectVerify() {
VerifyHeapPointer(properties());
VerifyHeapPointer(elements());
if (HasFastProperties()) {
CHECK_EQ(map()->unused_property_fields(),
(map()->inobject_properties() + properties()->length() -
map()->NextFreePropertyIndex()));
}
ASSERT(map()->has_fast_elements() ==
Copy-on-write arrays. Object model changes ---------------------------------------- New fixed_cow_array_map is used for the elements array of a JSObject to mark it as COW. The JSObject's map and other fields are not affected. The JSObject's map still has the "fast elements" bit set. It means we can do only the receiver map check in keyed loads and the receiver and the elements map checks in keyed stores. So introducing COW arrays doesn't hurt performance of these operations. But note that the elements map check is necessary in all mutating operations because the "has fast elements" bit now means "has fast elements for reading". EnsureWritableFastElements can be used in runtime functions to perform the necessary lazy copying. Generated code changes ---------------------------------------- Generic keyed load is updated to only do the receiver map check (this could have been done earlier). FastCloneShallowArrayStub now has two modes: clone elements and use COW elements. AssertFastElements macro is added to check the elements when necessary. The custom call IC generators for Array.prototype.{push,pop} are updated to avoid going to the slow case (and patching the IC) when calling the builtin should work. COW enablement ---------------------------------------- Currently we only put shallow and simple literal arrays in the COW mode. This is done by the parser. Review URL: http://codereview.chromium.org/3144002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5275 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-08-16 16:06:46 +00:00
(elements()->map() == Heap::fixed_array_map() ||
elements()->map() == Heap::fixed_cow_array_map()));
ASSERT(map()->has_fast_elements() == HasFastElements());
}
static const char* TypeToString(InstanceType type) {
switch (type) {
case INVALID_TYPE: return "INVALID";
case MAP_TYPE: return "MAP";
case HEAP_NUMBER_TYPE: return "HEAP_NUMBER";
case SYMBOL_TYPE: return "SYMBOL";
case ASCII_SYMBOL_TYPE: return "ASCII_SYMBOL";
case CONS_SYMBOL_TYPE: return "CONS_SYMBOL";
case CONS_ASCII_SYMBOL_TYPE: return "CONS_ASCII_SYMBOL";
case EXTERNAL_ASCII_SYMBOL_TYPE:
case EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE:
case EXTERNAL_SYMBOL_TYPE: return "EXTERNAL_SYMBOL";
case ASCII_STRING_TYPE: return "ASCII_STRING";
case STRING_TYPE: return "TWO_BYTE_STRING";
case CONS_STRING_TYPE:
case CONS_ASCII_STRING_TYPE: return "CONS_STRING";
case EXTERNAL_ASCII_STRING_TYPE:
case EXTERNAL_STRING_WITH_ASCII_DATA_TYPE:
case EXTERNAL_STRING_TYPE: return "EXTERNAL_STRING";
case FIXED_ARRAY_TYPE: return "FIXED_ARRAY";
case BYTE_ARRAY_TYPE: return "BYTE_ARRAY";
case PIXEL_ARRAY_TYPE: return "PIXEL_ARRAY";
case EXTERNAL_BYTE_ARRAY_TYPE: return "EXTERNAL_BYTE_ARRAY";
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
return "EXTERNAL_UNSIGNED_BYTE_ARRAY";
case EXTERNAL_SHORT_ARRAY_TYPE: return "EXTERNAL_SHORT_ARRAY";
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
return "EXTERNAL_UNSIGNED_SHORT_ARRAY";
case EXTERNAL_INT_ARRAY_TYPE: return "EXTERNAL_INT_ARRAY";
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
return "EXTERNAL_UNSIGNED_INT_ARRAY";
case EXTERNAL_FLOAT_ARRAY_TYPE: return "EXTERNAL_FLOAT_ARRAY";
case FILLER_TYPE: return "FILLER";
case JS_OBJECT_TYPE: return "JS_OBJECT";
case JS_CONTEXT_EXTENSION_OBJECT_TYPE: return "JS_CONTEXT_EXTENSION_OBJECT";
case ODDBALL_TYPE: return "ODDBALL";
case JS_GLOBAL_PROPERTY_CELL_TYPE: return "JS_GLOBAL_PROPERTY_CELL";
case SHARED_FUNCTION_INFO_TYPE: return "SHARED_FUNCTION_INFO";
case JS_FUNCTION_TYPE: return "JS_FUNCTION";
case CODE_TYPE: return "CODE";
case JS_ARRAY_TYPE: return "JS_ARRAY";
case JS_REGEXP_TYPE: return "JS_REGEXP";
case JS_VALUE_TYPE: return "JS_VALUE";
case JS_GLOBAL_OBJECT_TYPE: return "JS_GLOBAL_OBJECT";
case JS_BUILTINS_OBJECT_TYPE: return "JS_BUILTINS_OBJECT";
case JS_GLOBAL_PROXY_TYPE: return "JS_GLOBAL_PROXY";
case PROXY_TYPE: return "PROXY";
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return #NAME;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
}
return "UNKNOWN";
}
void Map::MapPrint() {
HeapObject::PrintHeader("Map");
PrintF(" - type: %s\n", TypeToString(instance_type()));
PrintF(" - instance size: %d\n", instance_size());
PrintF(" - inobject properties: %d\n", inobject_properties());
PrintF(" - pre-allocated property fields: %d\n",
pre_allocated_property_fields());
PrintF(" - unused property fields: %d\n", unused_property_fields());
if (is_hidden_prototype()) {
PrintF(" - hidden_prototype\n");
}
if (has_named_interceptor()) {
PrintF(" - named_interceptor\n");
}
if (has_indexed_interceptor()) {
PrintF(" - indexed_interceptor\n");
}
if (is_undetectable()) {
PrintF(" - undetectable\n");
}
if (has_instance_call_handler()) {
PrintF(" - instance_call_handler\n");
}
if (is_access_check_needed()) {
PrintF(" - access_check_needed\n");
}
PrintF(" - instance descriptors: ");
instance_descriptors()->ShortPrint();
PrintF("\n - prototype: ");
prototype()->ShortPrint();
PrintF("\n - constructor: ");
constructor()->ShortPrint();
PrintF("\n");
}
void Map::MapVerify() {
ASSERT(!Heap::InNewSpace(this));
ASSERT(FIRST_TYPE <= instance_type() && instance_type() <= LAST_TYPE);
ASSERT(instance_size() == kVariableSizeSentinel ||
(kPointerSize <= instance_size() &&
instance_size() < Heap::Capacity()));
VerifyHeapPointer(prototype());
VerifyHeapPointer(instance_descriptors());
}
void CodeCache::CodeCachePrint() {
HeapObject::PrintHeader("CodeCache");
PrintF("\n - default_cache: ");
default_cache()->ShortPrint();
PrintF("\n - normal_type_cache: ");
normal_type_cache()->ShortPrint();
}
void CodeCache::CodeCacheVerify() {
VerifyHeapPointer(default_cache());
VerifyHeapPointer(normal_type_cache());
ASSERT(default_cache()->IsFixedArray());
ASSERT(normal_type_cache()->IsUndefined()
|| normal_type_cache()->IsCodeCacheHashTable());
}
void FixedArray::FixedArrayPrint() {
HeapObject::PrintHeader("FixedArray");
PrintF(" - length: %d", length());
for (int i = 0; i < length(); i++) {
PrintF("\n [%d]: ", i);
get(i)->ShortPrint();
}
PrintF("\n");
}
void FixedArray::FixedArrayVerify() {
for (int i = 0; i < length(); i++) {
Object* e = get(i);
if (e->IsHeapObject()) {
VerifyHeapPointer(e);
} else {
e->Verify();
}
}
}
void JSValue::JSValuePrint() {
HeapObject::PrintHeader("ValueObject");
value()->Print();
}
void JSValue::JSValueVerify() {
Object* v = value();
if (v->IsHeapObject()) {
VerifyHeapPointer(v);
}
}
void String::StringPrint() {
if (StringShape(this).IsSymbol()) {
PrintF("#");
} else if (StringShape(this).IsCons()) {
PrintF("c\"");
} else {
PrintF("\"");
}
for (int i = 0; i < length(); i++) {
PrintF("%c", Get(i));
}
if (!StringShape(this).IsSymbol()) PrintF("\"");
}
void String::StringVerify() {
CHECK(IsString());
CHECK(length() >= 0 && length() <= Smi::kMaxValue);
if (IsSymbol()) {
CHECK(!Heap::InNewSpace(this));
}
}
void JSFunction::JSFunctionPrint() {
HeapObject::PrintHeader("Function");
PrintF(" - map = 0x%p\n", map());
PrintF(" - initial_map = ");
if (has_initial_map()) {
initial_map()->ShortPrint();
}
PrintF("\n - shared_info = ");
shared()->ShortPrint();
PrintF("\n - name = ");
shared()->name()->Print();
PrintF("\n - context = ");
unchecked_context()->ShortPrint();
PrintF("\n - code = ");
code()->ShortPrint();
PrintF("\n");
PrintProperties();
PrintElements();
PrintF("\n");
}
void JSFunction::JSFunctionVerify() {
CHECK(IsJSFunction());
VerifyObjectField(kPrototypeOrInitialMapOffset);
}
void SharedFunctionInfo::SharedFunctionInfoPrint() {
HeapObject::PrintHeader("SharedFunctionInfo");
PrintF(" - name: ");
name()->ShortPrint();
PrintF("\n - expected_nof_properties: %d", expected_nof_properties());
PrintF("\n - instance class name = ");
instance_class_name()->Print();
PrintF("\n - code = ");
code()->ShortPrint();
PrintF("\n - source code = ");
GetSourceCode()->ShortPrint();
// Script files are often large, hard to read.
// PrintF("\n - script =");
// script()->Print();
PrintF("\n - function token position = %d", function_token_position());
PrintF("\n - start position = %d", start_position());
PrintF("\n - end position = %d", end_position());
PrintF("\n - is expression = %d", is_expression());
PrintF("\n - debug info = ");
debug_info()->ShortPrint();
PrintF("\n - length = %d", length());
PrintF("\n - has_only_simple_this_property_assignments = %d",
has_only_simple_this_property_assignments());
PrintF("\n - this_property_assignments = ");
this_property_assignments()->ShortPrint();
PrintF("\n");
}
void SharedFunctionInfo::SharedFunctionInfoVerify() {
CHECK(IsSharedFunctionInfo());
VerifyObjectField(kNameOffset);
VerifyObjectField(kCodeOffset);
VerifyObjectField(kScopeInfoOffset);
VerifyObjectField(kInstanceClassNameOffset);
VerifyObjectField(kFunctionDataOffset);
VerifyObjectField(kScriptOffset);
VerifyObjectField(kDebugInfoOffset);
}
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
void JSGlobalProxy::JSGlobalProxyPrint() {
PrintF("global_proxy");
JSObjectPrint();
PrintF("context : ");
context()->ShortPrint();
PrintF("\n");
}
void JSGlobalProxy::JSGlobalProxyVerify() {
CHECK(IsJSGlobalProxy());
JSObjectVerify();
VerifyObjectField(JSGlobalProxy::kContextOffset);
// Make sure that this object has no properties, elements.
CHECK_EQ(0, properties()->length());
CHECK(HasFastElements());
CHECK_EQ(0, FixedArray::cast(elements())->length());
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
}
void JSGlobalObject::JSGlobalObjectPrint() {
PrintF("global ");
JSObjectPrint();
Split window support from V8. Here is a description of the background and design of split window in Chrome and V8: https://docs.google.com/a/google.com/Doc?id=chhjkpg_47fwddxbfr This change list splits the window object into two parts: 1) an inner window object used as the global object of contexts; 2) an outer window object exposed to JavaScript and accessible by the name 'window'. Firefox did it awhile ago, here are some discussions: https://wiki.mozilla.org/Gecko:SplitWindow. One additional benefit of splitting window in Chrome is that accessing global variables don't need security checks anymore, it can improve applications that use many global variables. V8 support of split window: There are a small number of changes on V8 api to support split window: Security context is removed from V8, so does related API functions; A global object can be detached from its context and reused by a new context; Access checks on an object template can be turned on/off by default; An object can turn on its access checks later; V8 has a new object type, ApiGlobalObject, which is the outer window object type. The existing JSGlobalObject becomes the inner window object type. Security checks are moved from JSGlobalObject to ApiGlobalObject. ApiGlobalObject is the one exposed to JavaScript, it is accessible through Context::Global(). ApiGlobalObject's prototype is set to JSGlobalObject so that property lookups are forwarded to JSGlobalObject. ApiGlobalObject forwards all other property access requests to JSGlobalObject, such as SetProperty, DeleteProperty, etc. Security token is moved to a global context, and ApiGlobalObject has a reference to its global context. JSGlobalObject has a reference to its global context as well. When accessing properties on a global object in JavaScript, the domain security check is performed by comparing the security token of the lexical context (Top::global_context()) to the token of global object's context. The check is only needed when the receiver is a window object, such as 'window.document'. Accessing global variables, such as 'var foo = 3; foo' does not need checks because the receiver is the inner window object. When an outer window is detached from its global context (when a frame navigates away from a page), it is completely detached from the inner window. A new context is created for the new page, and the outer global object is reused. At this point, the access check on the DOMWindow wrapper of the old context is turned on. The code in old context is still able to access DOMWindow properties, but it has to go through domain security checks. It is debatable on how to implement the outer window object. Currently each property access function has to check if the receiver is ApiGlobalObject type. This approach might be error-prone that one may forget to check the receiver when adding new functions. It is unlikely a performance issue because accessing global variables are more common than 'window.foo' style coding. I am still working on the ARM port, and I'd like to hear comments and suggestions on the best way to support it in V8. Review URL: http://codereview.chromium.org/7366 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@540 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2008-10-21 19:07:58 +00:00
PrintF("global context : ");
global_context()->ShortPrint();
PrintF("\n");
}
void JSGlobalObject::JSGlobalObjectVerify() {
CHECK(IsJSGlobalObject());
JSObjectVerify();
for (int i = GlobalObject::kBuiltinsOffset;
i < JSGlobalObject::kSize;
i += kPointerSize) {
VerifyObjectField(i);
}
}
void JSBuiltinsObject::JSBuiltinsObjectPrint() {
PrintF("builtins ");
JSObjectPrint();
}
void JSBuiltinsObject::JSBuiltinsObjectVerify() {
CHECK(IsJSBuiltinsObject());
JSObjectVerify();
for (int i = GlobalObject::kBuiltinsOffset;
i < JSBuiltinsObject::kSize;
i += kPointerSize) {
VerifyObjectField(i);
}
}
void Oddball::OddballVerify() {
CHECK(IsOddball());
VerifyHeapPointer(to_string());
Object* number = to_number();
if (number->IsHeapObject()) {
ASSERT(number == Heap::nan_value());
} else {
ASSERT(number->IsSmi());
int value = Smi::cast(number)->value();
ASSERT(value == 0 || value == 1 || value == -1 ||
value == -2 || value == -3);
}
}
void JSGlobalPropertyCell::JSGlobalPropertyCellVerify() {
CHECK(IsJSGlobalPropertyCell());
VerifyObjectField(kValueOffset);
}
void JSGlobalPropertyCell::JSGlobalPropertyCellPrint() {
HeapObject::PrintHeader("JSGlobalPropertyCell");
}
void Code::CodePrint() {
HeapObject::PrintHeader("Code");
#ifdef ENABLE_DISASSEMBLER
Disassemble(NULL);
#endif
}
void Code::CodeVerify() {
CHECK(IsAligned(reinterpret_cast<intptr_t>(instruction_start()),
static_cast<intptr_t>(kCodeAlignment)));
Address last_gc_pc = NULL;
for (RelocIterator it(this); !it.done(); it.next()) {
it.rinfo()->Verify();
// Ensure that GC will not iterate twice over the same pointer.
if (RelocInfo::IsGCRelocMode(it.rinfo()->rmode())) {
CHECK(it.rinfo()->pc() != last_gc_pc);
last_gc_pc = it.rinfo()->pc();
}
}
}
void JSArray::JSArrayVerify() {
JSObjectVerify();
ASSERT(length()->IsNumber() || length()->IsUndefined());
ASSERT(elements()->IsUndefined() || elements()->IsFixedArray());
}
void JSRegExp::JSRegExpVerify() {
JSObjectVerify();
ASSERT(data()->IsUndefined() || data()->IsFixedArray());
switch (TypeTag()) {
case JSRegExp::ATOM: {
FixedArray* arr = FixedArray::cast(data());
ASSERT(arr->get(JSRegExp::kAtomPatternIndex)->IsString());
break;
}
case JSRegExp::IRREGEXP: {
bool is_native = RegExpImpl::UsesNativeRegExp();
FixedArray* arr = FixedArray::cast(data());
Object* ascii_data = arr->get(JSRegExp::kIrregexpASCIICodeIndex);
// TheHole : Not compiled yet.
// JSObject: Compilation error.
// Code/ByteArray: Compiled code.
ASSERT(ascii_data->IsTheHole() || ascii_data->IsJSObject() ||
(is_native ? ascii_data->IsCode() : ascii_data->IsByteArray()));
Object* uc16_data = arr->get(JSRegExp::kIrregexpUC16CodeIndex);
ASSERT(uc16_data->IsTheHole() || ascii_data->IsJSObject() ||
(is_native ? uc16_data->IsCode() : uc16_data->IsByteArray()));
ASSERT(arr->get(JSRegExp::kIrregexpCaptureCountIndex)->IsSmi());
ASSERT(arr->get(JSRegExp::kIrregexpMaxRegisterCountIndex)->IsSmi());
break;
}
default:
ASSERT_EQ(JSRegExp::NOT_COMPILED, TypeTag());
ASSERT(data()->IsUndefined());
break;
}
}
void Proxy::ProxyPrint() {
PrintF("proxy to %p", proxy());
}
void Proxy::ProxyVerify() {
ASSERT(IsProxy());
}
void AccessorInfo::AccessorInfoVerify() {
CHECK(IsAccessorInfo());
VerifyPointer(getter());
VerifyPointer(setter());
VerifyPointer(name());
VerifyPointer(data());
VerifyPointer(flag());
VerifyPointer(load_stub_cache());
}
void AccessorInfo::AccessorInfoPrint() {
HeapObject::PrintHeader("AccessorInfo");
PrintF("\n - getter: ");
getter()->ShortPrint();
PrintF("\n - setter: ");
setter()->ShortPrint();
PrintF("\n - name: ");
name()->ShortPrint();
PrintF("\n - data: ");
data()->ShortPrint();
PrintF("\n - flag: ");
flag()->ShortPrint();
}
void AccessCheckInfo::AccessCheckInfoVerify() {
CHECK(IsAccessCheckInfo());
VerifyPointer(named_callback());
VerifyPointer(indexed_callback());
VerifyPointer(data());
}
void AccessCheckInfo::AccessCheckInfoPrint() {
HeapObject::PrintHeader("AccessCheckInfo");
PrintF("\n - named_callback: ");
named_callback()->ShortPrint();
PrintF("\n - indexed_callback: ");
indexed_callback()->ShortPrint();
PrintF("\n - data: ");
data()->ShortPrint();
}
void InterceptorInfo::InterceptorInfoVerify() {
CHECK(IsInterceptorInfo());
VerifyPointer(getter());
VerifyPointer(setter());
VerifyPointer(query());
VerifyPointer(deleter());
VerifyPointer(enumerator());
VerifyPointer(data());
}
void InterceptorInfo::InterceptorInfoPrint() {
HeapObject::PrintHeader("InterceptorInfo");
PrintF("\n - getter: ");
getter()->ShortPrint();
PrintF("\n - setter: ");
setter()->ShortPrint();
PrintF("\n - query: ");
query()->ShortPrint();
PrintF("\n - deleter: ");
deleter()->ShortPrint();
PrintF("\n - enumerator: ");
enumerator()->ShortPrint();
PrintF("\n - data: ");
data()->ShortPrint();
}
void CallHandlerInfo::CallHandlerInfoVerify() {
CHECK(IsCallHandlerInfo());
VerifyPointer(callback());
VerifyPointer(data());
}
void CallHandlerInfo::CallHandlerInfoPrint() {
HeapObject::PrintHeader("CallHandlerInfo");
PrintF("\n - callback: ");
callback()->ShortPrint();
PrintF("\n - data: ");
data()->ShortPrint();
}
void TemplateInfo::TemplateInfoVerify() {
VerifyPointer(tag());
VerifyPointer(property_list());
}
void FunctionTemplateInfo::FunctionTemplateInfoVerify() {
CHECK(IsFunctionTemplateInfo());
TemplateInfoVerify();
VerifyPointer(serial_number());
VerifyPointer(call_code());
VerifyPointer(property_accessors());
VerifyPointer(prototype_template());
VerifyPointer(parent_template());
VerifyPointer(named_property_handler());
VerifyPointer(indexed_property_handler());
VerifyPointer(instance_template());
VerifyPointer(signature());
VerifyPointer(access_check_info());
}
void FunctionTemplateInfo::FunctionTemplateInfoPrint() {
HeapObject::PrintHeader("FunctionTemplateInfo");
PrintF("\n - class name: ");
class_name()->ShortPrint();
PrintF("\n - tag: ");
tag()->ShortPrint();
PrintF("\n - property_list: ");
property_list()->ShortPrint();
PrintF("\n - serial_number: ");
serial_number()->ShortPrint();
PrintF("\n - call_code: ");
call_code()->ShortPrint();
PrintF("\n - property_accessors: ");
property_accessors()->ShortPrint();
PrintF("\n - prototype_template: ");
prototype_template()->ShortPrint();
PrintF("\n - parent_template: ");
parent_template()->ShortPrint();
PrintF("\n - named_property_handler: ");
named_property_handler()->ShortPrint();
PrintF("\n - indexed_property_handler: ");
indexed_property_handler()->ShortPrint();
PrintF("\n - instance_template: ");
instance_template()->ShortPrint();
PrintF("\n - signature: ");
signature()->ShortPrint();
PrintF("\n - access_check_info: ");
access_check_info()->ShortPrint();
PrintF("\n - hidden_prototype: %s", hidden_prototype() ? "true" : "false");
PrintF("\n - undetectable: %s", undetectable() ? "true" : "false");
PrintF("\n - need_access_check: %s", needs_access_check() ? "true" : "false");
}
void ObjectTemplateInfo::ObjectTemplateInfoVerify() {
CHECK(IsObjectTemplateInfo());
TemplateInfoVerify();
VerifyPointer(constructor());
VerifyPointer(internal_field_count());
}
void ObjectTemplateInfo::ObjectTemplateInfoPrint() {
HeapObject::PrintHeader("ObjectTemplateInfo");
PrintF("\n - constructor: ");
constructor()->ShortPrint();
PrintF("\n - internal_field_count: ");
internal_field_count()->ShortPrint();
}
void SignatureInfo::SignatureInfoVerify() {
CHECK(IsSignatureInfo());
VerifyPointer(receiver());
VerifyPointer(args());
}
void SignatureInfo::SignatureInfoPrint() {
HeapObject::PrintHeader("SignatureInfo");
PrintF("\n - receiver: ");
receiver()->ShortPrint();
PrintF("\n - args: ");
args()->ShortPrint();
}
void TypeSwitchInfo::TypeSwitchInfoVerify() {
CHECK(IsTypeSwitchInfo());
VerifyPointer(types());
}
void TypeSwitchInfo::TypeSwitchInfoPrint() {
HeapObject::PrintHeader("TypeSwitchInfo");
PrintF("\n - types: ");
types()->ShortPrint();
}
void Script::ScriptVerify() {
CHECK(IsScript());
VerifyPointer(source());
VerifyPointer(name());
line_offset()->SmiVerify();
column_offset()->SmiVerify();
VerifyPointer(data());
VerifyPointer(wrapper());
type()->SmiVerify();
VerifyPointer(line_ends());
VerifyPointer(id());
}
void Script::ScriptPrint() {
HeapObject::PrintHeader("Script");
PrintF("\n - source: ");
source()->ShortPrint();
PrintF("\n - name: ");
name()->ShortPrint();
PrintF("\n - line_offset: ");
line_offset()->ShortPrint();
PrintF("\n - column_offset: ");
column_offset()->ShortPrint();
PrintF("\n - type: ");
type()->ShortPrint();
PrintF("\n - id: ");
id()->ShortPrint();
PrintF("\n - data: ");
data()->ShortPrint();
PrintF("\n - context data: ");
context_data()->ShortPrint();
PrintF("\n - wrapper: ");
wrapper()->ShortPrint();
PrintF("\n - compilation type: ");
compilation_type()->ShortPrint();
PrintF("\n - line ends: ");
line_ends()->ShortPrint();
PrintF("\n - eval from shared: ");
eval_from_shared()->ShortPrint();
PrintF("\n - eval from instructions offset: ");
eval_from_instructions_offset()->ShortPrint();
PrintF("\n");
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void DebugInfo::DebugInfoVerify() {
CHECK(IsDebugInfo());
VerifyPointer(shared());
VerifyPointer(original_code());
VerifyPointer(code());
VerifyPointer(break_points());
}
void DebugInfo::DebugInfoPrint() {
HeapObject::PrintHeader("DebugInfo");
PrintF("\n - shared: ");
shared()->ShortPrint();
PrintF("\n - original_code: ");
original_code()->ShortPrint();
PrintF("\n - code: ");
code()->ShortPrint();
PrintF("\n - break_points: ");
break_points()->Print();
}
void BreakPointInfo::BreakPointInfoVerify() {
CHECK(IsBreakPointInfo());
code_position()->SmiVerify();
source_position()->SmiVerify();
statement_position()->SmiVerify();
VerifyPointer(break_point_objects());
}
void BreakPointInfo::BreakPointInfoPrint() {
HeapObject::PrintHeader("BreakPointInfo");
PrintF("\n - code_position: %d", code_position());
PrintF("\n - source_position: %d", source_position());
PrintF("\n - statement_position: %d", statement_position());
PrintF("\n - break_point_objects: ");
break_point_objects()->ShortPrint();
}
#endif
void JSObject::IncrementSpillStatistics(SpillInformation* info) {
info->number_of_objects_++;
// Named properties
if (HasFastProperties()) {
info->number_of_objects_with_fast_properties_++;
info->number_of_fast_used_fields_ += map()->NextFreePropertyIndex();
info->number_of_fast_unused_fields_ += map()->unused_property_fields();
} else {
StringDictionary* dict = property_dictionary();
info->number_of_slow_used_properties_ += dict->NumberOfElements();
info->number_of_slow_unused_properties_ +=
dict->Capacity() - dict->NumberOfElements();
}
// Indexed properties
switch (GetElementsKind()) {
case FAST_ELEMENTS: {
info->number_of_objects_with_fast_elements_++;
int holes = 0;
FixedArray* e = FixedArray::cast(elements());
int len = e->length();
for (int i = 0; i < len; i++) {
if (e->get(i) == Heap::the_hole_value()) holes++;
}
info->number_of_fast_used_elements_ += len - holes;
info->number_of_fast_unused_elements_ += holes;
break;
}
case PIXEL_ELEMENTS: {
info->number_of_objects_with_fast_elements_++;
PixelArray* e = PixelArray::cast(elements());
info->number_of_fast_used_elements_ += e->length();
break;
}
case DICTIONARY_ELEMENTS: {
NumberDictionary* dict = element_dictionary();
info->number_of_slow_used_elements_ += dict->NumberOfElements();
info->number_of_slow_unused_elements_ +=
dict->Capacity() - dict->NumberOfElements();
break;
}
default:
UNREACHABLE();
break;
}
}
void JSObject::SpillInformation::Clear() {
number_of_objects_ = 0;
number_of_objects_with_fast_properties_ = 0;
number_of_objects_with_fast_elements_ = 0;
number_of_fast_used_fields_ = 0;
number_of_fast_unused_fields_ = 0;
number_of_slow_used_properties_ = 0;
number_of_slow_unused_properties_ = 0;
number_of_fast_used_elements_ = 0;
number_of_fast_unused_elements_ = 0;
number_of_slow_used_elements_ = 0;
number_of_slow_unused_elements_ = 0;
}
void JSObject::SpillInformation::Print() {
PrintF("\n JSObject Spill Statistics (#%d):\n", number_of_objects_);
PrintF(" - fast properties (#%d): %d (used) %d (unused)\n",
number_of_objects_with_fast_properties_,
number_of_fast_used_fields_, number_of_fast_unused_fields_);
PrintF(" - slow properties (#%d): %d (used) %d (unused)\n",
number_of_objects_ - number_of_objects_with_fast_properties_,
number_of_slow_used_properties_, number_of_slow_unused_properties_);
PrintF(" - fast elements (#%d): %d (used) %d (unused)\n",
number_of_objects_with_fast_elements_,
number_of_fast_used_elements_, number_of_fast_unused_elements_);
PrintF(" - slow elements (#%d): %d (used) %d (unused)\n",
number_of_objects_ - number_of_objects_with_fast_elements_,
number_of_slow_used_elements_, number_of_slow_unused_elements_);
PrintF("\n");
}
void DescriptorArray::PrintDescriptors() {
PrintF("Descriptor array %d\n", number_of_descriptors());
for (int i = 0; i < number_of_descriptors(); i++) {
PrintF(" %d: ", i);
Descriptor desc;
Get(i, &desc);
desc.Print();
}
PrintF("\n");
}
bool DescriptorArray::IsSortedNoDuplicates() {
String* current_key = NULL;
uint32_t current = 0;
for (int i = 0; i < number_of_descriptors(); i++) {
String* key = GetKey(i);
if (key == current_key) {
PrintDescriptors();
return false;
}
current_key = key;
uint32_t hash = GetKey(i)->Hash();
if (hash < current) {
PrintDescriptors();
return false;
}
current = hash;
}
return true;
}
void JSFunctionResultCache::JSFunctionResultCacheVerify() {
JSFunction::cast(get(kFactoryIndex))->Verify();
int size = Smi::cast(get(kCacheSizeIndex))->value();
ASSERT(kEntriesIndex <= size);
ASSERT(size <= length());
ASSERT_EQ(0, size % kEntrySize);
int finger = Smi::cast(get(kFingerIndex))->value();
ASSERT(kEntriesIndex <= finger);
ASSERT(finger < size || finger == kEntriesIndex);
ASSERT_EQ(0, finger % kEntrySize);
if (FLAG_enable_slow_asserts) {
for (int i = kEntriesIndex; i < size; i++) {
ASSERT(!get(i)->IsTheHole());
get(i)->Verify();
}
for (int i = size; i < length(); i++) {
ASSERT(get(i)->IsTheHole());
get(i)->Verify();
}
}
}
#endif // DEBUG
} } // namespace v8::internal