v8/src/spaces.cc

3186 lines
101 KiB
C++
Raw Normal View History

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "macro-assembler.h"
#include "mark-compact.h"
#include "platform.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// HeapObjectIterator
HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
// You can't actually iterate over the anchor page. It is not a real page,
// just an anchor for the double linked page list. Initialize as if we have
// reached the end of the anchor page, then the first iteration will move on
// to the first page.
Initialize(space,
NULL,
NULL,
kAllPagesInSpace,
NULL);
}
HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
HeapObjectCallback size_func) {
// You can't actually iterate over the anchor page. It is not a real page,
// just an anchor for the double linked page list. Initialize the current
// address and end as NULL, then the first iteration will move on
// to the first page.
Initialize(space,
NULL,
NULL,
kAllPagesInSpace,
size_func);
}
HeapObjectIterator::HeapObjectIterator(Page* page,
HeapObjectCallback size_func) {
Space* owner = page->owner();
ASSERT(owner == page->heap()->old_pointer_space() ||
owner == page->heap()->old_data_space() ||
owner == page->heap()->map_space() ||
owner == page->heap()->cell_space() ||
owner == page->heap()->code_space());
Initialize(reinterpret_cast<PagedSpace*>(owner),
page->area_start(),
page->area_end(),
kOnePageOnly,
size_func);
ASSERT(page->WasSweptPrecisely());
}
void HeapObjectIterator::Initialize(PagedSpace* space,
Address cur, Address end,
HeapObjectIterator::PageMode mode,
HeapObjectCallback size_f) {
// Check that we actually can iterate this space.
ASSERT(!space->was_swept_conservatively());
space_ = space;
cur_addr_ = cur;
cur_end_ = end;
page_mode_ = mode;
size_func_ = size_f;
}
// We have hit the end of the page and should advance to the next block of
// objects. This happens at the end of the page.
bool HeapObjectIterator::AdvanceToNextPage() {
ASSERT(cur_addr_ == cur_end_);
if (page_mode_ == kOnePageOnly) return false;
Page* cur_page;
if (cur_addr_ == NULL) {
cur_page = space_->anchor();
} else {
cur_page = Page::FromAddress(cur_addr_ - 1);
ASSERT(cur_addr_ == cur_page->area_end());
}
cur_page = cur_page->next_page();
if (cur_page == space_->anchor()) return false;
cur_addr_ = cur_page->area_start();
cur_end_ = cur_page->area_end();
ASSERT(cur_page->WasSweptPrecisely());
return true;
}
// -----------------------------------------------------------------------------
// CodeRange
CodeRange::CodeRange(Isolate* isolate)
: isolate_(isolate),
code_range_(NULL),
free_list_(0),
allocation_list_(0),
current_allocation_block_index_(0) {
}
bool CodeRange::SetUp(const size_t requested) {
ASSERT(code_range_ == NULL);
code_range_ = new VirtualMemory(requested);
CHECK(code_range_ != NULL);
if (!code_range_->IsReserved()) {
delete code_range_;
code_range_ = NULL;
return false;
}
// We are sure that we have mapped a block of requested addresses.
ASSERT(code_range_->size() == requested);
LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
Address base = reinterpret_cast<Address>(code_range_->address());
Address aligned_base =
RoundUp(reinterpret_cast<Address>(code_range_->address()),
MemoryChunk::kAlignment);
size_t size = code_range_->size() - (aligned_base - base);
allocation_list_.Add(FreeBlock(aligned_base, size));
current_allocation_block_index_ = 0;
return true;
}
int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
const FreeBlock* right) {
// The entire point of CodeRange is that the difference between two
// addresses in the range can be represented as a signed 32-bit int,
// so the cast is semantically correct.
return static_cast<int>(left->start - right->start);
}
void CodeRange::GetNextAllocationBlock(size_t requested) {
for (current_allocation_block_index_++;
current_allocation_block_index_ < allocation_list_.length();
current_allocation_block_index_++) {
if (requested <= allocation_list_[current_allocation_block_index_].size) {
return; // Found a large enough allocation block.
}
}
// Sort and merge the free blocks on the free list and the allocation list.
free_list_.AddAll(allocation_list_);
allocation_list_.Clear();
free_list_.Sort(&CompareFreeBlockAddress);
for (int i = 0; i < free_list_.length();) {
FreeBlock merged = free_list_[i];
i++;
// Add adjacent free blocks to the current merged block.
while (i < free_list_.length() &&
free_list_[i].start == merged.start + merged.size) {
merged.size += free_list_[i].size;
i++;
}
if (merged.size > 0) {
allocation_list_.Add(merged);
}
}
free_list_.Clear();
for (current_allocation_block_index_ = 0;
current_allocation_block_index_ < allocation_list_.length();
current_allocation_block_index_++) {
if (requested <= allocation_list_[current_allocation_block_index_].size) {
return; // Found a large enough allocation block.
}
}
// Code range is full or too fragmented.
V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
}
Address CodeRange::AllocateRawMemory(const size_t requested_size,
const size_t commit_size,
size_t* allocated) {
ASSERT(commit_size <= requested_size);
ASSERT(current_allocation_block_index_ < allocation_list_.length());
if (requested_size > allocation_list_[current_allocation_block_index_].size) {
// Find an allocation block large enough. This function call may
// call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
GetNextAllocationBlock(requested_size);
}
// Commit the requested memory at the start of the current allocation block.
size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment);
FreeBlock current = allocation_list_[current_allocation_block_index_];
if (aligned_requested >= (current.size - Page::kPageSize)) {
// Don't leave a small free block, useless for a large object or chunk.
*allocated = current.size;
} else {
*allocated = aligned_requested;
}
ASSERT(*allocated <= current.size);
ASSERT(IsAddressAligned(current.start, MemoryChunk::kAlignment));
if (!MemoryAllocator::CommitExecutableMemory(code_range_,
current.start,
commit_size,
*allocated)) {
*allocated = 0;
return NULL;
}
allocation_list_[current_allocation_block_index_].start += *allocated;
allocation_list_[current_allocation_block_index_].size -= *allocated;
if (*allocated == current.size) {
GetNextAllocationBlock(0); // This block is used up, get the next one.
}
return current.start;
}
bool CodeRange::CommitRawMemory(Address start, size_t length) {
return code_range_->Commit(start, length, true);
}
bool CodeRange::UncommitRawMemory(Address start, size_t length) {
return code_range_->Uncommit(start, length);
}
void CodeRange::FreeRawMemory(Address address, size_t length) {
ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment));
free_list_.Add(FreeBlock(address, length));
code_range_->Uncommit(address, length);
}
void CodeRange::TearDown() {
delete code_range_; // Frees all memory in the virtual memory range.
code_range_ = NULL;
free_list_.Free();
allocation_list_.Free();
}
// -----------------------------------------------------------------------------
// MemoryAllocator
//
MemoryAllocator::MemoryAllocator(Isolate* isolate)
: isolate_(isolate),
capacity_(0),
capacity_executable_(0),
size_(0),
size_executable_(0) {
}
bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
capacity_ = RoundUp(capacity, Page::kPageSize);
capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
ASSERT_GE(capacity_, capacity_executable_);
size_ = 0;
size_executable_ = 0;
return true;
}
void MemoryAllocator::TearDown() {
// Check that spaces were torn down before MemoryAllocator.
ASSERT(size_ == 0);
// TODO(gc) this will be true again when we fix FreeMemory.
// ASSERT(size_executable_ == 0);
capacity_ = 0;
capacity_executable_ = 0;
}
void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
Executability executable) {
// TODO(gc) make code_range part of memory allocator?
ASSERT(reservation->IsReserved());
size_t size = reservation->size();
ASSERT(size_ >= size);
size_ -= size;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
if (executable == EXECUTABLE) {
ASSERT(size_executable_ >= size);
size_executable_ -= size;
}
// Code which is part of the code-range does not have its own VirtualMemory.
ASSERT(!isolate_->code_range()->contains(
static_cast<Address>(reservation->address())));
ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
reservation->Release();
}
void MemoryAllocator::FreeMemory(Address base,
size_t size,
Executability executable) {
// TODO(gc) make code_range part of memory allocator?
ASSERT(size_ >= size);
size_ -= size;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
if (executable == EXECUTABLE) {
ASSERT(size_executable_ >= size);
size_executable_ -= size;
}
if (isolate_->code_range()->contains(static_cast<Address>(base))) {
ASSERT(executable == EXECUTABLE);
isolate_->code_range()->FreeRawMemory(base, size);
} else {
ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
bool result = VirtualMemory::ReleaseRegion(base, size);
USE(result);
ASSERT(result);
}
}
Address MemoryAllocator::ReserveAlignedMemory(size_t size,
size_t alignment,
VirtualMemory* controller) {
VirtualMemory reservation(size, alignment);
if (!reservation.IsReserved()) return NULL;
size_ += reservation.size();
Address base = RoundUp(static_cast<Address>(reservation.address()),
alignment);
controller->TakeControl(&reservation);
return base;
}
Address MemoryAllocator::AllocateAlignedMemory(size_t reserve_size,
size_t commit_size,
size_t alignment,
Executability executable,
VirtualMemory* controller) {
ASSERT(commit_size <= reserve_size);
VirtualMemory reservation;
Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
if (base == NULL) return NULL;
if (executable == EXECUTABLE) {
if (!CommitExecutableMemory(&reservation,
base,
commit_size,
reserve_size)) {
base = NULL;
}
} else {
if (!reservation.Commit(base, commit_size, false)) {
base = NULL;
}
}
if (base == NULL) {
// Failed to commit the body. Release the mapping and any partially
// commited regions inside it.
reservation.Release();
return NULL;
}
controller->TakeControl(&reservation);
return base;
}
void Page::InitializeAsAnchor(PagedSpace* owner) {
set_owner(owner);
set_prev_page(this);
set_next_page(this);
}
NewSpacePage* NewSpacePage::Initialize(Heap* heap,
Address start,
SemiSpace* semi_space) {
Address area_start = start + NewSpacePage::kObjectStartOffset;
Address area_end = start + Page::kPageSize;
MemoryChunk* chunk = MemoryChunk::Initialize(heap,
start,
Page::kPageSize,
area_start,
area_end,
NOT_EXECUTABLE,
semi_space);
chunk->set_next_chunk(NULL);
chunk->set_prev_chunk(NULL);
chunk->initialize_scan_on_scavenge(true);
bool in_to_space = (semi_space->id() != kFromSpace);
chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE
: MemoryChunk::IN_FROM_SPACE);
ASSERT(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE
: MemoryChunk::IN_TO_SPACE));
NewSpacePage* page = static_cast<NewSpacePage*>(chunk);
heap->incremental_marking()->SetNewSpacePageFlags(page);
return page;
}
void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) {
set_owner(semi_space);
set_next_chunk(this);
set_prev_chunk(this);
// Flags marks this invalid page as not being in new-space.
// All real new-space pages will be in new-space.
SetFlags(0, ~0);
}
MemoryChunk* MemoryChunk::Initialize(Heap* heap,
Address base,
size_t size,
Address area_start,
Address area_end,
Executability executable,
Space* owner) {
MemoryChunk* chunk = FromAddress(base);
ASSERT(base == chunk->address());
chunk->heap_ = heap;
chunk->size_ = size;
chunk->area_start_ = area_start;
chunk->area_end_ = area_end;
chunk->flags_ = 0;
chunk->set_owner(owner);
chunk->InitializeReservedMemory();
chunk->slots_buffer_ = NULL;
chunk->skip_list_ = NULL;
chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity;
chunk->progress_bar_ = 0;
chunk->high_water_mark_ = static_cast<int>(area_start - base);
chunk->parallel_sweeping_ = 0;
chunk->available_in_small_free_list_ = 0;
chunk->available_in_medium_free_list_ = 0;
chunk->available_in_large_free_list_ = 0;
chunk->available_in_huge_free_list_ = 0;
chunk->non_available_small_blocks_ = 0;
chunk->ResetLiveBytes();
Bitmap::Clear(chunk);
chunk->initialize_scan_on_scavenge(false);
chunk->SetFlag(WAS_SWEPT_PRECISELY);
ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset);
if (executable == EXECUTABLE) {
chunk->SetFlag(IS_EXECUTABLE);
}
if (owner == heap->old_data_space()) {
chunk->SetFlag(CONTAINS_ONLY_DATA);
}
return chunk;
}
// Commit MemoryChunk area to the requested size.
bool MemoryChunk::CommitArea(size_t requested) {
size_t guard_size = IsFlagSet(IS_EXECUTABLE) ?
MemoryAllocator::CodePageGuardSize() : 0;
size_t header_size = area_start() - address() - guard_size;
size_t commit_size = RoundUp(header_size + requested, OS::CommitPageSize());
size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
OS::CommitPageSize());
if (commit_size > committed_size) {
// Commit size should be less or equal than the reserved size.
ASSERT(commit_size <= size() - 2 * guard_size);
// Append the committed area.
Address start = address() + committed_size + guard_size;
size_t length = commit_size - committed_size;
if (reservation_.IsReserved()) {
if (!reservation_.Commit(start, length, IsFlagSet(IS_EXECUTABLE))) {
return false;
}
} else {
CodeRange* code_range = heap_->isolate()->code_range();
ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE));
if (!code_range->CommitRawMemory(start, length)) return false;
}
if (Heap::ShouldZapGarbage()) {
heap_->isolate()->memory_allocator()->ZapBlock(start, length);
}
} else if (commit_size < committed_size) {
ASSERT(commit_size > 0);
// Shrink the committed area.
size_t length = committed_size - commit_size;
Address start = address() + committed_size + guard_size - length;
if (reservation_.IsReserved()) {
if (!reservation_.Uncommit(start, length)) return false;
} else {
CodeRange* code_range = heap_->isolate()->code_range();
ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE));
if (!code_range->UncommitRawMemory(start, length)) return false;
}
}
area_end_ = area_start_ + requested;
return true;
}
void MemoryChunk::InsertAfter(MemoryChunk* other) {
next_chunk_ = other->next_chunk_;
prev_chunk_ = other;
// This memory barrier is needed since concurrent sweeper threads may iterate
// over the list of pages while a new page is inserted.
// TODO(hpayer): find a cleaner way to guarantee that the page list can be
// expanded concurrently
MemoryBarrier();
// The following two write operations can take effect in arbitrary order
// since pages are always iterated by the sweeper threads in LIFO order, i.e,
// the inserted page becomes visible for the sweeper threads after
// other->next_chunk_ = this;
other->next_chunk_->prev_chunk_ = this;
other->next_chunk_ = this;
}
void MemoryChunk::Unlink() {
if (!InNewSpace() && IsFlagSet(SCAN_ON_SCAVENGE)) {
heap_->decrement_scan_on_scavenge_pages();
ClearFlag(SCAN_ON_SCAVENGE);
}
next_chunk_->prev_chunk_ = prev_chunk_;
prev_chunk_->next_chunk_ = next_chunk_;
prev_chunk_ = NULL;
next_chunk_ = NULL;
}
MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
intptr_t commit_area_size,
Executability executable,
Space* owner) {
ASSERT(commit_area_size <= reserve_area_size);
size_t chunk_size;
Heap* heap = isolate_->heap();
Address base = NULL;
VirtualMemory reservation;
Address area_start = NULL;
Address area_end = NULL;
//
// MemoryChunk layout:
//
// Executable
// +----------------------------+<- base aligned with MemoryChunk::kAlignment
// | Header |
// +----------------------------+<- base + CodePageGuardStartOffset
// | Guard |
// +----------------------------+<- area_start_
// | Area |
// +----------------------------+<- area_end_ (area_start + commit_area_size)
// | Committed but not used |
// +----------------------------+<- aligned at OS page boundary
// | Reserved but not committed |
// +----------------------------+<- aligned at OS page boundary
// | Guard |
// +----------------------------+<- base + chunk_size
//
// Non-executable
// +----------------------------+<- base aligned with MemoryChunk::kAlignment
// | Header |
// +----------------------------+<- area_start_ (base + kObjectStartOffset)
// | Area |
// +----------------------------+<- area_end_ (area_start + commit_area_size)
// | Committed but not used |
// +----------------------------+<- aligned at OS page boundary
// | Reserved but not committed |
// +----------------------------+<- base + chunk_size
//
if (executable == EXECUTABLE) {
chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
OS::CommitPageSize()) + CodePageGuardSize();
// Check executable memory limit.
if (size_executable_ + chunk_size > capacity_executable_) {
LOG(isolate_,
StringEvent("MemoryAllocator::AllocateRawMemory",
"V8 Executable Allocation capacity exceeded"));
return NULL;
}
// Size of header (not executable) plus area (executable).
size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
OS::CommitPageSize());
// Allocate executable memory either from code range or from the
// OS.
if (isolate_->code_range()->exists()) {
base = isolate_->code_range()->AllocateRawMemory(chunk_size,
commit_size,
&chunk_size);
ASSERT(IsAligned(reinterpret_cast<intptr_t>(base),
MemoryChunk::kAlignment));
if (base == NULL) return NULL;
size_ += chunk_size;
// Update executable memory size.
size_executable_ += chunk_size;
} else {
base = AllocateAlignedMemory(chunk_size,
commit_size,
MemoryChunk::kAlignment,
executable,
&reservation);
if (base == NULL) return NULL;
// Update executable memory size.
size_executable_ += reservation.size();
}
if (Heap::ShouldZapGarbage()) {
ZapBlock(base, CodePageGuardStartOffset());
ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
}
area_start = base + CodePageAreaStartOffset();
area_end = area_start + commit_area_size;
} else {
chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
OS::CommitPageSize());
size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset +
commit_area_size, OS::CommitPageSize());
base = AllocateAlignedMemory(chunk_size,
commit_size,
MemoryChunk::kAlignment,
executable,
&reservation);
if (base == NULL) return NULL;
if (Heap::ShouldZapGarbage()) {
ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
}
area_start = base + Page::kObjectStartOffset;
area_end = area_start + commit_area_size;
}
// Use chunk_size for statistics and callbacks because we assume that they
// treat reserved but not-yet committed memory regions of chunks as allocated.
isolate_->counters()->memory_allocated()->
Increment(static_cast<int>(chunk_size));
LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
if (owner != NULL) {
ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
}
MemoryChunk* result = MemoryChunk::Initialize(heap,
base,
chunk_size,
area_start,
area_end,
executable,
owner);
result->set_reserved_memory(&reservation);
return result;
}
void Page::ResetFreeListStatistics() {
non_available_small_blocks_ = 0;
available_in_small_free_list_ = 0;
available_in_medium_free_list_ = 0;
available_in_large_free_list_ = 0;
available_in_huge_free_list_ = 0;
}
Page* MemoryAllocator::AllocatePage(intptr_t size,
PagedSpace* owner,
Executability executable) {
MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
if (chunk == NULL) return NULL;
return Page::Initialize(isolate_->heap(), chunk, executable, owner);
}
LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
Space* owner,
Executability executable) {
MemoryChunk* chunk = AllocateChunk(object_size,
object_size,
executable,
owner);
if (chunk == NULL) return NULL;
return LargePage::Initialize(isolate_->heap(), chunk);
}
void MemoryAllocator::Free(MemoryChunk* chunk) {
LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
if (chunk->owner() != NULL) {
ObjectSpace space =
static_cast<ObjectSpace>(1 << chunk->owner()->identity());
PerformAllocationCallback(space, kAllocationActionFree, chunk->size());
}
isolate_->heap()->RememberUnmappedPage(
reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate());
delete chunk->slots_buffer();
delete chunk->skip_list();
VirtualMemory* reservation = chunk->reserved_memory();
if (reservation->IsReserved()) {
FreeMemory(reservation, chunk->executable());
} else {
FreeMemory(chunk->address(),
chunk->size(),
chunk->executable());
}
}
bool MemoryAllocator::CommitBlock(Address start,
size_t size,
Executability executable) {
if (!VirtualMemory::CommitRegion(start, size, executable)) return false;
if (Heap::ShouldZapGarbage()) {
ZapBlock(start, size);
}
isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
return true;
}
bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
if (!VirtualMemory::UncommitRegion(start, size)) return false;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
return true;
}
void MemoryAllocator::ZapBlock(Address start, size_t size) {
for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
Memory::Address_at(start + s) = kZapValue;
}
}
void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
AllocationAction action,
size_t size) {
for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
MemoryAllocationCallbackRegistration registration =
memory_allocation_callbacks_[i];
if ((registration.space & space) == space &&
(registration.action & action) == action)
registration.callback(space, action, static_cast<int>(size));
}
}
bool MemoryAllocator::MemoryAllocationCallbackRegistered(
MemoryAllocationCallback callback) {
for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
if (memory_allocation_callbacks_[i].callback == callback) return true;
}
return false;
}
void MemoryAllocator::AddMemoryAllocationCallback(
MemoryAllocationCallback callback,
ObjectSpace space,
AllocationAction action) {
ASSERT(callback != NULL);
MemoryAllocationCallbackRegistration registration(callback, space, action);
ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
return memory_allocation_callbacks_.Add(registration);
}
void MemoryAllocator::RemoveMemoryAllocationCallback(
MemoryAllocationCallback callback) {
ASSERT(callback != NULL);
for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
if (memory_allocation_callbacks_[i].callback == callback) {
memory_allocation_callbacks_.Remove(i);
return;
}
}
UNREACHABLE();
}
#ifdef DEBUG
void MemoryAllocator::ReportStatistics() {
float pct = static_cast<float>(capacity_ - size_) / capacity_;
PrintF(" capacity: %" V8_PTR_PREFIX "d"
", used: %" V8_PTR_PREFIX "d"
", available: %%%d\n\n",
capacity_, size_, static_cast<int>(pct*100));
}
#endif
int MemoryAllocator::CodePageGuardStartOffset() {
// We are guarding code pages: the first OS page after the header
// will be protected as non-writable.
return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize());
}
int MemoryAllocator::CodePageGuardSize() {
return static_cast<int>(OS::CommitPageSize());
}
int MemoryAllocator::CodePageAreaStartOffset() {
// We are guarding code pages: the first OS page after the header
// will be protected as non-writable.
return CodePageGuardStartOffset() + CodePageGuardSize();
}
int MemoryAllocator::CodePageAreaEndOffset() {
// We are guarding code pages: the last OS page will be protected as
// non-writable.
return Page::kPageSize - static_cast<int>(OS::CommitPageSize());
}
bool MemoryAllocator::CommitExecutableMemory(VirtualMemory* vm,
Address start,
size_t commit_size,
size_t reserved_size) {
// Commit page header (not executable).
if (!vm->Commit(start,
CodePageGuardStartOffset(),
false)) {
return false;
}
// Create guard page after the header.
if (!vm->Guard(start + CodePageGuardStartOffset())) {
return false;
}
// Commit page body (executable).
if (!vm->Commit(start + CodePageAreaStartOffset(),
commit_size - CodePageGuardStartOffset(),
true)) {
return false;
}
// Create guard page before the end.
if (!vm->Guard(start + reserved_size - CodePageGuardSize())) {
return false;
}
return true;
}
// -----------------------------------------------------------------------------
// MemoryChunk implementation
void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) {
MemoryChunk* chunk = MemoryChunk::FromAddress(address);
if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) {
static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by);
}
chunk->IncrementLiveBytes(by);
}
// -----------------------------------------------------------------------------
// PagedSpace implementation
PagedSpace::PagedSpace(Heap* heap,
intptr_t max_capacity,
AllocationSpace id,
Executability executable)
: Space(heap, id, executable),
free_list_(this),
was_swept_conservatively_(false),
first_unswept_page_(Page::FromAddress(NULL)),
unswept_free_bytes_(0) {
if (id == CODE_SPACE) {
area_size_ = heap->isolate()->memory_allocator()->
CodePageAreaSize();
} else {
area_size_ = Page::kPageSize - Page::kObjectStartOffset;
}
max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
* AreaSize();
accounting_stats_.Clear();
allocation_info_.top = NULL;
allocation_info_.limit = NULL;
anchor_.InitializeAsAnchor(this);
}
bool PagedSpace::SetUp() {
return true;
}
bool PagedSpace::HasBeenSetUp() {
return true;
}
void PagedSpace::TearDown() {
PageIterator iterator(this);
while (iterator.has_next()) {
heap()->isolate()->memory_allocator()->Free(iterator.next());
}
anchor_.set_next_page(&anchor_);
anchor_.set_prev_page(&anchor_);
accounting_stats_.Clear();
}
size_t PagedSpace::CommittedPhysicalMemory() {
if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
MemoryChunk::UpdateHighWaterMark(allocation_info_.top);
size_t size = 0;
PageIterator it(this);
while (it.has_next()) {
size += it.next()->CommittedPhysicalMemory();
}
return size;
}
MaybeObject* PagedSpace::FindObject(Address addr) {
// Note: this function can only be called on precisely swept spaces.
ASSERT(!heap()->mark_compact_collector()->in_use());
if (!Contains(addr)) return Failure::Exception();
Page* p = Page::FromAddress(addr);
HeapObjectIterator it(p, NULL);
for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
Address cur = obj->address();
Address next = cur + obj->Size();
if ((cur <= addr) && (addr < next)) return obj;
}
UNREACHABLE();
return Failure::Exception();
}
bool PagedSpace::CanExpand() {
ASSERT(max_capacity_ % AreaSize() == 0);
if (Capacity() == max_capacity_) return false;
ASSERT(Capacity() < max_capacity_);
// Are we going to exceed capacity for this space?
if ((Capacity() + Page::kPageSize) > max_capacity_) return false;
return true;
}
bool PagedSpace::Expand() {
if (!CanExpand()) return false;
intptr_t size = AreaSize();
if (anchor_.next_page() == &anchor_) {
size = SizeOfFirstPage();
}
Page* p = heap()->isolate()->memory_allocator()->AllocatePage(
size, this, executable());
if (p == NULL) return false;
ASSERT(Capacity() <= max_capacity_);
p->InsertAfter(anchor_.prev_page());
return true;
}
intptr_t PagedSpace::SizeOfFirstPage() {
int size = 0;
switch (identity()) {
case OLD_POINTER_SPACE:
size = 64 * kPointerSize * KB;
break;
case OLD_DATA_SPACE:
size = 192 * KB;
break;
case MAP_SPACE:
Refactoring of snapshots. This simplifies and improves the speed of deserializing code. The current startup time improvement for V8 is around 6%, but code deserialization is speeded up disproportionately, and we will soon have more code in the snapshot. * Removed support for deserializing into large object space. The regular pages are 1Mbyte now and that is plenty. This is a big simplification. * Instead of reserving space for the snapshot we actually allocate it now. This removes some special casing from the memory management and simplifies deserialization since we are just bumping a pointer rather than calling the normal allocation routines during deserialization. * Record in the snapshot how much we need to boot up and allocate it instead of just assuming that allocations in a new VM will always be linear. * In the snapshot we always address an object as a negative offset from the current allocation point. We used to sometimes address from the start of the deserialized data, but this is less useful now that we have good support for roots and repetitions in the deserialization data. * Code objects were previously deserialized (like other objects) by alternating raw data (deserialized with memcpy) and pointers (to external references, other objects, etc.). Now we deserialize code objects with a single memcpy, followed by a series of skips and pointers that partially overwrite the code we memcopied out of the snapshot. The skips are sometimes merged into the following instruction in the deserialization data to reduce dispatch time. * Integers in the snapshot were stored in a variable length format that gives a compact representation for small positive integers. This is still the case, but the new encoding can be decoded without branches or conditional instructions, which is faster on a modern CPU. Review URL: https://chromiumcodereview.appspot.com/10918067 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12505 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-14 11:16:56 +00:00
size = 16 * kPointerSize * KB;
break;
case CELL_SPACE:
Refactoring of snapshots. This simplifies and improves the speed of deserializing code. The current startup time improvement for V8 is around 6%, but code deserialization is speeded up disproportionately, and we will soon have more code in the snapshot. * Removed support for deserializing into large object space. The regular pages are 1Mbyte now and that is plenty. This is a big simplification. * Instead of reserving space for the snapshot we actually allocate it now. This removes some special casing from the memory management and simplifies deserialization since we are just bumping a pointer rather than calling the normal allocation routines during deserialization. * Record in the snapshot how much we need to boot up and allocate it instead of just assuming that allocations in a new VM will always be linear. * In the snapshot we always address an object as a negative offset from the current allocation point. We used to sometimes address from the start of the deserialized data, but this is less useful now that we have good support for roots and repetitions in the deserialization data. * Code objects were previously deserialized (like other objects) by alternating raw data (deserialized with memcpy) and pointers (to external references, other objects, etc.). Now we deserialize code objects with a single memcpy, followed by a series of skips and pointers that partially overwrite the code we memcopied out of the snapshot. The skips are sometimes merged into the following instruction in the deserialization data to reduce dispatch time. * Integers in the snapshot were stored in a variable length format that gives a compact representation for small positive integers. This is still the case, but the new encoding can be decoded without branches or conditional instructions, which is faster on a modern CPU. Review URL: https://chromiumcodereview.appspot.com/10918067 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12505 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-14 11:16:56 +00:00
size = 16 * kPointerSize * KB;
break;
case CODE_SPACE:
if (heap()->isolate()->code_range()->exists()) {
// When code range exists, code pages are allocated in a special way
// (from the reserved code range). That part of the code is not yet
// upgraded to handle small pages.
size = AreaSize();
} else {
size = 384 * KB;
}
break;
default:
UNREACHABLE();
}
return Min(size, AreaSize());
}
int PagedSpace::CountTotalPages() {
PageIterator it(this);
int count = 0;
while (it.has_next()) {
it.next();
count++;
}
return count;
}
void PagedSpace::ObtainFreeListStatistics(Page* page, SizeStats* sizes) {
sizes->huge_size_ = page->available_in_huge_free_list();
sizes->small_size_ = page->available_in_small_free_list();
sizes->medium_size_ = page->available_in_medium_free_list();
sizes->large_size_ = page->available_in_large_free_list();
}
void PagedSpace::ResetFreeListStatistics() {
PageIterator page_iterator(this);
while (page_iterator.has_next()) {
Page* page = page_iterator.next();
page->ResetFreeListStatistics();
}
}
void PagedSpace::ReleasePage(Page* page, bool unlink) {
ASSERT(page->LiveBytes() == 0);
ASSERT(AreaSize() == page->area_size());
// Adjust list of unswept pages if the page is the head of the list.
if (first_unswept_page_ == page) {
first_unswept_page_ = page->next_page();
if (first_unswept_page_ == anchor()) {
first_unswept_page_ = Page::FromAddress(NULL);
}
}
if (page->WasSwept()) {
intptr_t size = free_list_.EvictFreeListItems(page);
accounting_stats_.AllocateBytes(size);
ASSERT_EQ(AreaSize(), static_cast<int>(size));
} else {
DecreaseUnsweptFreeBytes(page);
}
if (Page::FromAllocationTop(allocation_info_.top) == page) {
allocation_info_.top = allocation_info_.limit = NULL;
}
if (unlink) {
page->Unlink();
}
if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) {
heap()->isolate()->memory_allocator()->Free(page);
} else {
heap()->QueueMemoryChunkForFree(page);
}
ASSERT(Capacity() > 0);
accounting_stats_.ShrinkSpace(AreaSize());
}
#ifdef DEBUG
void PagedSpace::Print() { }
#endif
#ifdef VERIFY_HEAP
void PagedSpace::Verify(ObjectVisitor* visitor) {
// We can only iterate over the pages if they were swept precisely.
if (was_swept_conservatively_) return;
bool allocation_pointer_found_in_space =
(allocation_info_.top == allocation_info_.limit);
PageIterator page_iterator(this);
while (page_iterator.has_next()) {
Page* page = page_iterator.next();
CHECK(page->owner() == this);
if (page == Page::FromAllocationTop(allocation_info_.top)) {
allocation_pointer_found_in_space = true;
}
CHECK(page->WasSweptPrecisely());
HeapObjectIterator it(page, NULL);
Address end_of_previous_object = page->area_start();
Address top = page->area_end();
int black_size = 0;
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
CHECK(end_of_previous_object <= object->address());
// The first word should be a map, and we expect all map pointers to
// be in map space.
Map* map = object->map();
CHECK(map->IsMap());
CHECK(heap()->map_space()->Contains(map));
// Perform space-specific object verification.
VerifyObject(object);
// The object itself should look OK.
object->Verify();
// All the interior pointers should be contained in the heap.
int size = object->Size();
object->IterateBody(map->instance_type(), size, visitor);
if (Marking::IsBlack(Marking::MarkBitFrom(object))) {
black_size += size;
}
CHECK(object->address() + size <= top);
end_of_previous_object = object->address() + size;
}
CHECK_LE(black_size, page->LiveBytes());
}
CHECK(allocation_pointer_found_in_space);
}
#endif // VERIFY_HEAP
// -----------------------------------------------------------------------------
// NewSpace implementation
bool NewSpace::SetUp(int reserved_semispace_capacity,
int maximum_semispace_capacity) {
// Set up new space based on the preallocated memory block defined by
// start and size. The provided space is divided into two semi-spaces.
// To support fast containment testing in the new space, the size of
// this chunk must be a power of two and it must be aligned to its size.
int initial_semispace_capacity = heap()->InitialSemiSpaceSize();
size_t size = 2 * reserved_semispace_capacity;
Address base =
heap()->isolate()->memory_allocator()->ReserveAlignedMemory(
size, size, &reservation_);
if (base == NULL) return false;
chunk_base_ = base;
chunk_size_ = static_cast<uintptr_t>(size);
LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_));
ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
ASSERT(IsPowerOf2(maximum_semispace_capacity));
// Allocate and set up the histogram arrays if necessary.
allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
promoted_histogram_[name].set_name(#name);
INSTANCE_TYPE_LIST(SET_NAME)
#undef SET_NAME
ASSERT(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize());
ASSERT(static_cast<intptr_t>(chunk_size_) >=
2 * heap()->ReservedSemiSpaceSize());
ASSERT(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0));
to_space_.SetUp(chunk_base_,
initial_semispace_capacity,
maximum_semispace_capacity);
from_space_.SetUp(chunk_base_ + reserved_semispace_capacity,
initial_semispace_capacity,
maximum_semispace_capacity);
if (!to_space_.Commit()) {
return false;
}
ASSERT(!from_space_.is_committed()); // No need to use memory yet.
start_ = chunk_base_;
address_mask_ = ~(2 * reserved_semispace_capacity - 1);
object_mask_ = address_mask_ | kHeapObjectTagMask;
object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag;
ResetAllocationInfo();
return true;
}
void NewSpace::TearDown() {
if (allocated_histogram_) {
DeleteArray(allocated_histogram_);
allocated_histogram_ = NULL;
}
if (promoted_histogram_) {
DeleteArray(promoted_histogram_);
promoted_histogram_ = NULL;
}
start_ = NULL;
allocation_info_.top = NULL;
allocation_info_.limit = NULL;
to_space_.TearDown();
from_space_.TearDown();
LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_));
ASSERT(reservation_.IsReserved());
heap()->isolate()->memory_allocator()->FreeMemory(&reservation_,
NOT_EXECUTABLE);
chunk_base_ = NULL;
chunk_size_ = 0;
}
void NewSpace::Flip() {
SemiSpace::Swap(&from_space_, &to_space_);
}
void NewSpace::Grow() {
// Double the semispace size but only up to maximum capacity.
ASSERT(Capacity() < MaximumCapacity());
int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity()));
if (to_space_.GrowTo(new_capacity)) {
// Only grow from space if we managed to grow to-space.
if (!from_space_.GrowTo(new_capacity)) {
// If we managed to grow to-space but couldn't grow from-space,
// attempt to shrink to-space.
if (!to_space_.ShrinkTo(from_space_.Capacity())) {
// We are in an inconsistent state because we could not
// commit/uncommit memory from new space.
V8::FatalProcessOutOfMemory("Failed to grow new space.");
}
}
}
ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
void NewSpace::Shrink() {
int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt());
int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize);
if (rounded_new_capacity < Capacity() &&
to_space_.ShrinkTo(rounded_new_capacity)) {
// Only shrink from-space if we managed to shrink to-space.
from_space_.Reset();
if (!from_space_.ShrinkTo(rounded_new_capacity)) {
// If we managed to shrink to-space but couldn't shrink from
// space, attempt to grow to-space again.
if (!to_space_.GrowTo(from_space_.Capacity())) {
// We are in an inconsistent state because we could not
// commit/uncommit memory from new space.
V8::FatalProcessOutOfMemory("Failed to shrink new space.");
}
}
}
allocation_info_.limit = to_space_.page_high();
ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
void NewSpace::UpdateAllocationInfo() {
MemoryChunk::UpdateHighWaterMark(allocation_info_.top);
allocation_info_.top = to_space_.page_low();
allocation_info_.limit = to_space_.page_high();
// Lower limit during incremental marking.
if (heap()->incremental_marking()->IsMarking() &&
inline_allocation_limit_step() != 0) {
Address new_limit =
allocation_info_.top + inline_allocation_limit_step();
allocation_info_.limit = Min(new_limit, allocation_info_.limit);
}
ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
}
void NewSpace::ResetAllocationInfo() {
to_space_.Reset();
UpdateAllocationInfo();
pages_used_ = 0;
// Clear all mark-bits in the to-space.
NewSpacePageIterator it(&to_space_);
while (it.has_next()) {
Bitmap::Clear(it.next());
}
}
bool NewSpace::AddFreshPage() {
Address top = allocation_info_.top;
if (NewSpacePage::IsAtStart(top)) {
// The current page is already empty. Don't try to make another.
// We should only get here if someone asks to allocate more
// than what can be stored in a single page.
// TODO(gc): Change the limit on new-space allocation to prevent this
// from happening (all such allocations should go directly to LOSpace).
return false;
}
if (!to_space_.AdvancePage()) {
// Failed to get a new page in to-space.
return false;
}
// Clear remainder of current page.
Address limit = NewSpacePage::FromLimit(top)->area_end();
if (heap()->gc_state() == Heap::SCAVENGE) {
heap()->promotion_queue()->SetNewLimit(limit);
heap()->promotion_queue()->ActivateGuardIfOnTheSamePage();
}
int remaining_in_page = static_cast<int>(limit - top);
heap()->CreateFillerObjectAt(top, remaining_in_page);
pages_used_++;
UpdateAllocationInfo();
return true;
}
MaybeObject* NewSpace::SlowAllocateRaw(int size_in_bytes) {
Address old_top = allocation_info_.top;
Address new_top = old_top + size_in_bytes;
Address high = to_space_.page_high();
if (allocation_info_.limit < high) {
// Incremental marking has lowered the limit to get a
// chance to do a step.
allocation_info_.limit = Min(
allocation_info_.limit + inline_allocation_limit_step_,
high);
int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_);
heap()->incremental_marking()->Step(
bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
top_on_previous_step_ = new_top;
return AllocateRaw(size_in_bytes);
} else if (AddFreshPage()) {
// Switched to new page. Try allocating again.
int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_);
heap()->incremental_marking()->Step(
bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
top_on_previous_step_ = to_space_.page_low();
return AllocateRaw(size_in_bytes);
} else {
return Failure::RetryAfterGC();
}
}
#ifdef VERIFY_HEAP
// We do not use the SemiSpaceIterator because verification doesn't assume
// that it works (it depends on the invariants we are checking).
void NewSpace::Verify() {
// The allocation pointer should be in the space or at the very end.
ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
// There should be objects packed in from the low address up to the
// allocation pointer.
Address current = to_space_.first_page()->area_start();
CHECK_EQ(current, to_space_.space_start());
while (current != top()) {
if (!NewSpacePage::IsAtEnd(current)) {
// The allocation pointer should not be in the middle of an object.
CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) ||
current < top());
HeapObject* object = HeapObject::FromAddress(current);
// The first word should be a map, and we expect all map pointers to
// be in map space.
Map* map = object->map();
CHECK(map->IsMap());
CHECK(heap()->map_space()->Contains(map));
// The object should not be code or a map.
CHECK(!object->IsMap());
CHECK(!object->IsCode());
// The object itself should look OK.
object->Verify();
// All the interior pointers should be contained in the heap.
VerifyPointersVisitor visitor;
int size = object->Size();
object->IterateBody(map->instance_type(), size, &visitor);
current += size;
} else {
// At end of page, switch to next page.
NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page();
// Next page should be valid.
CHECK(!page->is_anchor());
current = page->area_start();
}
}
// Check semi-spaces.
CHECK_EQ(from_space_.id(), kFromSpace);
CHECK_EQ(to_space_.id(), kToSpace);
from_space_.Verify();
to_space_.Verify();
}
#endif
// -----------------------------------------------------------------------------
// SemiSpace implementation
void SemiSpace::SetUp(Address start,
int initial_capacity,
int maximum_capacity) {
// Creates a space in the young generation. The constructor does not
// allocate memory from the OS. A SemiSpace is given a contiguous chunk of
// memory of size 'capacity' when set up, and does not grow or shrink
// otherwise. In the mark-compact collector, the memory region of the from
// space is used as the marking stack. It requires contiguous memory
// addresses.
ASSERT(maximum_capacity >= Page::kPageSize);
initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
capacity_ = initial_capacity;
maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
committed_ = false;
start_ = start;
address_mask_ = ~(maximum_capacity - 1);
object_mask_ = address_mask_ | kHeapObjectTagMask;
object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
age_mark_ = start_;
}
void SemiSpace::TearDown() {
start_ = NULL;
capacity_ = 0;
}
bool SemiSpace::Commit() {
ASSERT(!is_committed());
int pages = capacity_ / Page::kPageSize;
Address end = start_ + maximum_capacity_;
Address start = end - pages * Page::kPageSize;
if (!heap()->isolate()->memory_allocator()->CommitBlock(start,
capacity_,
executable())) {
return false;
}
NewSpacePage* page = anchor();
for (int i = 1; i <= pages; i++) {
NewSpacePage* new_page =
NewSpacePage::Initialize(heap(), end - i * Page::kPageSize, this);
new_page->InsertAfter(page);
page = new_page;
}
committed_ = true;
Reset();
return true;
}
bool SemiSpace::Uncommit() {
ASSERT(is_committed());
Address start = start_ + maximum_capacity_ - capacity_;
if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) {
return false;
}
anchor()->set_next_page(anchor());
anchor()->set_prev_page(anchor());
committed_ = false;
return true;
}
size_t SemiSpace::CommittedPhysicalMemory() {
if (!is_committed()) return 0;
size_t size = 0;
NewSpacePageIterator it(this);
while (it.has_next()) {
size += it.next()->CommittedPhysicalMemory();
}
return size;
}
bool SemiSpace::GrowTo(int new_capacity) {
if (!is_committed()) {
if (!Commit()) return false;
}
ASSERT((new_capacity & Page::kPageAlignmentMask) == 0);
ASSERT(new_capacity <= maximum_capacity_);
ASSERT(new_capacity > capacity_);
int pages_before = capacity_ / Page::kPageSize;
int pages_after = new_capacity / Page::kPageSize;
Address end = start_ + maximum_capacity_;
Address start = end - new_capacity;
size_t delta = new_capacity - capacity_;
ASSERT(IsAligned(delta, OS::AllocateAlignment()));
if (!heap()->isolate()->memory_allocator()->CommitBlock(
start, delta, executable())) {
return false;
}
capacity_ = new_capacity;
NewSpacePage* last_page = anchor()->prev_page();
ASSERT(last_page != anchor());
for (int i = pages_before + 1; i <= pages_after; i++) {
Address page_address = end - i * Page::kPageSize;
NewSpacePage* new_page = NewSpacePage::Initialize(heap(),
page_address,
this);
new_page->InsertAfter(last_page);
Bitmap::Clear(new_page);
// Duplicate the flags that was set on the old page.
new_page->SetFlags(last_page->GetFlags(),
NewSpacePage::kCopyOnFlipFlagsMask);
last_page = new_page;
}
return true;
}
bool SemiSpace::ShrinkTo(int new_capacity) {
ASSERT((new_capacity & Page::kPageAlignmentMask) == 0);
ASSERT(new_capacity >= initial_capacity_);
ASSERT(new_capacity < capacity_);
if (is_committed()) {
// Semispaces grow backwards from the end of their allocated capacity,
// so we find the before and after start addresses relative to the
// end of the space.
Address space_end = start_ + maximum_capacity_;
Address old_start = space_end - capacity_;
size_t delta = capacity_ - new_capacity;
ASSERT(IsAligned(delta, OS::AllocateAlignment()));
MemoryAllocator* allocator = heap()->isolate()->memory_allocator();
if (!allocator->UncommitBlock(old_start, delta)) {
return false;
}
int pages_after = new_capacity / Page::kPageSize;
NewSpacePage* new_last_page =
NewSpacePage::FromAddress(space_end - pages_after * Page::kPageSize);
new_last_page->set_next_page(anchor());
anchor()->set_prev_page(new_last_page);
ASSERT((current_page_ <= first_page()) && (current_page_ >= new_last_page));
}
capacity_ = new_capacity;
return true;
}
void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) {
anchor_.set_owner(this);
// Fixup back-pointers to anchor. Address of anchor changes
// when we swap.
anchor_.prev_page()->set_next_page(&anchor_);
anchor_.next_page()->set_prev_page(&anchor_);
bool becomes_to_space = (id_ == kFromSpace);
id_ = becomes_to_space ? kToSpace : kFromSpace;
NewSpacePage* page = anchor_.next_page();
while (page != &anchor_) {
page->set_owner(this);
page->SetFlags(flags, mask);
if (becomes_to_space) {
page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
page->SetFlag(MemoryChunk::IN_TO_SPACE);
page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
page->ResetLiveBytes();
} else {
page->SetFlag(MemoryChunk::IN_FROM_SPACE);
page->ClearFlag(MemoryChunk::IN_TO_SPACE);
}
ASSERT(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
ASSERT(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
page = page->next_page();
}
}
void SemiSpace::Reset() {
ASSERT(anchor_.next_page() != &anchor_);
current_page_ = anchor_.next_page();
}
void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
// We won't be swapping semispaces without data in them.
ASSERT(from->anchor_.next_page() != &from->anchor_);
ASSERT(to->anchor_.next_page() != &to->anchor_);
// Swap bits.
SemiSpace tmp = *from;
*from = *to;
*to = tmp;
// Fixup back-pointers to the page list anchor now that its address
// has changed.
// Swap to/from-space bits on pages.
// Copy GC flags from old active space (from-space) to new (to-space).
intptr_t flags = from->current_page()->GetFlags();
to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask);
from->FlipPages(0, 0);
}
void SemiSpace::set_age_mark(Address mark) {
ASSERT(NewSpacePage::FromLimit(mark)->semi_space() == this);
age_mark_ = mark;
// Mark all pages up to the one containing mark.
NewSpacePageIterator it(space_start(), mark);
while (it.has_next()) {
it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
}
}
#ifdef DEBUG
void SemiSpace::Print() { }
#endif
#ifdef VERIFY_HEAP
void SemiSpace::Verify() {
bool is_from_space = (id_ == kFromSpace);
NewSpacePage* page = anchor_.next_page();
CHECK(anchor_.semi_space() == this);
while (page != &anchor_) {
CHECK(page->semi_space() == this);
CHECK(page->InNewSpace());
CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
: MemoryChunk::IN_TO_SPACE));
CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
: MemoryChunk::IN_FROM_SPACE));
CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
if (!is_from_space) {
// The pointers-from-here-are-interesting flag isn't updated dynamically
// on from-space pages, so it might be out of sync with the marking state.
if (page->heap()->incremental_marking()->IsMarking()) {
CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
} else {
CHECK(!page->IsFlagSet(
MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
}
// TODO(gc): Check that the live_bytes_count_ field matches the
// black marking on the page (if we make it match in new-space).
}
CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
CHECK(page->prev_page()->next_page() == page);
page = page->next_page();
}
}
#endif
#ifdef DEBUG
void SemiSpace::AssertValidRange(Address start, Address end) {
// Addresses belong to same semi-space
NewSpacePage* page = NewSpacePage::FromLimit(start);
NewSpacePage* end_page = NewSpacePage::FromLimit(end);
SemiSpace* space = page->semi_space();
CHECK_EQ(space, end_page->semi_space());
// Start address is before end address, either on same page,
// or end address is on a later page in the linked list of
// semi-space pages.
if (page == end_page) {
CHECK(start <= end);
} else {
while (page != end_page) {
page = page->next_page();
CHECK_NE(page, space->anchor());
}
}
}
#endif
// -----------------------------------------------------------------------------
// SemiSpaceIterator implementation.
SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
Initialize(space->bottom(), space->top(), NULL);
}
SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
HeapObjectCallback size_func) {
Initialize(space->bottom(), space->top(), size_func);
}
SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
Initialize(start, space->top(), NULL);
}
SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) {
Initialize(from, to, NULL);
}
void SemiSpaceIterator::Initialize(Address start,
Address end,
HeapObjectCallback size_func) {
SemiSpace::AssertValidRange(start, end);
current_ = start;
limit_ = end;
size_func_ = size_func;
}
#ifdef DEBUG
// heap_histograms is shared, always clear it before using it.
static void ClearHistograms() {
Isolate* isolate = Isolate::Current();
// We reset the name each time, though it hasn't changed.
#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
#undef DEF_TYPE_NAME
#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
#undef CLEAR_HISTOGRAM
isolate->js_spill_information()->Clear();
}
static void ClearCodeKindStatistics() {
Isolate* isolate = Isolate::Current();
for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
isolate->code_kind_statistics()[i] = 0;
}
}
static void ReportCodeKindStatistics() {
Isolate* isolate = Isolate::Current();
const char* table[Code::NUMBER_OF_KINDS] = { NULL };
#define CASE(name) \
case Code::name: table[Code::name] = #name; \
break
for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
switch (static_cast<Code::Kind>(i)) {
CASE(FUNCTION);
CASE(OPTIMIZED_FUNCTION);
CASE(STUB);
CASE(BUILTIN);
CASE(LOAD_IC);
CASE(KEYED_LOAD_IC);
CASE(STORE_IC);
CASE(KEYED_STORE_IC);
CASE(CALL_IC);
CASE(KEYED_CALL_IC);
CASE(UNARY_OP_IC);
CASE(BINARY_OP_IC);
CASE(COMPARE_IC);
CASE(COMPARE_NIL_IC);
CASE(TO_BOOLEAN_IC);
}
}
#undef CASE
PrintF("\n Code kind histograms: \n");
for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
if (isolate->code_kind_statistics()[i] > 0) {
PrintF(" %-20s: %10d bytes\n", table[i],
isolate->code_kind_statistics()[i]);
}
}
PrintF("\n");
}
static int CollectHistogramInfo(HeapObject* obj) {
Isolate* isolate = Isolate::Current();
InstanceType type = obj->map()->instance_type();
ASSERT(0 <= type && type <= LAST_TYPE);
ASSERT(isolate->heap_histograms()[type].name() != NULL);
isolate->heap_histograms()[type].increment_number(1);
isolate->heap_histograms()[type].increment_bytes(obj->Size());
if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
JSObject::cast(obj)->IncrementSpillStatistics(
isolate->js_spill_information());
}
return obj->Size();
}
static void ReportHistogram(bool print_spill) {
Isolate* isolate = Isolate::Current();
PrintF("\n Object Histogram:\n");
for (int i = 0; i <= LAST_TYPE; i++) {
if (isolate->heap_histograms()[i].number() > 0) {
PrintF(" %-34s%10d (%10d bytes)\n",
isolate->heap_histograms()[i].name(),
isolate->heap_histograms()[i].number(),
isolate->heap_histograms()[i].bytes());
}
}
PrintF("\n");
// Summarize string types.
int string_number = 0;
int string_bytes = 0;
#define INCREMENT(type, size, name, camel_name) \
string_number += isolate->heap_histograms()[type].number(); \
string_bytes += isolate->heap_histograms()[type].bytes();
STRING_TYPE_LIST(INCREMENT)
#undef INCREMENT
if (string_number > 0) {
PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
string_bytes);
}
if (FLAG_collect_heap_spill_statistics && print_spill) {
isolate->js_spill_information()->Print();
}
}
#endif // DEBUG
// Support for statistics gathering for --heap-stats and --log-gc.
void NewSpace::ClearHistograms() {
for (int i = 0; i <= LAST_TYPE; i++) {
allocated_histogram_[i].clear();
promoted_histogram_[i].clear();
}
}
// Because the copying collector does not touch garbage objects, we iterate
// the new space before a collection to get a histogram of allocated objects.
// This only happens when --log-gc flag is set.
void NewSpace::CollectStatistics() {
ClearHistograms();
SemiSpaceIterator it(this);
for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next())
RecordAllocation(obj);
}
static void DoReportStatistics(Isolate* isolate,
HistogramInfo* info, const char* description) {
LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
// Lump all the string types together.
int string_number = 0;
int string_bytes = 0;
#define INCREMENT(type, size, name, camel_name) \
string_number += info[type].number(); \
string_bytes += info[type].bytes();
STRING_TYPE_LIST(INCREMENT)
#undef INCREMENT
if (string_number > 0) {
LOG(isolate,
HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
}
// Then do the other types.
for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
if (info[i].number() > 0) {
LOG(isolate,
HeapSampleItemEvent(info[i].name(), info[i].number(),
info[i].bytes()));
}
}
LOG(isolate, HeapSampleEndEvent("NewSpace", description));
}
void NewSpace::ReportStatistics() {
#ifdef DEBUG
if (FLAG_heap_stats) {
float pct = static_cast<float>(Available()) / Capacity();
PrintF(" capacity: %" V8_PTR_PREFIX "d"
", available: %" V8_PTR_PREFIX "d, %%%d\n",
Capacity(), Available(), static_cast<int>(pct*100));
PrintF("\n Object Histogram:\n");
for (int i = 0; i <= LAST_TYPE; i++) {
if (allocated_histogram_[i].number() > 0) {
PrintF(" %-34s%10d (%10d bytes)\n",
allocated_histogram_[i].name(),
allocated_histogram_[i].number(),
allocated_histogram_[i].bytes());
}
}
PrintF("\n");
}
#endif // DEBUG
if (FLAG_log_gc) {
Isolate* isolate = ISOLATE;
DoReportStatistics(isolate, allocated_histogram_, "allocated");
DoReportStatistics(isolate, promoted_histogram_, "promoted");
}
}
void NewSpace::RecordAllocation(HeapObject* obj) {
InstanceType type = obj->map()->instance_type();
ASSERT(0 <= type && type <= LAST_TYPE);
allocated_histogram_[type].increment_number(1);
allocated_histogram_[type].increment_bytes(obj->Size());
}
void NewSpace::RecordPromotion(HeapObject* obj) {
InstanceType type = obj->map()->instance_type();
ASSERT(0 <= type && type <= LAST_TYPE);
promoted_histogram_[type].increment_number(1);
promoted_histogram_[type].increment_bytes(obj->Size());
}
size_t NewSpace::CommittedPhysicalMemory() {
if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
MemoryChunk::UpdateHighWaterMark(allocation_info_.top);
size_t size = to_space_.CommittedPhysicalMemory();
if (from_space_.is_committed()) {
size += from_space_.CommittedPhysicalMemory();
}
return size;
}
// -----------------------------------------------------------------------------
// Free lists for old object spaces implementation
void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
ASSERT(size_in_bytes > 0);
ASSERT(IsAligned(size_in_bytes, kPointerSize));
// We write a map and possibly size information to the block. If the block
// is big enough to be a FreeSpace with at least one extra word (the next
// pointer), we set its map to be the free space map and its size to an
// appropriate array length for the desired size from HeapObject::Size().
// If the block is too small (eg, one or two words), to hold both a size
// field and a next pointer, we give it a filler map that gives it the
// correct size.
if (size_in_bytes > FreeSpace::kHeaderSize) {
set_map_no_write_barrier(heap->raw_unchecked_free_space_map());
// Can't use FreeSpace::cast because it fails during deserialization.
FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this);
this_as_free_space->set_size(size_in_bytes);
} else if (size_in_bytes == kPointerSize) {
set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map());
} else if (size_in_bytes == 2 * kPointerSize) {
set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map());
} else {
UNREACHABLE();
}
// We would like to ASSERT(Size() == size_in_bytes) but this would fail during
// deserialization because the free space map is not done yet.
}
FreeListNode* FreeListNode::next() {
ASSERT(IsFreeListNode(this));
if (map() == GetHeap()->raw_unchecked_free_space_map()) {
ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
return reinterpret_cast<FreeListNode*>(
Memory::Address_at(address() + kNextOffset));
} else {
return reinterpret_cast<FreeListNode*>(
Memory::Address_at(address() + kPointerSize));
}
}
FreeListNode** FreeListNode::next_address() {
ASSERT(IsFreeListNode(this));
if (map() == GetHeap()->raw_unchecked_free_space_map()) {
ASSERT(Size() >= kNextOffset + kPointerSize);
return reinterpret_cast<FreeListNode**>(address() + kNextOffset);
} else {
return reinterpret_cast<FreeListNode**>(address() + kPointerSize);
}
}
void FreeListNode::set_next(FreeListNode* next) {
ASSERT(IsFreeListNode(this));
// While we are booting the VM the free space map will actually be null. So
// we have to make sure that we don't try to use it for anything at that
// stage.
if (map() == GetHeap()->raw_unchecked_free_space_map()) {
ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
Memory::Address_at(address() + kNextOffset) =
reinterpret_cast<Address>(next);
} else {
Memory::Address_at(address() + kPointerSize) =
reinterpret_cast<Address>(next);
}
}
intptr_t FreeListCategory::Concatenate(FreeListCategory* category) {
intptr_t free_bytes = 0;
if (category->top_ != NULL) {
ASSERT(category->end_ != NULL);
// This is safe (not going to deadlock) since Concatenate operations
// are never performed on the same free lists at the same time in
// reverse order.
ScopedLock lock_target(mutex_);
ScopedLock lock_source(category->mutex());
free_bytes = category->available();
if (end_ == NULL) {
end_ = category->end();
} else {
category->end()->set_next(top_);
}
top_ = category->top();
available_ += category->available();
category->Reset();
}
return free_bytes;
}
void FreeListCategory::Reset() {
top_ = NULL;
end_ = NULL;
available_ = 0;
}
intptr_t FreeListCategory::EvictFreeListItemsInList(Page* p) {
int sum = 0;
FreeListNode** n = &top_;
while (*n != NULL) {
if (Page::FromAddress((*n)->address()) == p) {
FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n);
sum += free_space->Size();
*n = (*n)->next();
} else {
n = (*n)->next_address();
}
}
if (top_ == NULL) {
end_ = NULL;
}
available_ -= sum;
return sum;
}
FreeListNode* FreeListCategory::PickNodeFromList(int *node_size) {
FreeListNode* node = top_;
if (node == NULL) return NULL;
while (node != NULL &&
Page::FromAddress(node->address())->IsEvacuationCandidate()) {
available_ -= node->Size();
node = node->next();
}
if (node != NULL) {
set_top(node->next());
*node_size = node->Size();
available_ -= *node_size;
} else {
set_top(NULL);
}
if (top() == NULL) {
set_end(NULL);
}
return node;
}
void FreeListCategory::Free(FreeListNode* node, int size_in_bytes) {
node->set_next(top_);
top_ = node;
if (end_ == NULL) {
end_ = node;
}
available_ += size_in_bytes;
}
void FreeListCategory::RepairFreeList(Heap* heap) {
FreeListNode* n = top_;
while (n != NULL) {
Map** map_location = reinterpret_cast<Map**>(n->address());
if (*map_location == NULL) {
*map_location = heap->free_space_map();
} else {
ASSERT(*map_location == heap->free_space_map());
}
n = n->next();
}
}
FreeList::FreeList(PagedSpace* owner)
: owner_(owner), heap_(owner->heap()) {
Reset();
}
intptr_t FreeList::Concatenate(FreeList* free_list) {
intptr_t free_bytes = 0;
free_bytes += small_list_.Concatenate(free_list->small_list());
free_bytes += medium_list_.Concatenate(free_list->medium_list());
free_bytes += large_list_.Concatenate(free_list->large_list());
free_bytes += huge_list_.Concatenate(free_list->huge_list());
return free_bytes;
}
void FreeList::Reset() {
small_list_.Reset();
medium_list_.Reset();
large_list_.Reset();
huge_list_.Reset();
}
int FreeList::Free(Address start, int size_in_bytes) {
if (size_in_bytes == 0) return 0;
FreeListNode* node = FreeListNode::FromAddress(start);
node->set_size(heap_, size_in_bytes);
Page* page = Page::FromAddress(start);
// Early return to drop too-small blocks on the floor.
if (size_in_bytes < kSmallListMin) {
page->add_non_available_small_blocks(size_in_bytes);
return size_in_bytes;
}
// Insert other blocks at the head of a free list of the appropriate
// magnitude.
if (size_in_bytes <= kSmallListMax) {
small_list_.Free(node, size_in_bytes);
page->add_available_in_small_free_list(size_in_bytes);
} else if (size_in_bytes <= kMediumListMax) {
medium_list_.Free(node, size_in_bytes);
page->add_available_in_medium_free_list(size_in_bytes);
} else if (size_in_bytes <= kLargeListMax) {
large_list_.Free(node, size_in_bytes);
page->add_available_in_large_free_list(size_in_bytes);
} else {
huge_list_.Free(node, size_in_bytes);
page->add_available_in_huge_free_list(size_in_bytes);
}
ASSERT(IsVeryLong() || available() == SumFreeLists());
return 0;
}
FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) {
FreeListNode* node = NULL;
Page* page = NULL;
if (size_in_bytes <= kSmallAllocationMax) {
node = small_list_.PickNodeFromList(node_size);
if (node != NULL) {
page = Page::FromAddress(node->address());
page->add_available_in_small_free_list(-(*node_size));
return node;
}
}
if (size_in_bytes <= kMediumAllocationMax) {
node = medium_list_.PickNodeFromList(node_size);
if (node != NULL) {
page = Page::FromAddress(node->address());
page->add_available_in_medium_free_list(-(*node_size));
return node;
}
}
if (size_in_bytes <= kLargeAllocationMax) {
node = large_list_.PickNodeFromList(node_size);
if (node != NULL) {
page = Page::FromAddress(node->address());
page->add_available_in_large_free_list(-(*node_size));
return node;
}
}
int huge_list_available = huge_list_.available();
for (FreeListNode** cur = huge_list_.GetTopAddress();
*cur != NULL;
cur = (*cur)->next_address()) {
FreeListNode* cur_node = *cur;
while (cur_node != NULL &&
Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) {
int size = reinterpret_cast<FreeSpace*>(cur_node)->Size();
huge_list_available -= size;
page = Page::FromAddress(cur_node->address());
page->add_available_in_huge_free_list(-size);
cur_node = cur_node->next();
}
*cur = cur_node;
if (cur_node == NULL) {
huge_list_.set_end(NULL);
break;
}
ASSERT((*cur)->map() == heap_->raw_unchecked_free_space_map());
FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
int size = cur_as_free_space->Size();
if (size >= size_in_bytes) {
// Large enough node found. Unlink it from the list.
node = *cur;
*cur = node->next();
*node_size = size;
huge_list_available -= size;
page = Page::FromAddress(node->address());
page->add_available_in_huge_free_list(-size);
break;
}
}
if (huge_list_.top() == NULL) {
huge_list_.set_end(NULL);
}
huge_list_.set_available(huge_list_available);
ASSERT(IsVeryLong() || available() == SumFreeLists());
return node;
}
// Allocation on the old space free list. If it succeeds then a new linear
// allocation space has been set up with the top and limit of the space. If
// the allocation fails then NULL is returned, and the caller can perform a GC
// or allocate a new page before retrying.
HeapObject* FreeList::Allocate(int size_in_bytes) {
ASSERT(0 < size_in_bytes);
ASSERT(size_in_bytes <= kMaxBlockSize);
ASSERT(IsAligned(size_in_bytes, kPointerSize));
// Don't free list allocate if there is linear space available.
ASSERT(owner_->limit() - owner_->top() < size_in_bytes);
int new_node_size = 0;
FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size);
if (new_node == NULL) return NULL;
int bytes_left = new_node_size - size_in_bytes;
ASSERT(bytes_left >= 0);
int old_linear_size = static_cast<int>(owner_->limit() - owner_->top());
// Mark the old linear allocation area with a free space map so it can be
// skipped when scanning the heap. This also puts it back in the free list
// if it is big enough.
owner_->Free(owner_->top(), old_linear_size);
owner_->heap()->incremental_marking()->OldSpaceStep(
size_in_bytes - old_linear_size);
#ifdef DEBUG
for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
reinterpret_cast<Object**>(new_node->address())[i] =
Smi::FromInt(kCodeZapValue);
}
#endif
// The old-space-step might have finished sweeping and restarted marking.
// Verify that it did not turn the page of the new node into an evacuation
// candidate.
ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
const int kThreshold = IncrementalMarking::kAllocatedThreshold;
// Memory in the linear allocation area is counted as allocated. We may free
// a little of this again immediately - see below.
owner_->Allocate(new_node_size);
if (bytes_left > kThreshold &&
owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
FLAG_incremental_marking_steps) {
int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold);
// We don't want to give too large linear areas to the allocator while
// incremental marking is going on, because we won't check again whether
// we want to do another increment until the linear area is used up.
owner_->Free(new_node->address() + size_in_bytes + linear_size,
new_node_size - size_in_bytes - linear_size);
owner_->SetTop(new_node->address() + size_in_bytes,
new_node->address() + size_in_bytes + linear_size);
} else if (bytes_left > 0) {
// Normally we give the rest of the node to the allocator as its new
// linear allocation area.
owner_->SetTop(new_node->address() + size_in_bytes,
new_node->address() + new_node_size);
} else {
// TODO(gc) Try not freeing linear allocation region when bytes_left
// are zero.
owner_->SetTop(NULL, NULL);
}
return new_node;
}
intptr_t FreeList::EvictFreeListItems(Page* p) {
intptr_t sum = huge_list_.EvictFreeListItemsInList(p);
p->set_available_in_huge_free_list(0);
if (sum < p->area_size()) {
sum += small_list_.EvictFreeListItemsInList(p) +
medium_list_.EvictFreeListItemsInList(p) +
large_list_.EvictFreeListItemsInList(p);
p->set_available_in_small_free_list(0);
p->set_available_in_medium_free_list(0);
p->set_available_in_large_free_list(0);
}
return sum;
}
void FreeList::RepairLists(Heap* heap) {
small_list_.RepairFreeList(heap);
medium_list_.RepairFreeList(heap);
large_list_.RepairFreeList(heap);
huge_list_.RepairFreeList(heap);
}
#ifdef DEBUG
intptr_t FreeListCategory::SumFreeList() {
intptr_t sum = 0;
FreeListNode* cur = top_;
while (cur != NULL) {
ASSERT(cur->map() == cur->GetHeap()->raw_unchecked_free_space_map());
FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur);
sum += cur_as_free_space->Size();
cur = cur->next();
}
return sum;
}
static const int kVeryLongFreeList = 500;
int FreeListCategory::FreeListLength() {
int length = 0;
FreeListNode* cur = top_;
while (cur != NULL) {
length++;
cur = cur->next();
if (length == kVeryLongFreeList) return length;
}
return length;
}
bool FreeList::IsVeryLong() {
if (small_list_.FreeListLength() == kVeryLongFreeList) return true;
if (medium_list_.FreeListLength() == kVeryLongFreeList) return true;
if (large_list_.FreeListLength() == kVeryLongFreeList) return true;
if (huge_list_.FreeListLength() == kVeryLongFreeList) return true;
return false;
}
// This can take a very long time because it is linear in the number of entries
// on the free list, so it should not be called if FreeListLength returns
// kVeryLongFreeList.
intptr_t FreeList::SumFreeLists() {
intptr_t sum = small_list_.SumFreeList();
sum += medium_list_.SumFreeList();
sum += large_list_.SumFreeList();
sum += huge_list_.SumFreeList();
return sum;
}
#endif
// -----------------------------------------------------------------------------
// OldSpace implementation
bool NewSpace::ReserveSpace(int bytes) {
// We can't reliably unpack a partial snapshot that needs more new space
// space than the minimum NewSpace size. The limit can be set lower than
// the end of new space either because there is more space on the next page
// or because we have lowered the limit in order to get periodic incremental
// marking. The most reliable way to ensure that there is linear space is
// to do the allocation, then rewind the limit.
ASSERT(bytes <= InitialCapacity());
MaybeObject* maybe = AllocateRaw(bytes);
Object* object = NULL;
if (!maybe->ToObject(&object)) return false;
HeapObject* allocation = HeapObject::cast(object);
Address top = allocation_info_.top;
if ((top - bytes) == allocation->address()) {
allocation_info_.top = allocation->address();
return true;
}
// There may be a borderline case here where the allocation succeeded, but
// the limit and top have moved on to a new page. In that case we try again.
return ReserveSpace(bytes);
}
void PagedSpace::PrepareForMarkCompact() {
// We don't have a linear allocation area while sweeping. It will be restored
// on the first allocation after the sweep.
// Mark the old linear allocation area with a free space map so it can be
// skipped when scanning the heap.
int old_linear_size = static_cast<int>(limit() - top());
Free(top(), old_linear_size);
SetTop(NULL, NULL);
// Stop lazy sweeping and clear marking bits for unswept pages.
if (first_unswept_page_ != NULL) {
Page* p = first_unswept_page_;
do {
// Do not use ShouldBeSweptLazily predicate here.
// New evacuation candidates were selected but they still have
// to be swept before collection starts.
if (!p->WasSwept()) {
Bitmap::Clear(p);
if (FLAG_gc_verbose) {
PrintF("Sweeping 0x%" V8PRIxPTR " lazily abandoned.\n",
reinterpret_cast<intptr_t>(p));
}
}
p = p->next_page();
} while (p != anchor());
}
first_unswept_page_ = Page::FromAddress(NULL);
unswept_free_bytes_ = 0;
// Clear the free list before a full GC---it will be rebuilt afterward.
free_list_.Reset();
}
bool PagedSpace::ReserveSpace(int size_in_bytes) {
ASSERT(size_in_bytes <= AreaSize());
ASSERT(size_in_bytes == RoundSizeDownToObjectAlignment(size_in_bytes));
Address current_top = allocation_info_.top;
Address new_top = current_top + size_in_bytes;
if (new_top <= allocation_info_.limit) return true;
HeapObject* new_area = free_list_.Allocate(size_in_bytes);
if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes);
if (new_area == NULL) return false;
int old_linear_size = static_cast<int>(limit() - top());
// Mark the old linear allocation area with a free space so it can be
// skipped when scanning the heap. This also puts it back in the free list
// if it is big enough.
Free(top(), old_linear_size);
SetTop(new_area->address(), new_area->address() + size_in_bytes);
return true;
}
intptr_t PagedSpace::SizeOfObjects() {
ASSERT(!heap()->IsSweepingComplete() || (unswept_free_bytes_ == 0));
return Size() - unswept_free_bytes_ - (limit() - top());
}
Refactoring of snapshots. This simplifies and improves the speed of deserializing code. The current startup time improvement for V8 is around 6%, but code deserialization is speeded up disproportionately, and we will soon have more code in the snapshot. * Removed support for deserializing into large object space. The regular pages are 1Mbyte now and that is plenty. This is a big simplification. * Instead of reserving space for the snapshot we actually allocate it now. This removes some special casing from the memory management and simplifies deserialization since we are just bumping a pointer rather than calling the normal allocation routines during deserialization. * Record in the snapshot how much we need to boot up and allocate it instead of just assuming that allocations in a new VM will always be linear. * In the snapshot we always address an object as a negative offset from the current allocation point. We used to sometimes address from the start of the deserialized data, but this is less useful now that we have good support for roots and repetitions in the deserialization data. * Code objects were previously deserialized (like other objects) by alternating raw data (deserialized with memcpy) and pointers (to external references, other objects, etc.). Now we deserialize code objects with a single memcpy, followed by a series of skips and pointers that partially overwrite the code we memcopied out of the snapshot. The skips are sometimes merged into the following instruction in the deserialization data to reduce dispatch time. * Integers in the snapshot were stored in a variable length format that gives a compact representation for small positive integers. This is still the case, but the new encoding can be decoded without branches or conditional instructions, which is faster on a modern CPU. Review URL: https://chromiumcodereview.appspot.com/10918067 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12505 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-14 11:16:56 +00:00
// After we have booted, we have created a map which represents free space
// on the heap. If there was already a free list then the elements on it
// were created with the wrong FreeSpaceMap (normally NULL), so we need to
// fix them.
void PagedSpace::RepairFreeListsAfterBoot() {
free_list_.RepairLists(heap());
}
// You have to call this last, since the implementation from PagedSpace
// doesn't know that memory was 'promised' to large object space.
bool LargeObjectSpace::ReserveSpace(int bytes) {
return heap()->OldGenerationCapacityAvailable() >= bytes &&
(!heap()->incremental_marking()->IsStopped() ||
heap()->OldGenerationSpaceAvailable() >= bytes);
}
bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) {
if (IsLazySweepingComplete()) return true;
intptr_t freed_bytes = 0;
Page* p = first_unswept_page_;
do {
Page* next_page = p->next_page();
if (ShouldBeSweptLazily(p)) {
if (FLAG_gc_verbose) {
PrintF("Sweeping 0x%" V8PRIxPTR " lazily advanced.\n",
reinterpret_cast<intptr_t>(p));
}
DecreaseUnsweptFreeBytes(p);
freed_bytes +=
MarkCompactCollector::
SweepConservatively<MarkCompactCollector::SWEEP_SEQUENTIALLY>(
this, NULL, p);
}
p = next_page;
} while (p != anchor() && freed_bytes < bytes_to_sweep);
if (p == anchor()) {
first_unswept_page_ = Page::FromAddress(NULL);
} else {
first_unswept_page_ = p;
}
heap()->FreeQueuedChunks();
return IsLazySweepingComplete();
}
void PagedSpace::EvictEvacuationCandidatesFromFreeLists() {
if (allocation_info_.top >= allocation_info_.limit) return;
if (Page::FromAllocationTop(allocation_info_.top)->IsEvacuationCandidate()) {
// Create filler object to keep page iterable if it was iterable.
int remaining =
static_cast<int>(allocation_info_.limit - allocation_info_.top);
heap()->CreateFillerObjectAt(allocation_info_.top, remaining);
allocation_info_.top = NULL;
allocation_info_.limit = NULL;
}
}
bool PagedSpace::EnsureSweeperProgress(intptr_t size_in_bytes) {
MarkCompactCollector* collector = heap()->mark_compact_collector();
if (collector->AreSweeperThreadsActivated()) {
if (collector->IsConcurrentSweepingInProgress()) {
if (collector->StealMemoryFromSweeperThreads(this) < size_in_bytes) {
if (!collector->sequential_sweeping()) {
collector->WaitUntilSweepingCompleted();
return true;
}
}
return false;
}
return true;
} else {
return AdvanceSweeper(size_in_bytes);
}
}
HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
// Allocation in this space has failed.
// If there are unswept pages advance lazy sweeper a bounded number of times
// until we find a size_in_bytes contiguous piece of memory
const int kMaxSweepingTries = 5;
bool sweeping_complete = false;
for (int i = 0; i < kMaxSweepingTries && !sweeping_complete; i++) {
sweeping_complete = EnsureSweeperProgress(size_in_bytes);
// Retry the free list allocation.
HeapObject* object = free_list_.Allocate(size_in_bytes);
if (object != NULL) return object;
}
// Free list allocation failed and there is no next page. Fail if we have
// hit the old generation size limit that should cause a garbage
// collection.
if (!heap()->always_allocate() &&
heap()->OldGenerationAllocationLimitReached()) {
return NULL;
}
// Try to expand the space and allocate in the new next page.
if (Expand()) {
return free_list_.Allocate(size_in_bytes);
}
// Last ditch, sweep all the remaining pages to try to find space. This may
// cause a pause.
if (!IsLazySweepingComplete()) {
EnsureSweeperProgress(kMaxInt);
// Retry the free list allocation.
HeapObject* object = free_list_.Allocate(size_in_bytes);
if (object != NULL) return object;
}
// Finally, fail.
return NULL;
}
#ifdef DEBUG
void PagedSpace::ReportCodeStatistics() {
Isolate* isolate = Isolate::Current();
CommentStatistic* comments_statistics =
isolate->paged_space_comments_statistics();
ReportCodeKindStatistics();
PrintF("Code comment statistics (\" [ comment-txt : size/ "
"count (average)\"):\n");
for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
const CommentStatistic& cs = comments_statistics[i];
if (cs.size > 0) {
PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
cs.size/cs.count);
}
}
PrintF("\n");
}
void PagedSpace::ResetCodeStatistics() {
Isolate* isolate = Isolate::Current();
CommentStatistic* comments_statistics =
isolate->paged_space_comments_statistics();
ClearCodeKindStatistics();
for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
comments_statistics[i].Clear();
}
comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
comments_statistics[CommentStatistic::kMaxComments].size = 0;
comments_statistics[CommentStatistic::kMaxComments].count = 0;
}
// Adds comment to 'comment_statistics' table. Performance OK as long as
// 'kMaxComments' is small
static void EnterComment(Isolate* isolate, const char* comment, int delta) {
CommentStatistic* comments_statistics =
isolate->paged_space_comments_statistics();
// Do not count empty comments
if (delta <= 0) return;
CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
// Search for a free or matching entry in 'comments_statistics': 'cs'
// points to result.
for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
if (comments_statistics[i].comment == NULL) {
cs = &comments_statistics[i];
cs->comment = comment;
break;
} else if (strcmp(comments_statistics[i].comment, comment) == 0) {
cs = &comments_statistics[i];
break;
}
}
// Update entry for 'comment'
cs->size += delta;
cs->count += 1;
}
// Call for each nested comment start (start marked with '[ xxx', end marked
// with ']'. RelocIterator 'it' must point to a comment reloc info.
static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
ASSERT(!it->done());
ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
if (tmp[0] != '[') {
// Not a nested comment; skip
return;
}
// Search for end of nested comment or a new nested comment
const char* const comment_txt =
reinterpret_cast<const char*>(it->rinfo()->data());
const byte* prev_pc = it->rinfo()->pc();
int flat_delta = 0;
it->next();
while (true) {
// All nested comments must be terminated properly, and therefore exit
// from loop.
ASSERT(!it->done());
if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
const char* const txt =
reinterpret_cast<const char*>(it->rinfo()->data());
flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
if (txt[0] == ']') break; // End of nested comment
// A new comment
CollectCommentStatistics(isolate, it);
// Skip code that was covered with previous comment
prev_pc = it->rinfo()->pc();
}
it->next();
}
EnterComment(isolate, comment_txt, flat_delta);
}
// Collects code size statistics:
// - by code kind
// - by code comment
void PagedSpace::CollectCodeStatistics() {
Isolate* isolate = heap()->isolate();
HeapObjectIterator obj_it(this);
for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
if (obj->IsCode()) {
Code* code = Code::cast(obj);
isolate->code_kind_statistics()[code->kind()] += code->Size();
RelocIterator it(code);
int delta = 0;
const byte* prev_pc = code->instruction_start();
while (!it.done()) {
if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
CollectCommentStatistics(isolate, &it);
prev_pc = it.rinfo()->pc();
}
it.next();
}
ASSERT(code->instruction_start() <= prev_pc &&
prev_pc <= code->instruction_end());
delta += static_cast<int>(code->instruction_end() - prev_pc);
EnterComment(isolate, "NoComment", delta);
}
}
}
void PagedSpace::ReportStatistics() {
int pct = static_cast<int>(Available() * 100 / Capacity());
PrintF(" capacity: %" V8_PTR_PREFIX "d"
", waste: %" V8_PTR_PREFIX "d"
", available: %" V8_PTR_PREFIX "d, %%%d\n",
Capacity(), Waste(), Available(), pct);
if (was_swept_conservatively_) return;
ClearHistograms();
HeapObjectIterator obj_it(this);
for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
CollectHistogramInfo(obj);
ReportHistogram(true);
}
#endif
// -----------------------------------------------------------------------------
// FixedSpace implementation
void FixedSpace::PrepareForMarkCompact() {
// Call prepare of the super class.
PagedSpace::PrepareForMarkCompact();
// During a non-compacting collection, everything below the linear
// allocation pointer except wasted top-of-page blocks is considered
// allocated and we will rediscover available bytes during the
// collection.
accounting_stats_.AllocateBytes(free_list_.available());
// Clear the free list before a full GC---it will be rebuilt afterward.
free_list_.Reset();
}
// -----------------------------------------------------------------------------
// MapSpace implementation
// TODO(mvstanton): this is weird...the compiler can't make a vtable unless
// there is at least one non-inlined virtual function. I would prefer to hide
// the VerifyObject definition behind VERIFY_HEAP.
void MapSpace::VerifyObject(HeapObject* object) {
// The object should be a map or a free-list node.
CHECK(object->IsMap() || object->IsFreeSpace());
}
// -----------------------------------------------------------------------------
// GlobalPropertyCellSpace implementation
// TODO(mvstanton): this is weird...the compiler can't make a vtable unless
// there is at least one non-inlined virtual function. I would prefer to hide
// the VerifyObject definition behind VERIFY_HEAP.
void CellSpace::VerifyObject(HeapObject* object) {
// The object should be a global object property cell or a free-list node.
CHECK(object->IsJSGlobalPropertyCell() ||
object->map() == heap()->two_pointer_filler_map());
}
// -----------------------------------------------------------------------------
// LargeObjectIterator
LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
current_ = space->first_page_;
size_func_ = NULL;
}
LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
HeapObjectCallback size_func) {
current_ = space->first_page_;
size_func_ = size_func;
}
HeapObject* LargeObjectIterator::Next() {
if (current_ == NULL) return NULL;
HeapObject* object = current_->GetObject();
current_ = current_->next_page();
return object;
}
// -----------------------------------------------------------------------------
// LargeObjectSpace
static bool ComparePointers(void* key1, void* key2) {
return key1 == key2;
}
LargeObjectSpace::LargeObjectSpace(Heap* heap,
intptr_t max_capacity,
AllocationSpace id)
: Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
max_capacity_(max_capacity),
first_page_(NULL),
size_(0),
page_count_(0),
objects_size_(0),
chunk_map_(ComparePointers, 1024) {}
bool LargeObjectSpace::SetUp() {
first_page_ = NULL;
size_ = 0;
page_count_ = 0;
objects_size_ = 0;
chunk_map_.Clear();
return true;
}
void LargeObjectSpace::TearDown() {
while (first_page_ != NULL) {
LargePage* page = first_page_;
first_page_ = first_page_->next_page();
LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
ObjectSpace space = static_cast<ObjectSpace>(1 << identity());
heap()->isolate()->memory_allocator()->PerformAllocationCallback(
space, kAllocationActionFree, page->size());
heap()->isolate()->memory_allocator()->Free(page);
}
SetUp();
}
MaybeObject* LargeObjectSpace::AllocateRaw(int object_size,
Executability executable) {
// Check if we want to force a GC before growing the old space further.
// If so, fail the allocation.
if (!heap()->always_allocate() &&
heap()->OldGenerationAllocationLimitReached()) {
return Failure::RetryAfterGC(identity());
}
if (Size() + object_size > max_capacity_) {
return Failure::RetryAfterGC(identity());
}
LargePage* page = heap()->isolate()->memory_allocator()->
AllocateLargePage(object_size, this, executable);
if (page == NULL) return Failure::RetryAfterGC(identity());
ASSERT(page->area_size() >= object_size);
size_ += static_cast<int>(page->size());
objects_size_ += object_size;
page_count_++;
page->set_next_page(first_page_);
first_page_ = page;
// Register all MemoryChunk::kAlignment-aligned chunks covered by
// this large page in the chunk map.
uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment;
for (uintptr_t key = base; key <= limit; key++) {
HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key),
static_cast<uint32_t>(key),
true);
ASSERT(entry != NULL);
entry->value = page;
}
HeapObject* object = page->GetObject();
if (Heap::ShouldZapGarbage()) {
// Make the object consistent so the heap can be verified in OldSpaceStep.
// We only need to do this in debug builds or if verify_heap is on.
reinterpret_cast<Object**>(object->address())[0] =
heap()->fixed_array_map();
reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0);
}
heap()->incremental_marking()->OldSpaceStep(object_size);
return object;
}
size_t LargeObjectSpace::CommittedPhysicalMemory() {
if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
size_t size = 0;
LargePage* current = first_page_;
while (current != NULL) {
size += current->CommittedPhysicalMemory();
current = current->next_page();
}
return size;
}
// GC support
MaybeObject* LargeObjectSpace::FindObject(Address a) {
LargePage* page = FindPage(a);
if (page != NULL) {
return page->GetObject();
}
return Failure::Exception();
}
LargePage* LargeObjectSpace::FindPage(Address a) {
uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
static_cast<uint32_t>(key),
false);
if (e != NULL) {
ASSERT(e->value != NULL);
LargePage* page = reinterpret_cast<LargePage*>(e->value);
ASSERT(page->is_valid());
if (page->Contains(a)) {
return page;
}
}
return NULL;
}
void LargeObjectSpace::FreeUnmarkedObjects() {
LargePage* previous = NULL;
LargePage* current = first_page_;
while (current != NULL) {
HeapObject* object = current->GetObject();
// Can this large page contain pointers to non-trivial objects. No other
// pointer object is this big.
bool is_pointer_object = object->IsFixedArray();
MarkBit mark_bit = Marking::MarkBitFrom(object);
if (mark_bit.Get()) {
mark_bit.Clear();
Page::FromAddress(object->address())->ResetProgressBar();
Page::FromAddress(object->address())->ResetLiveBytes();
previous = current;
current = current->next_page();
} else {
LargePage* page = current;
// Cut the chunk out from the chunk list.
current = current->next_page();
if (previous == NULL) {
first_page_ = current;
} else {
previous->set_next_page(current);
}
// Free the chunk.
heap()->mark_compact_collector()->ReportDeleteIfNeeded(
object, heap()->isolate());
size_ -= static_cast<int>(page->size());
objects_size_ -= object->Size();
page_count_--;
// Remove entries belonging to this page.
// Use variable alignment to help pass length check (<= 80 characters)
// of single line in tools/presubmit.py.
const intptr_t alignment = MemoryChunk::kAlignment;
uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment;
uintptr_t limit = base + (page->size()-1)/alignment;
for (uintptr_t key = base; key <= limit; key++) {
chunk_map_.Remove(reinterpret_cast<void*>(key),
static_cast<uint32_t>(key));
}
if (is_pointer_object) {
heap()->QueueMemoryChunkForFree(page);
} else {
heap()->isolate()->memory_allocator()->Free(page);
}
}
}
heap()->FreeQueuedChunks();
}
bool LargeObjectSpace::Contains(HeapObject* object) {
Address address = object->address();
MemoryChunk* chunk = MemoryChunk::FromAddress(address);
bool owned = (chunk->owner() == this);
SLOW_ASSERT(!owned || !FindObject(address)->IsFailure());
return owned;
}
#ifdef VERIFY_HEAP
// We do not assume that the large object iterator works, because it depends
// on the invariants we are checking during verification.
void LargeObjectSpace::Verify() {
for (LargePage* chunk = first_page_;
chunk != NULL;
chunk = chunk->next_page()) {
// Each chunk contains an object that starts at the large object page's
// object area start.
HeapObject* object = chunk->GetObject();
Page* page = Page::FromAddress(object->address());
CHECK(object->address() == page->area_start());
// The first word should be a map, and we expect all map pointers to be
// in map space.
Map* map = object->map();
CHECK(map->IsMap());
CHECK(heap()->map_space()->Contains(map));
// We have only code, sequential strings, external strings
// (sequential strings that have been morphed into external
// strings), fixed arrays, and byte arrays in large object space.
CHECK(object->IsCode() || object->IsSeqString() ||
object->IsExternalString() || object->IsFixedArray() ||
object->IsFixedDoubleArray() || object->IsByteArray());
// The object itself should look OK.
object->Verify();
// Byte arrays and strings don't have interior pointers.
if (object->IsCode()) {
VerifyPointersVisitor code_visitor;
object->IterateBody(map->instance_type(),
object->Size(),
&code_visitor);
} else if (object->IsFixedArray()) {
FixedArray* array = FixedArray::cast(object);
for (int j = 0; j < array->length(); j++) {
Object* element = array->get(j);
if (element->IsHeapObject()) {
HeapObject* element_object = HeapObject::cast(element);
CHECK(heap()->Contains(element_object));
CHECK(element_object->map()->IsMap());
}
}
}
}
}
#endif
#ifdef DEBUG
void LargeObjectSpace::Print() {
LargeObjectIterator it(this);
for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
obj->Print();
}
}
void LargeObjectSpace::ReportStatistics() {
PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
int num_objects = 0;
ClearHistograms();
LargeObjectIterator it(this);
for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
num_objects++;
CollectHistogramInfo(obj);
}
PrintF(" number of objects %d, "
"size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_);
if (num_objects > 0) ReportHistogram(false);
}
void LargeObjectSpace::CollectCodeStatistics() {
Isolate* isolate = heap()->isolate();
LargeObjectIterator obj_it(this);
for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
if (obj->IsCode()) {
Code* code = Code::cast(obj);
isolate->code_kind_statistics()[code->kind()] += code->Size();
}
}
}
void Page::Print() {
// Make a best-effort to print the objects in the page.
PrintF("Page@%p in %s\n",
this->address(),
AllocationSpaceName(this->owner()->identity()));
printf(" --------------------------------------\n");
HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction());
unsigned mark_size = 0;
for (HeapObject* object = objects.Next();
object != NULL;
object = objects.Next()) {
bool is_marked = Marking::MarkBitFrom(object).Get();
PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little.
if (is_marked) {
mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object);
}
object->ShortPrint();
PrintF("\n");
}
printf(" --------------------------------------\n");
printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes());
}
#endif // DEBUG
} } // namespace v8::internal