Reland: [turbofan] Various fixes to allow unboxed doubles as arguments in registers and on the stack.

OCL: https://codereview.chromium.org/1263033004/

R=mstarzinger@chromium.org
BUG=

Review URL: https://codereview.chromium.org/1284893002

Cr-Commit-Position: refs/heads/master@{#30115}
This commit is contained in:
titzer 2015-08-11 08:23:04 -07:00 committed by Commit bot
parent debf58cd55
commit 17f4c5bbaf
21 changed files with 828 additions and 140 deletions

View File

@ -147,12 +147,9 @@ class ArmOperandConverter final : public InstructionOperandConverter {
MemOperand ToMemOperand(InstructionOperand* op) const {
DCHECK(op != NULL);
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), 0);
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
}
};
@ -992,6 +989,8 @@ void CodeGenerator::AssemblePrologue() {
__ StubPrologue();
frame()->SetRegisterSaveAreaSize(
StandardFrameConstants::kFixedFrameSizeFromFp);
} else {
frame()->SetPCOnStack(false);
}
if (info()->is_osr()) {
@ -1019,6 +1018,7 @@ void CodeGenerator::AssemblePrologue() {
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int stack_slots = frame()->GetSpillSlotCount();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (descriptor->kind() == CallDescriptor::kCallAddress) {
if (frame()->GetRegisterSaveAreaSize() > 0) {
// Remove this frame's spill slots first.
@ -1041,23 +1041,17 @@ void CodeGenerator::AssembleReturn() {
}
}
__ LeaveFrame(StackFrame::MANUAL);
__ Ret();
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ b(&return_label_);
return;
} else {
__ bind(&return_label_);
__ LeaveFrame(StackFrame::MANUAL);
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (pop_count != 0) {
__ Drop(pop_count);
}
__ Ret();
}
} else {
__ Ret();
}
__ Ret(pop_count);
}

View File

@ -184,12 +184,9 @@ class Arm64OperandConverter final : public InstructionOperandConverter {
MemOperand ToMemOperand(InstructionOperand* op, MacroAssembler* masm) const {
DCHECK(op != NULL);
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), 0);
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return MemOperand(offset.from_stack_pointer() ? masm->StackPointer() : fp,
offset.offset());
}
@ -1118,6 +1115,8 @@ void CodeGenerator::AssemblePrologue() {
__ StubPrologue();
frame()->SetRegisterSaveAreaSize(
StandardFrameConstants::kFixedFrameSizeFromFp);
} else {
frame()->SetPCOnStack(false);
}
if (info()->is_osr()) {
@ -1149,6 +1148,7 @@ void CodeGenerator::AssemblePrologue() {
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int stack_slots = frame()->GetSpillSlotCount();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (descriptor->kind() == CallDescriptor::kCallAddress) {
if (frame()->GetRegisterSaveAreaSize() > 0) {
// Remove this frame's spill slots first.
@ -1169,24 +1169,19 @@ void CodeGenerator::AssembleReturn() {
__ Mov(csp, fp);
__ Pop(fp, lr);
__ Ret();
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ B(&return_label_);
return;
} else {
__ Bind(&return_label_);
__ Mov(jssp, fp);
__ Pop(fp, lr);
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (pop_count != 0) {
__ Drop(pop_count);
}
__ Ret();
}
} else {
__ Ret();
}
__ Drop(pop_count);
__ Ret();
}

View File

@ -22,7 +22,8 @@ class Frame : public ZoneObject {
spill_slot_count_(0),
osr_stack_slot_count_(0),
allocated_registers_(NULL),
allocated_double_registers_(NULL) {}
allocated_double_registers_(NULL),
pc_on_stack_(true) {}
inline int GetSpillSlotCount() { return spill_slot_count_; }
@ -71,12 +72,17 @@ class Frame : public ZoneObject {
spill_slot_count_ = static_cast<int>(slot_count);
}
void SetPCOnStack(bool val) { pc_on_stack_ = val; }
int PCOnStackSize() { return pc_on_stack_ ? kRegisterSize : 0; }
private:
int register_save_area_size_;
int spill_slot_count_;
int osr_stack_slot_count_;
BitVector* allocated_registers_;
BitVector* allocated_double_registers_;
bool pc_on_stack_;
DISALLOW_COPY_AND_ASSIGN(Frame);
};

View File

@ -46,10 +46,10 @@ class IA32OperandConverter : public InstructionOperandConverter {
return Operand(ToDoubleRegister(op));
}
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), extra);
return Operand(offset.from_stack_pointer() ? esp : ebp, offset.offset());
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return Operand(offset.from_stack_pointer() ? esp : ebp,
offset.offset() + extra);
}
Operand HighOperand(InstructionOperand* op) {
@ -1325,31 +1325,26 @@ void CodeGenerator::AssembleReturn() {
}
}
__ pop(ebp); // Pop caller's frame pointer.
__ ret(0);
} else {
// No saved registers.
__ mov(esp, ebp); // Move stack pointer back to frame pointer.
__ pop(ebp); // Pop caller's frame pointer.
__ ret(0);
}
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ jmp(&return_label_);
return;
} else {
__ bind(&return_label_);
__ mov(esp, ebp); // Move stack pointer back to frame pointer.
__ pop(ebp); // Pop caller's frame pointer.
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (pop_count == 0) {
__ ret(0);
} else {
__ Ret(pop_count * kPointerSize, ebx);
}
}
} else {
__ ret(0);
}
size_t pop_size = descriptor->StackParameterCount() * kPointerSize;
// Might need ecx for scratch if pop_size is too big.
DCHECK_EQ(0, descriptor->CalleeSavedRegisters() & ecx.bit());
__ Ret(static_cast<int>(pop_size), ecx);
}

View File

@ -70,7 +70,7 @@ std::ostream& operator<<(std::ostream& os, const CallDescriptor::Kind& k) {
std::ostream& operator<<(std::ostream& os, const CallDescriptor& d) {
// TODO(svenpanne) Output properties etc. and be less cryptic.
return os << d.kind() << ":" << d.debug_name() << ":r" << d.ReturnCount()
<< "j" << d.JSParameterCount() << "i" << d.InputCount() << "f"
<< "s" << d.StackParameterCount() << "i" << d.InputCount() << "f"
<< d.FrameStateCount() << "t" << d.SupportsTailCalls();
}
@ -189,8 +189,7 @@ CallDescriptor* Linkage::ComputeIncoming(Zone* zone, CompilationInfo* info) {
}
FrameOffset Linkage::GetFrameOffset(int spill_slot, Frame* frame,
int extra) const {
FrameOffset Linkage::GetFrameOffset(int spill_slot, Frame* frame) const {
if (frame->GetSpillSlotCount() > 0 || incoming_->IsJSFunctionCall() ||
incoming_->kind() == CallDescriptor::kCallAddress) {
int offset;
@ -198,12 +197,11 @@ FrameOffset Linkage::GetFrameOffset(int spill_slot, Frame* frame,
if (spill_slot >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
offset =
-(spill_slot + 1) * kPointerSize - register_save_area_size + extra;
offset = -(spill_slot + 1) * kPointerSize - register_save_area_size;
} else {
// Incoming parameter. Skip the return address.
offset = -(spill_slot + 1) * kPointerSize + kFPOnStackSize +
kPCOnStackSize + extra;
frame->PCOnStackSize();
}
return FrameOffset::FromFramePointer(offset);
} else {
@ -211,7 +209,7 @@ FrameOffset Linkage::GetFrameOffset(int spill_slot, Frame* frame,
DCHECK(spill_slot < 0); // Must be a parameter.
int register_save_area_size = frame->GetRegisterSaveAreaSize();
int offset = register_save_area_size - (spill_slot + 1) * kPointerSize +
kPCOnStackSize + extra;
frame->PCOnStackSize();
return FrameOffset::FromStackPointer(offset);
}
}

View File

@ -313,9 +313,8 @@ class Linkage : public ZoneObject {
// Get the frame offset for a given spill slot. The location depends on the
// calling convention and the specific frame layout, and may thus be
// architecture-specific. Negative spill slots indicate arguments on the
// caller's frame. The {extra} parameter indicates an additional offset from
// the frame offset, e.g. to index into part of a double slot.
FrameOffset GetFrameOffset(int spill_slot, Frame* frame, int extra = 0) const;
// caller's frame.
FrameOffset GetFrameOffset(int spill_slot, Frame* frame) const;
static int FrameStateInputCount(Runtime::FunctionId function);

View File

@ -116,6 +116,11 @@ inline int ElementSizeOf(MachineType machine_type) {
return 1 << shift;
}
inline bool IsFloatingPoint(MachineType type) {
MachineType rep = RepresentationOf(type);
return rep == kRepFloat32 || rep == kRepFloat64;
}
typedef Signature<MachineType> MachineSignature;
} // namespace compiler

View File

@ -106,12 +106,9 @@ class MipsOperandConverter final : public InstructionOperandConverter {
MemOperand ToMemOperand(InstructionOperand* op) const {
DCHECK(op != NULL);
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), 0);
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
}
};
@ -1082,13 +1079,14 @@ void CodeGenerator::AssemblePrologue() {
// kNumCalleeSaved includes the fp register, but the fp register
// is saved separately in TF.
DCHECK(kNumCalleeSaved == base::bits::CountPopulation32(saves) + 1);
int register_save_area_size = kNumCalleeSaved * kPointerSize;
int register_save_area_size =
base::bits::CountPopulation32(saves) * kPointerSize;
const RegList saves_fpu = descriptor->CalleeSavedFPRegisters();
// Save callee-saved FPU registers.
__ MultiPushFPU(saves_fpu);
DCHECK(kNumCalleeSavedFPU == base::bits::CountPopulation32(saves_fpu));
register_save_area_size += kNumCalleeSavedFPU * kDoubleSize * kPointerSize;
register_save_area_size += kNumCalleeSavedFPU * kDoubleSize;
frame()->SetRegisterSaveAreaSize(register_save_area_size);
} else if (descriptor->IsJSFunctionCall()) {
@ -1100,6 +1098,8 @@ void CodeGenerator::AssemblePrologue() {
__ StubPrologue();
frame()->SetRegisterSaveAreaSize(
StandardFrameConstants::kFixedFrameSizeFromFp);
} else {
frame()->SetPCOnStack(false);
}
if (info()->is_osr()) {
@ -1127,6 +1127,7 @@ void CodeGenerator::AssemblePrologue() {
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int stack_slots = frame()->GetSpillSlotCount();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (descriptor->kind() == CallDescriptor::kCallAddress) {
if (frame()->GetRegisterSaveAreaSize() > 0) {
// Remove this frame's spill slots first.
@ -1143,22 +1144,19 @@ void CodeGenerator::AssembleReturn() {
}
__ mov(sp, fp);
__ Pop(ra, fp);
__ Ret();
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ Branch(&return_label_);
return;
} else {
__ bind(&return_label_);
__ mov(sp, fp);
__ Pop(ra, fp);
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (pop_count != 0) {
__ DropAndRet(pop_count);
} else {
__ Ret();
}
}
}
if (pop_count != 0) {
__ DropAndRet(pop_count);
} else {
__ Ret();
}

View File

@ -106,12 +106,9 @@ class MipsOperandConverter final : public InstructionOperandConverter {
MemOperand ToMemOperand(InstructionOperand* op) const {
DCHECK(op != NULL);
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), 0);
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
}
};
@ -1158,13 +1155,14 @@ void CodeGenerator::AssemblePrologue() {
// kNumCalleeSaved includes the fp register, but the fp register
// is saved separately in TF.
DCHECK(kNumCalleeSaved == base::bits::CountPopulation32(saves) + 1);
int register_save_area_size = kNumCalleeSaved * kPointerSize;
int register_save_area_size =
base::bits::CountPopulation32(saves) * kPointerSize;
const RegList saves_fpu = descriptor->CalleeSavedFPRegisters();
// Save callee-saved FPU registers.
__ MultiPushFPU(saves_fpu);
DCHECK(kNumCalleeSavedFPU == base::bits::CountPopulation32(saves_fpu));
register_save_area_size += kNumCalleeSavedFPU * kDoubleSize * kPointerSize;
register_save_area_size += kNumCalleeSavedFPU * kDoubleSize;
frame()->SetRegisterSaveAreaSize(register_save_area_size);
} else if (descriptor->IsJSFunctionCall()) {
@ -1176,6 +1174,8 @@ void CodeGenerator::AssemblePrologue() {
__ StubPrologue();
frame()->SetRegisterSaveAreaSize(
StandardFrameConstants::kFixedFrameSizeFromFp);
} else {
frame()->SetPCOnStack(false);
}
if (info()->is_osr()) {
@ -1203,6 +1203,7 @@ void CodeGenerator::AssemblePrologue() {
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int stack_slots = frame()->GetSpillSlotCount();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (descriptor->kind() == CallDescriptor::kCallAddress) {
if (frame()->GetRegisterSaveAreaSize() > 0) {
// Remove this frame's spill slots first.
@ -1219,22 +1220,19 @@ void CodeGenerator::AssembleReturn() {
}
__ mov(sp, fp);
__ Pop(ra, fp);
__ Ret();
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ Branch(&return_label_);
return;
} else {
__ bind(&return_label_);
__ mov(sp, fp);
__ Pop(ra, fp);
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (pop_count != 0) {
__ DropAndRet(pop_count);
} else {
__ Ret();
}
}
}
if (pop_count != 0) {
__ DropAndRet(pop_count);
} else {
__ Ret();
}

View File

@ -99,12 +99,9 @@ class PPCOperandConverter final : public InstructionOperandConverter {
MemOperand ToMemOperand(InstructionOperand* op) const {
DCHECK(op != NULL);
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), 0);
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
}
};
@ -1360,6 +1357,7 @@ void CodeGenerator::AssemblePrologue() {
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int stack_slots = frame()->GetSpillSlotCount();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (descriptor->kind() == CallDescriptor::kCallAddress) {
if (frame()->GetRegisterSaveAreaSize() > 0) {
// Remove this frame's spill slots first.
@ -1378,21 +1376,17 @@ void CodeGenerator::AssembleReturn() {
const RegList saves = descriptor->CalleeSavedRegisters() & ~frame_saves;
__ MultiPop(saves);
}
__ LeaveFrame(StackFrame::MANUAL);
__ Ret();
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ b(&return_label_);
return;
} else {
__ bind(&return_label_);
int pop_count = static_cast<int>(descriptor->StackParameterCount());
__ LeaveFrame(StackFrame::MANUAL, pop_count * kPointerSize);
__ Ret();
}
} else {
__ Ret();
}
__ LeaveFrame(StackFrame::MANUAL, pop_count * kPointerSize);
__ Ret();
}

View File

@ -100,6 +100,22 @@ void RawMachineAssembler::Return(Node* value) {
}
Node* RawMachineAssembler::CallN(CallDescriptor* desc, Node* function,
Node** args) {
int param_count =
static_cast<int>(desc->GetMachineSignature()->parameter_count());
Node** buffer = zone()->NewArray<Node*>(param_count + 1);
int index = 0;
buffer[index++] = function;
for (int i = 0; i < param_count; i++) {
buffer[index++] = args[i];
}
Node* call = graph()->NewNode(common()->Call(desc), param_count + 1, buffer);
schedule()->AddNode(CurrentBlock(), call);
return call;
}
Node* RawMachineAssembler::CallFunctionStub0(Node* function, Node* receiver,
Node* context, Node* frame_state,
CallFunctionFlags flags) {

View File

@ -479,25 +479,28 @@ class RawMachineAssembler {
return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
}
// Call a given call descriptor and the given arguments.
Node* CallN(CallDescriptor* desc, Node* function, Node** args);
// Call through CallFunctionStub with lazy deopt and frame-state.
Node* CallFunctionStub0(Node* function, Node* receiver, Node* context,
Node* frame_state, CallFunctionFlags flags);
// Call to a JS function with zero parameters.
// Call to a JS function with zero arguments.
Node* CallJS0(Node* function, Node* receiver, Node* context,
Node* frame_state);
// Call to a runtime function with zero parameters.
// Call to a runtime function with zero arguments.
Node* CallRuntime1(Runtime::FunctionId function, Node* arg0, Node* context,
Node* frame_state);
// Call to a C function with zero parameters.
// Call to a C function with zero arguments.
Node* CallCFunction0(MachineType return_type, Node* function);
// Call to a C function with one parameter.
Node* CallCFunction1(MachineType return_type, MachineType arg0_type,
Node* function, Node* arg0);
// Call to a C function with two parameters.
// Call to a C function with two arguments.
Node* CallCFunction2(MachineType return_type, MachineType arg0_type,
MachineType arg1_type, Node* function, Node* arg0,
Node* arg1);
// Call to a C function with eight parameters.
// Call to a C function with eight arguments.
Node* CallCFunction8(MachineType return_type, MachineType arg0_type,
MachineType arg1_type, MachineType arg2_type,
MachineType arg3_type, MachineType arg4_type,

View File

@ -155,7 +155,7 @@ void RegisterAllocatorVerifier::BuildConstraint(const InstructionOperand* op,
int vreg = unallocated->virtual_register();
constraint->virtual_register_ = vreg;
if (unallocated->basic_policy() == UnallocatedOperand::FIXED_SLOT) {
constraint->type_ = kFixedSlot;
constraint->type_ = sequence()->IsFloat(vreg) ? kDoubleSlot : kSlot;
constraint->value_ = unallocated->fixed_slot_index();
} else {
switch (unallocated->extended_policy()) {
@ -185,11 +185,7 @@ void RegisterAllocatorVerifier::BuildConstraint(const InstructionOperand* op,
}
break;
case UnallocatedOperand::MUST_HAVE_SLOT:
if (sequence()->IsFloat(vreg)) {
constraint->type_ = kDoubleSlot;
} else {
constraint->type_ = kSlot;
}
constraint->type_ = sequence()->IsFloat(vreg) ? kDoubleSlot : kSlot;
break;
case UnallocatedOperand::SAME_AS_FIRST_INPUT:
constraint->type_ = kSameAsFirst;

View File

@ -1242,8 +1242,11 @@ InstructionOperand* ConstraintBuilder::AllocateFixed(
machine_type = data()->MachineTypeFor(virtual_register);
}
if (operand->HasFixedSlotPolicy()) {
allocated = AllocatedOperand(AllocatedOperand::STACK_SLOT, machine_type,
operand->fixed_slot_index());
AllocatedOperand::AllocatedKind kind =
IsFloatingPoint(machine_type) ? AllocatedOperand::DOUBLE_STACK_SLOT
: AllocatedOperand::STACK_SLOT;
allocated =
AllocatedOperand(kind, machine_type, operand->fixed_slot_index());
} else if (operand->HasFixedRegisterPolicy()) {
allocated = AllocatedOperand(AllocatedOperand::REGISTER, machine_type,
operand->fixed_register_index());

View File

@ -48,10 +48,10 @@ class X64OperandConverter : public InstructionOperandConverter {
Operand ToOperand(InstructionOperand* op, int extra = 0) {
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), extra);
return Operand(offset.from_stack_pointer() ? rsp : rbp, offset.offset());
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return Operand(offset.from_stack_pointer() ? rsp : rbp,
offset.offset() + extra);
}
static size_t NextOffset(size_t* offset) {
@ -1219,6 +1219,10 @@ void CodeGenerator::AssembleArchInstruction(Instruction* instr) {
} else {
if (instr->InputAt(0)->IsRegister()) {
__ pushq(i.InputRegister(0));
} else if (instr->InputAt(0)->IsDoubleRegister()) {
// TODO(titzer): use another machine instruction?
__ subq(rsp, Immediate(kDoubleSize));
__ movsd(Operand(rsp, 0), i.InputDoubleRegister(0));
} else {
__ pushq(i.InputOperand(0));
}
@ -1554,31 +1558,26 @@ void CodeGenerator::AssembleReturn() {
}
}
__ popq(rbp); // Pop caller's frame pointer.
__ ret(0);
} else {
// No saved registers.
__ movq(rsp, rbp); // Move stack pointer back to frame pointer.
__ popq(rbp); // Pop caller's frame pointer.
__ ret(0);
}
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ jmp(&return_label_);
return;
} else {
__ bind(&return_label_);
__ movq(rsp, rbp); // Move stack pointer back to frame pointer.
__ popq(rbp); // Pop caller's frame pointer.
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (pop_count == 0) {
__ Ret();
} else {
__ Ret(pop_count * kPointerSize, rbx);
}
}
} else {
__ Ret();
}
size_t pop_size = descriptor->StackParameterCount() * kPointerSize;
// Might need rcx for scratch if pop_size is too big.
DCHECK_EQ(0, descriptor->CalleeSavedRegisters() & rcx.bit());
__ Ret(static_cast<int>(pop_size), rcx);
}

View File

@ -38,15 +38,12 @@ class X87OperandConverter : public InstructionOperandConverter {
if (op->IsRegister()) {
DCHECK(extra == 0);
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
DCHECK(extra == 0);
UNIMPLEMENTED();
}
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
// The linkage computes where all spill slots are located.
FrameOffset offset = linkage()->GetFrameOffset(
AllocatedOperand::cast(op)->index(), frame(), extra);
return Operand(offset.from_stack_pointer() ? esp : ebp, offset.offset());
FrameOffset offset =
linkage()->GetFrameOffset(AllocatedOperand::cast(op)->index(), frame());
return Operand(offset.from_stack_pointer() ? esp : ebp,
offset.offset() + extra);
}
Operand HighOperand(InstructionOperand* op) {
@ -1568,6 +1565,7 @@ void CodeGenerator::AssemblePrologue() {
void CodeGenerator::AssembleReturn() {
CallDescriptor* descriptor = linkage()->GetIncomingDescriptor();
int stack_slots = frame()->GetSpillSlotCount();
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (descriptor->kind() == CallDescriptor::kCallAddress) {
const RegList saves = descriptor->CalleeSavedRegisters();
if (frame()->GetRegisterSaveAreaSize() > 0) {
@ -1583,30 +1581,26 @@ void CodeGenerator::AssembleReturn() {
}
}
__ pop(ebp); // Pop caller's frame pointer.
__ ret(0);
} else {
// No saved registers.
__ mov(esp, ebp); // Move stack pointer back to frame pointer.
__ pop(ebp); // Pop caller's frame pointer.
__ ret(0);
}
} else if (descriptor->IsJSFunctionCall() || needs_frame_) {
// Canonicalize JSFunction return sites for now.
if (return_label_.is_bound()) {
__ jmp(&return_label_);
return;
} else {
__ bind(&return_label_);
__ mov(esp, ebp); // Move stack pointer back to frame pointer.
__ pop(ebp); // Pop caller's frame pointer.
int pop_count = static_cast<int>(descriptor->StackParameterCount());
if (pop_count == 0) {
__ ret(0);
} else {
__ Ret(pop_count * kPointerSize, ebx);
}
}
} else {
}
if (pop_count == 0) {
__ ret(0);
} else {
__ Ret(pop_count * kPointerSize, ebx);
}
}

View File

@ -76,6 +76,7 @@
'compiler/test-run-jsexceptions.cc',
'compiler/test-run-jsops.cc',
'compiler/test-run-machops.cc',
'compiler/test-run-native-calls.cc',
'compiler/test-run-properties.cc',
'compiler/test-run-stackcheck.cc',
'compiler/test-run-stubs.cc',

View File

@ -69,6 +69,10 @@ class CSignature : public MachineSignature {
}
}
static CSignature* FromMachine(Zone* zone, MachineSignature* msig) {
return reinterpret_cast<CSignature*>(msig);
}
static CSignature* New(Zone* zone, MachineType ret,
MachineType p1 = kMachNone, MachineType p2 = kMachNone,
MachineType p3 = kMachNone, MachineType p4 = kMachNone,

View File

@ -304,6 +304,21 @@ class CallHelper {
Isolate* isolate_;
};
// A call helper that calls the given code object assuming C calling convention.
template <typename T>
class CodeRunner : public CallHelper<T> {
public:
CodeRunner(Isolate* isolate, Handle<Code> code, CSignature* csig)
: CallHelper<T>(isolate, csig), code_(code) {}
virtual ~CodeRunner() {}
virtual byte* Generate() { return code_->entry(); }
private:
Handle<Code> code_;
};
} // namespace compiler
} // namespace internal
} // namespace v8

View File

@ -28,6 +28,12 @@ class GraphAndBuilders {
main_machine_(zone),
main_simplified_(zone) {}
Graph* graph() const { return main_graph_; }
Zone* zone() const { return graph()->zone(); }
CommonOperatorBuilder* common() { return &main_common_; }
MachineOperatorBuilder* machine() { return &main_machine_; }
SimplifiedOperatorBuilder* simplified() { return &main_simplified_; }
protected:
// Prefixed with main_ to avoid naming conflicts.
Graph* main_graph_;
@ -39,7 +45,7 @@ class GraphAndBuilders {
template <typename ReturnType>
class GraphBuilderTester : public HandleAndZoneScope,
private GraphAndBuilders,
public GraphAndBuilders,
public CallHelper<ReturnType> {
public:
explicit GraphBuilderTester(MachineType p0 = kMachNone,
@ -67,12 +73,7 @@ class GraphBuilderTester : public HandleAndZoneScope,
}
Isolate* isolate() { return main_isolate(); }
Graph* graph() const { return main_graph_; }
Zone* zone() const { return graph()->zone(); }
Factory* factory() { return isolate()->factory(); }
CommonOperatorBuilder* common() { return &main_common_; }
MachineOperatorBuilder* machine() { return &main_machine_; }
SimplifiedOperatorBuilder* simplified() { return &main_simplified_; }
// Initialize graph and builder.
void Begin(int num_parameters) {

View File

@ -0,0 +1,674 @@
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/assembler.h"
#include "src/codegen.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-type.h"
#include "src/compiler/raw-machine-assembler.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
typedef RawMachineAssembler::Label MLabel;
#if !V8_TARGET_ARCH_ARM64
// TODO(titzer): fix native stack parameters on arm64
#define NATIVE_STACK_PARAMS_OK
#endif
namespace {
// Picks a representative set of registers from the allocatable set.
// If there are less than 100 possible pairs, do them all, otherwise try
// to select a representative set.
class RegisterPairs {
public:
RegisterPairs()
: max_(std::min(100, Register::kMaxNumAllocatableRegisters *
Register::kMaxNumAllocatableRegisters)),
counter_(0) {}
bool More() { return counter_ < max_; }
void Next(int* r0, int* r1, bool same_is_ok) {
do {
// Find the next pair.
if (exhaustive()) {
*r0 = counter_ % Register::kMaxNumAllocatableRegisters;
*r1 = counter_ / Register::kMaxNumAllocatableRegisters;
} else {
// Try each register at least once for both r0 and r1.
int index = counter_ / 2;
if (counter_ & 1) {
*r0 = index % Register::kMaxNumAllocatableRegisters;
*r1 = index / Register::kMaxNumAllocatableRegisters;
} else {
*r1 = index % Register::kMaxNumAllocatableRegisters;
*r0 = index / Register::kMaxNumAllocatableRegisters;
}
}
counter_++;
if (same_is_ok) break;
if (*r0 == *r1) {
if (counter_ >= max_) {
// For the last hurrah, reg#0 with reg#n-1
*r0 = 0;
*r1 = Register::kMaxNumAllocatableRegisters - 1;
break;
}
}
} while (true);
DCHECK(*r0 >= 0 && *r0 < Register::kMaxNumAllocatableRegisters);
DCHECK(*r1 >= 0 && *r1 < Register::kMaxNumAllocatableRegisters);
printf("pair = %d, %d\n", *r0, *r1);
}
private:
int max_;
int counter_;
bool exhaustive() {
return max_ == (Register::kMaxNumAllocatableRegisters *
Register::kMaxNumAllocatableRegisters);
}
};
// Helper for allocating either an GP or FP reg, or the next stack slot.
struct Allocator {
Allocator(int* gp, int gpc, int* fp, int fpc)
: gp_count(gpc),
gp_offset(0),
gp_regs(gp),
fp_count(fpc),
fp_offset(0),
fp_regs(fp),
stack_offset(0) {}
int gp_count;
int gp_offset;
int* gp_regs;
int fp_count;
int fp_offset;
int* fp_regs;
int stack_offset;
LinkageLocation Next(MachineType type) {
if (IsFloatingPoint(type)) {
// Allocate a floating point register/stack location.
if (fp_offset < fp_count) {
return LinkageLocation::ForRegister(fp_regs[fp_offset++]);
} else {
int offset = -1 - stack_offset;
stack_offset += Words(type);
return LinkageLocation::ForCallerFrameSlot(offset);
}
} else {
// Allocate a general purpose register/stack location.
if (gp_offset < gp_count) {
return LinkageLocation::ForRegister(gp_regs[gp_offset++]);
} else {
int offset = -1 - stack_offset;
stack_offset += Words(type);
return LinkageLocation::ForCallerFrameSlot(offset);
}
}
}
bool IsFloatingPoint(MachineType type) {
return RepresentationOf(type) == kRepFloat32 ||
RepresentationOf(type) == kRepFloat64;
}
int Words(MachineType type) {
int size = ElementSizeOf(type);
return size <= kPointerSize ? 1 : size / kPointerSize;
}
void Reset() {
fp_offset = 0;
gp_offset = 0;
stack_offset = 0;
}
};
class RegisterConfig {
public:
RegisterConfig(Allocator& p, Allocator& r) : params(p), rets(r) {}
CallDescriptor* Create(Zone* zone, MachineSignature* msig) {
rets.Reset();
params.Reset();
LocationSignature::Builder locations(zone, msig->return_count(),
msig->parameter_count());
// Add return location(s).
const int return_count = static_cast<int>(locations.return_count_);
for (int i = 0; i < return_count; i++) {
locations.AddReturn(rets.Next(msig->GetReturn(i)));
}
// Add register and/or stack parameter(s).
const int parameter_count = static_cast<int>(msig->parameter_count());
for (int i = 0; i < parameter_count; i++) {
locations.AddParam(params.Next(msig->GetParam(i)));
}
const RegList kCalleeSaveRegisters = 0;
const RegList kCalleeSaveFPRegisters = 0;
MachineType target_type = compiler::kMachAnyTagged;
LinkageLocation target_loc = LinkageLocation::ForAnyRegister();
int stack_param_count = params.stack_offset;
return new (zone) CallDescriptor( // --
CallDescriptor::kCallCodeObject, // kind
target_type, // target MachineType
target_loc, // target location
msig, // machine_sig
locations.Build(), // location_sig
stack_param_count, // stack_parameter_count
compiler::Operator::kNoProperties, // properties
kCalleeSaveRegisters, // callee-saved registers
kCalleeSaveFPRegisters, // callee-saved fp regs
CallDescriptor::kNoFlags, // flags
"c-call");
}
private:
Allocator& params;
Allocator& rets;
};
const int kMaxParamCount = 64;
MachineType kIntTypes[kMaxParamCount + 1] = {
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32};
// For making uniform int32 signatures shorter.
class Int32Signature : public MachineSignature {
public:
explicit Int32Signature(int param_count)
: MachineSignature(1, param_count, kIntTypes) {
CHECK(param_count <= kMaxParamCount);
}
};
Handle<Code> CompileGraph(const char* name, CallDescriptor* desc, Graph* graph,
Schedule* schedule = nullptr) {
Isolate* isolate = CcTest::InitIsolateOnce();
Handle<Code> code =
Pipeline::GenerateCodeForTesting(isolate, desc, graph, schedule);
CHECK(!code.is_null());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code) {
OFStream os(stdout);
code->Disassemble(name, os);
}
#endif
return code;
}
Handle<Code> WrapWithCFunction(Handle<Code> inner, CallDescriptor* desc) {
Zone zone;
MachineSignature* msig =
const_cast<MachineSignature*>(desc->GetMachineSignature());
int param_count = static_cast<int>(msig->parameter_count());
GraphAndBuilders caller(&zone);
{
GraphAndBuilders& b = caller;
Node* start = b.graph()->NewNode(b.common()->Start(param_count + 3));
b.graph()->SetStart(start);
Unique<HeapObject> unique = Unique<HeapObject>::CreateUninitialized(inner);
Node* target = b.graph()->NewNode(b.common()->HeapConstant(unique));
// Add arguments to the call.
Node** args = zone.NewArray<Node*>(param_count + 3);
int index = 0;
args[index++] = target;
for (int i = 0; i < param_count; i++) {
args[index] = b.graph()->NewNode(b.common()->Parameter(i), start);
index++;
}
args[index++] = start; // effect.
args[index++] = start; // control.
// Build the call and return nodes.
Node* call =
b.graph()->NewNode(b.common()->Call(desc), param_count + 3, args);
Node* ret = b.graph()->NewNode(b.common()->Return(), call, call, start);
b.graph()->SetEnd(ret);
}
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, msig);
return CompileGraph("wrapper", cdesc, caller.graph());
}
} // namespace
static void TestInt32Sub(CallDescriptor* desc) {
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
Zone zone;
GraphAndBuilders inner(&zone);
{
// Build the add function.
GraphAndBuilders& b = inner;
Node* start = b.graph()->NewNode(b.common()->Start(5));
b.graph()->SetStart(start);
Node* p0 = b.graph()->NewNode(b.common()->Parameter(0), start);
Node* p1 = b.graph()->NewNode(b.common()->Parameter(1), start);
Node* add = b.graph()->NewNode(b.machine()->Int32Sub(), p0, p1);
Node* ret = b.graph()->NewNode(b.common()->Return(), add, start, start);
b.graph()->SetEnd(ret);
}
Handle<Code> inner_code = CompileGraph("Int32Sub", desc, inner.graph());
Handle<Code> wrapper = WrapWithCFunction(inner_code, desc);
MachineSignature* msig =
const_cast<MachineSignature*>(desc->GetMachineSignature());
CodeRunner<int32_t> runnable(isolate, wrapper,
CSignature::FromMachine(&zone, msig));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) -
static_cast<uint32_t>(*j));
int32_t result = runnable.Call(*i, *j);
CHECK_EQ(expected, result);
}
}
}
#ifdef NATIVE_STACK_PARAMS_OK
static void CopyTwentyInt32(CallDescriptor* desc) {
const int kNumParams = 20;
int32_t input[kNumParams];
int32_t output[kNumParams];
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
Handle<Code> inner = Handle<Code>::null();
{
// Writes all parameters into the output buffer.
Zone zone;
Graph graph(&zone);
RawMachineAssembler raw(isolate, &graph, desc);
Node* base = raw.PointerConstant(output);
for (int i = 0; i < kNumParams; i++) {
Node* offset = raw.Int32Constant(i * sizeof(int32_t));
raw.Store(kMachInt32, base, offset, raw.Parameter(i));
}
raw.Return(raw.Int32Constant(42));
inner = CompileGraph("CopyTwentyInt32", desc, &graph, raw.Export());
}
CSignature0<int32_t> csig;
Handle<Code> wrapper = Handle<Code>::null();
{
// Loads parameters from the input buffer and calls the above code.
Zone zone;
Graph graph(&zone);
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, &csig);
RawMachineAssembler raw(isolate, &graph, cdesc);
Node* base = raw.PointerConstant(input);
Unique<HeapObject> unique = Unique<HeapObject>::CreateUninitialized(inner);
Node* target = raw.HeapConstant(unique);
Node** args = zone.NewArray<Node*>(kNumParams);
for (int i = 0; i < kNumParams; i++) {
Node* offset = raw.Int32Constant(i * sizeof(int32_t));
args[i] = raw.Load(kMachInt32, base, offset);
}
Node* call = raw.CallN(desc, target, args);
raw.Return(call);
wrapper =
CompileGraph("CopyTwentyInt32-wrapper", cdesc, &graph, raw.Export());
}
CodeRunner<int32_t> runnable(isolate, wrapper, &csig);
// Run the code, checking it correctly implements the memcpy.
for (int i = 0; i < 5; i++) {
uint32_t base = 1111111111u * i;
for (int j = 0; j < kNumParams; j++) {
input[j] = static_cast<int32_t>(base + 13 * j);
}
memset(output, 0, sizeof(output));
CHECK_EQ(42, runnable.Call());
for (int j = 0; j < kNumParams; j++) {
CHECK_EQ(input[j], output[j]);
}
}
}
#endif // NATIVE_STACK_PARAMS_OK
static void Test_RunInt32SubWithRet(int retreg) {
Int32Signature sig(2);
Zone zone;
RegisterPairs pairs;
while (pairs.More()) {
int parray[2];
int rarray[] = {retreg};
pairs.Next(&parray[0], &parray[1], false);
Allocator params(parray, 2, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
TestInt32Sub(desc);
}
}
// Separate tests for parallelization.
#define TEST_INT32_SUB_WITH_RET(x) \
TEST(Run_Int32Sub_all_allocatable_pairs_##x) { \
if (Register::kMaxNumAllocatableRegisters > x) Test_RunInt32SubWithRet(x); \
}
TEST_INT32_SUB_WITH_RET(0)
TEST_INT32_SUB_WITH_RET(1)
TEST_INT32_SUB_WITH_RET(2)
TEST_INT32_SUB_WITH_RET(3)
TEST_INT32_SUB_WITH_RET(4)
TEST_INT32_SUB_WITH_RET(5)
TEST_INT32_SUB_WITH_RET(6)
TEST_INT32_SUB_WITH_RET(7)
TEST_INT32_SUB_WITH_RET(8)
TEST_INT32_SUB_WITH_RET(9)
TEST_INT32_SUB_WITH_RET(10)
TEST_INT32_SUB_WITH_RET(11)
TEST_INT32_SUB_WITH_RET(12)
TEST_INT32_SUB_WITH_RET(13)
TEST_INT32_SUB_WITH_RET(14)
TEST_INT32_SUB_WITH_RET(15)
TEST_INT32_SUB_WITH_RET(16)
TEST_INT32_SUB_WITH_RET(17)
TEST_INT32_SUB_WITH_RET(18)
TEST_INT32_SUB_WITH_RET(19)
TEST(Run_Int32Sub_all_allocatable_single) {
#ifdef NATIVE_STACK_PARAMS_OK
Int32Signature sig(2);
RegisterPairs pairs;
while (pairs.More()) {
Zone zone;
int parray[1];
int rarray[1];
pairs.Next(&rarray[0], &parray[0], true);
Allocator params(parray, 1, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
TestInt32Sub(desc);
}
#endif // NATIVE_STACK_PARAMS_OK
}
TEST(Run_CopyTwentyInt32_all_allocatable_pairs) {
#ifdef NATIVE_STACK_PARAMS_OK
Int32Signature sig(20);
RegisterPairs pairs;
while (pairs.More()) {
Zone zone;
int parray[2];
int rarray[] = {0};
pairs.Next(&parray[0], &parray[1], false);
Allocator params(parray, 2, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
CopyTwentyInt32(desc);
}
#endif // NATIVE_STACK_PARAMS_OK
}
#ifdef NATIVE_STACK_PARAMS_OK
int ParamCount(CallDescriptor* desc) {
return static_cast<int>(desc->GetMachineSignature()->parameter_count());
}
// Super mega helper routine to generate a computation with a given
// call descriptor, compile the code, wrap the code, and pass various inputs,
// comparing against a reference implementation.
static void Run_Int32_Computation(
CallDescriptor* desc, void (*build)(CallDescriptor*, RawMachineAssembler&),
int32_t (*compute)(CallDescriptor*, int32_t* inputs), int seed = 1) {
int num_params = ParamCount(desc);
CHECK_LE(num_params, kMaxParamCount);
int32_t input[kMaxParamCount];
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
Handle<Code> inner = Handle<Code>::null();
{
// Build the graph for the computation.
Zone zone;
Graph graph(&zone);
RawMachineAssembler raw(isolate, &graph, desc);
build(desc, raw);
inner = CompileGraph("Compute", desc, &graph, raw.Export());
}
CSignature0<int32_t> csig;
if (false) {
// constant mode.
Handle<Code> wrapper = Handle<Code>::null();
{
// Wrap the above code with a callable function that passes constants.
Zone zone;
Graph graph(&zone);
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, &csig);
RawMachineAssembler raw(isolate, &graph, cdesc);
Unique<HeapObject> unique =
Unique<HeapObject>::CreateUninitialized(inner);
Node* target = raw.HeapConstant(unique);
Node** args = zone.NewArray<Node*>(kMaxParamCount);
for (int i = 0; i < num_params; i++) {
args[i] = raw.Int32Constant(0x100 + i);
}
Node* call = raw.CallN(desc, target, args);
raw.Return(call);
wrapper = CompileGraph("Compute-wrapper", cdesc, &graph, raw.Export());
}
CodeRunner<int32_t> runnable(isolate, wrapper, &csig);
// Run the code, checking it against the reference.
for (int j = 0; j < kMaxParamCount; j++) {
input[j] = 0x100 + j;
}
int32_t expected = compute(desc, input);
int32_t result = runnable.Call();
CHECK_EQ(expected, result);
}
{
// buffer mode.
Handle<Code> wrapper = Handle<Code>::null();
{
// Wrap the above code with a callable function that loads from {input}.
Zone zone;
Graph graph(&zone);
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, &csig);
RawMachineAssembler raw(isolate, &graph, cdesc);
Node* base = raw.PointerConstant(input);
Unique<HeapObject> unique =
Unique<HeapObject>::CreateUninitialized(inner);
Node* target = raw.HeapConstant(unique);
Node** args = zone.NewArray<Node*>(kMaxParamCount);
for (int i = 0; i < num_params; i++) {
Node* offset = raw.Int32Constant(i * sizeof(int32_t));
args[i] = raw.Load(kMachInt32, base, offset);
}
Node* call = raw.CallN(desc, target, args);
raw.Return(call);
wrapper = CompileGraph("Compute-wrapper", cdesc, &graph, raw.Export());
}
CodeRunner<int32_t> runnable(isolate, wrapper, &csig);
// Run the code, checking it against the reference.
for (int i = 0; i < 5; i++) {
// Use pseudo-random values for each run, but the first run gets args
// 100, 101, 102, 103... for easier diagnosis.
uint32_t base = 1111111111u * i * seed;
for (int j = 0; j < kMaxParamCount; j++) {
input[j] = static_cast<int32_t>(100 + base + j);
}
int32_t expected = compute(desc, input);
int32_t result = runnable.Call();
CHECK_EQ(expected, result);
}
}
}
static uint32_t coeff[] = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113};
static void Build_Int32_WeightedSum(CallDescriptor* desc,
RawMachineAssembler& raw) {
Node* result = raw.Int32Constant(0);
for (int i = 0; i < ParamCount(desc); i++) {
Node* term = raw.Int32Mul(raw.Parameter(i), raw.Int32Constant(coeff[i]));
result = raw.Int32Add(result, term);
}
raw.Return(result);
}
static int32_t Compute_Int32_WeightedSum(CallDescriptor* desc, int32_t* input) {
uint32_t result = 0;
for (int i = 0; i < ParamCount(desc); i++) {
result += static_cast<uint32_t>(input[i]) * coeff[i];
}
return static_cast<int32_t>(result);
}
static void Test_Int32_WeightedSum_of_size(int count) {
Int32Signature sig(count);
for (int p0 = 0; p0 < Register::kMaxNumAllocatableRegisters; p0++) {
Zone zone;
int parray[] = {p0};
int rarray[] = {0};
Allocator params(parray, 1, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
Run_Int32_Computation(desc, Build_Int32_WeightedSum,
Compute_Int32_WeightedSum, 257 + count);
}
}
// Separate tests for parallelization.
#define TEST_INT32_WEIGHTEDSUM(x) \
TEST(Run_Int32_WeightedSum_##x) { Test_Int32_WeightedSum_of_size(x); }
TEST_INT32_WEIGHTEDSUM(1)
TEST_INT32_WEIGHTEDSUM(2)
TEST_INT32_WEIGHTEDSUM(3)
TEST_INT32_WEIGHTEDSUM(4)
TEST_INT32_WEIGHTEDSUM(5)
TEST_INT32_WEIGHTEDSUM(7)
TEST_INT32_WEIGHTEDSUM(9)
TEST_INT32_WEIGHTEDSUM(11)
TEST_INT32_WEIGHTEDSUM(17)
TEST_INT32_WEIGHTEDSUM(19)
template <int which>
static void Build_Int32_Select(CallDescriptor* desc, RawMachineAssembler& raw) {
raw.Return(raw.Parameter(which));
}
template <int which>
static int32_t Compute_Int32_Select(CallDescriptor* desc, int32_t* inputs) {
return inputs[which];
}
template <int which>
void Test_Int32_Select() {
int parray[] = {0};
int rarray[] = {0};
Allocator params(parray, 1, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
Zone zone;
for (int i = which + 1; i <= 64; i++) {
Int32Signature sig(i);
CallDescriptor* desc = config.Create(&zone, &sig);
Run_Int32_Computation(desc, Build_Int32_Select<which>,
Compute_Int32_Select<which>, 1025 + which);
}
}
// Separate tests for parallelization.
#define TEST_INT32_SELECT(x) \
TEST(Run_Int32_Select_##x) { Test_Int32_Select<x>(); }
TEST_INT32_SELECT(0)
TEST_INT32_SELECT(1)
TEST_INT32_SELECT(2)
TEST_INT32_SELECT(3)
TEST_INT32_SELECT(4)
TEST_INT32_SELECT(5)
TEST_INT32_SELECT(6)
TEST_INT32_SELECT(11)
TEST_INT32_SELECT(15)
TEST_INT32_SELECT(19)
TEST_INT32_SELECT(45)
TEST_INT32_SELECT(62)
TEST_INT32_SELECT(63)
#endif // NATIVE_STACK_PARAMS_OK
TEST(TheLastTestForLint) {
// Yes, thank you.
}