v8/test/cctest/compiler/test-run-native-calls.cc

675 lines
21 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/assembler.h"
#include "src/codegen.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-type.h"
#include "src/compiler/raw-machine-assembler.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
typedef RawMachineAssembler::Label MLabel;
#if !V8_TARGET_ARCH_ARM64
// TODO(titzer): fix native stack parameters on arm64
#define NATIVE_STACK_PARAMS_OK
#endif
namespace {
// Picks a representative set of registers from the allocatable set.
// If there are less than 100 possible pairs, do them all, otherwise try
// to select a representative set.
class RegisterPairs {
public:
RegisterPairs()
: max_(std::min(100, Register::kMaxNumAllocatableRegisters *
Register::kMaxNumAllocatableRegisters)),
counter_(0) {}
bool More() { return counter_ < max_; }
void Next(int* r0, int* r1, bool same_is_ok) {
do {
// Find the next pair.
if (exhaustive()) {
*r0 = counter_ % Register::kMaxNumAllocatableRegisters;
*r1 = counter_ / Register::kMaxNumAllocatableRegisters;
} else {
// Try each register at least once for both r0 and r1.
int index = counter_ / 2;
if (counter_ & 1) {
*r0 = index % Register::kMaxNumAllocatableRegisters;
*r1 = index / Register::kMaxNumAllocatableRegisters;
} else {
*r1 = index % Register::kMaxNumAllocatableRegisters;
*r0 = index / Register::kMaxNumAllocatableRegisters;
}
}
counter_++;
if (same_is_ok) break;
if (*r0 == *r1) {
if (counter_ >= max_) {
// For the last hurrah, reg#0 with reg#n-1
*r0 = 0;
*r1 = Register::kMaxNumAllocatableRegisters - 1;
break;
}
}
} while (true);
DCHECK(*r0 >= 0 && *r0 < Register::kMaxNumAllocatableRegisters);
DCHECK(*r1 >= 0 && *r1 < Register::kMaxNumAllocatableRegisters);
printf("pair = %d, %d\n", *r0, *r1);
}
private:
int max_;
int counter_;
bool exhaustive() {
return max_ == (Register::kMaxNumAllocatableRegisters *
Register::kMaxNumAllocatableRegisters);
}
};
// Helper for allocating either an GP or FP reg, or the next stack slot.
struct Allocator {
Allocator(int* gp, int gpc, int* fp, int fpc)
: gp_count(gpc),
gp_offset(0),
gp_regs(gp),
fp_count(fpc),
fp_offset(0),
fp_regs(fp),
stack_offset(0) {}
int gp_count;
int gp_offset;
int* gp_regs;
int fp_count;
int fp_offset;
int* fp_regs;
int stack_offset;
LinkageLocation Next(MachineType type) {
if (IsFloatingPoint(type)) {
// Allocate a floating point register/stack location.
if (fp_offset < fp_count) {
return LinkageLocation::ForRegister(fp_regs[fp_offset++]);
} else {
int offset = -1 - stack_offset;
stack_offset += Words(type);
return LinkageLocation::ForCallerFrameSlot(offset);
}
} else {
// Allocate a general purpose register/stack location.
if (gp_offset < gp_count) {
return LinkageLocation::ForRegister(gp_regs[gp_offset++]);
} else {
int offset = -1 - stack_offset;
stack_offset += Words(type);
return LinkageLocation::ForCallerFrameSlot(offset);
}
}
}
bool IsFloatingPoint(MachineType type) {
return RepresentationOf(type) == kRepFloat32 ||
RepresentationOf(type) == kRepFloat64;
}
int Words(MachineType type) {
int size = ElementSizeOf(type);
return size <= kPointerSize ? 1 : size / kPointerSize;
}
void Reset() {
fp_offset = 0;
gp_offset = 0;
stack_offset = 0;
}
};
class RegisterConfig {
public:
RegisterConfig(Allocator& p, Allocator& r) : params(p), rets(r) {}
CallDescriptor* Create(Zone* zone, MachineSignature* msig) {
rets.Reset();
params.Reset();
LocationSignature::Builder locations(zone, msig->return_count(),
msig->parameter_count());
// Add return location(s).
const int return_count = static_cast<int>(locations.return_count_);
for (int i = 0; i < return_count; i++) {
locations.AddReturn(rets.Next(msig->GetReturn(i)));
}
// Add register and/or stack parameter(s).
const int parameter_count = static_cast<int>(msig->parameter_count());
for (int i = 0; i < parameter_count; i++) {
locations.AddParam(params.Next(msig->GetParam(i)));
}
const RegList kCalleeSaveRegisters = 0;
const RegList kCalleeSaveFPRegisters = 0;
MachineType target_type = compiler::kMachAnyTagged;
LinkageLocation target_loc = LinkageLocation::ForAnyRegister();
int stack_param_count = params.stack_offset;
return new (zone) CallDescriptor( // --
CallDescriptor::kCallCodeObject, // kind
target_type, // target MachineType
target_loc, // target location
msig, // machine_sig
locations.Build(), // location_sig
stack_param_count, // stack_parameter_count
compiler::Operator::kNoProperties, // properties
kCalleeSaveRegisters, // callee-saved registers
kCalleeSaveFPRegisters, // callee-saved fp regs
CallDescriptor::kNoFlags, // flags
"c-call");
}
private:
Allocator& params;
Allocator& rets;
};
const int kMaxParamCount = 64;
MachineType kIntTypes[kMaxParamCount + 1] = {
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32,
kMachInt32, kMachInt32, kMachInt32, kMachInt32, kMachInt32};
// For making uniform int32 signatures shorter.
class Int32Signature : public MachineSignature {
public:
explicit Int32Signature(int param_count)
: MachineSignature(1, param_count, kIntTypes) {
CHECK(param_count <= kMaxParamCount);
}
};
Handle<Code> CompileGraph(const char* name, CallDescriptor* desc, Graph* graph,
Schedule* schedule = nullptr) {
Isolate* isolate = CcTest::InitIsolateOnce();
Handle<Code> code =
Pipeline::GenerateCodeForTesting(isolate, desc, graph, schedule);
CHECK(!code.is_null());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code) {
OFStream os(stdout);
code->Disassemble(name, os);
}
#endif
return code;
}
Handle<Code> WrapWithCFunction(Handle<Code> inner, CallDescriptor* desc) {
Zone zone;
MachineSignature* msig =
const_cast<MachineSignature*>(desc->GetMachineSignature());
int param_count = static_cast<int>(msig->parameter_count());
GraphAndBuilders caller(&zone);
{
GraphAndBuilders& b = caller;
Node* start = b.graph()->NewNode(b.common()->Start(param_count + 3));
b.graph()->SetStart(start);
Unique<HeapObject> unique = Unique<HeapObject>::CreateUninitialized(inner);
Node* target = b.graph()->NewNode(b.common()->HeapConstant(unique));
// Add arguments to the call.
Node** args = zone.NewArray<Node*>(param_count + 3);
int index = 0;
args[index++] = target;
for (int i = 0; i < param_count; i++) {
args[index] = b.graph()->NewNode(b.common()->Parameter(i), start);
index++;
}
args[index++] = start; // effect.
args[index++] = start; // control.
// Build the call and return nodes.
Node* call =
b.graph()->NewNode(b.common()->Call(desc), param_count + 3, args);
Node* ret = b.graph()->NewNode(b.common()->Return(), call, call, start);
b.graph()->SetEnd(ret);
}
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, msig);
return CompileGraph("wrapper", cdesc, caller.graph());
}
} // namespace
static void TestInt32Sub(CallDescriptor* desc) {
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
Zone zone;
GraphAndBuilders inner(&zone);
{
// Build the add function.
GraphAndBuilders& b = inner;
Node* start = b.graph()->NewNode(b.common()->Start(5));
b.graph()->SetStart(start);
Node* p0 = b.graph()->NewNode(b.common()->Parameter(0), start);
Node* p1 = b.graph()->NewNode(b.common()->Parameter(1), start);
Node* add = b.graph()->NewNode(b.machine()->Int32Sub(), p0, p1);
Node* ret = b.graph()->NewNode(b.common()->Return(), add, start, start);
b.graph()->SetEnd(ret);
}
Handle<Code> inner_code = CompileGraph("Int32Sub", desc, inner.graph());
Handle<Code> wrapper = WrapWithCFunction(inner_code, desc);
MachineSignature* msig =
const_cast<MachineSignature*>(desc->GetMachineSignature());
CodeRunner<int32_t> runnable(isolate, wrapper,
CSignature::FromMachine(&zone, msig));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) -
static_cast<uint32_t>(*j));
int32_t result = runnable.Call(*i, *j);
CHECK_EQ(expected, result);
}
}
}
#ifdef NATIVE_STACK_PARAMS_OK
static void CopyTwentyInt32(CallDescriptor* desc) {
const int kNumParams = 20;
int32_t input[kNumParams];
int32_t output[kNumParams];
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
Handle<Code> inner = Handle<Code>::null();
{
// Writes all parameters into the output buffer.
Zone zone;
Graph graph(&zone);
RawMachineAssembler raw(isolate, &graph, desc);
Node* base = raw.PointerConstant(output);
for (int i = 0; i < kNumParams; i++) {
Node* offset = raw.Int32Constant(i * sizeof(int32_t));
raw.Store(kMachInt32, base, offset, raw.Parameter(i));
}
raw.Return(raw.Int32Constant(42));
inner = CompileGraph("CopyTwentyInt32", desc, &graph, raw.Export());
}
CSignature0<int32_t> csig;
Handle<Code> wrapper = Handle<Code>::null();
{
// Loads parameters from the input buffer and calls the above code.
Zone zone;
Graph graph(&zone);
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, &csig);
RawMachineAssembler raw(isolate, &graph, cdesc);
Node* base = raw.PointerConstant(input);
Unique<HeapObject> unique = Unique<HeapObject>::CreateUninitialized(inner);
Node* target = raw.HeapConstant(unique);
Node** args = zone.NewArray<Node*>(kNumParams);
for (int i = 0; i < kNumParams; i++) {
Node* offset = raw.Int32Constant(i * sizeof(int32_t));
args[i] = raw.Load(kMachInt32, base, offset);
}
Node* call = raw.CallN(desc, target, args);
raw.Return(call);
wrapper =
CompileGraph("CopyTwentyInt32-wrapper", cdesc, &graph, raw.Export());
}
CodeRunner<int32_t> runnable(isolate, wrapper, &csig);
// Run the code, checking it correctly implements the memcpy.
for (int i = 0; i < 5; i++) {
uint32_t base = 1111111111u * i;
for (int j = 0; j < kNumParams; j++) {
input[j] = static_cast<int32_t>(base + 13 * j);
}
memset(output, 0, sizeof(output));
CHECK_EQ(42, runnable.Call());
for (int j = 0; j < kNumParams; j++) {
CHECK_EQ(input[j], output[j]);
}
}
}
#endif // NATIVE_STACK_PARAMS_OK
static void Test_RunInt32SubWithRet(int retreg) {
Int32Signature sig(2);
Zone zone;
RegisterPairs pairs;
while (pairs.More()) {
int parray[2];
int rarray[] = {retreg};
pairs.Next(&parray[0], &parray[1], false);
Allocator params(parray, 2, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
TestInt32Sub(desc);
}
}
// Separate tests for parallelization.
#define TEST_INT32_SUB_WITH_RET(x) \
TEST(Run_Int32Sub_all_allocatable_pairs_##x) { \
if (Register::kMaxNumAllocatableRegisters > x) Test_RunInt32SubWithRet(x); \
}
TEST_INT32_SUB_WITH_RET(0)
TEST_INT32_SUB_WITH_RET(1)
TEST_INT32_SUB_WITH_RET(2)
TEST_INT32_SUB_WITH_RET(3)
TEST_INT32_SUB_WITH_RET(4)
TEST_INT32_SUB_WITH_RET(5)
TEST_INT32_SUB_WITH_RET(6)
TEST_INT32_SUB_WITH_RET(7)
TEST_INT32_SUB_WITH_RET(8)
TEST_INT32_SUB_WITH_RET(9)
TEST_INT32_SUB_WITH_RET(10)
TEST_INT32_SUB_WITH_RET(11)
TEST_INT32_SUB_WITH_RET(12)
TEST_INT32_SUB_WITH_RET(13)
TEST_INT32_SUB_WITH_RET(14)
TEST_INT32_SUB_WITH_RET(15)
TEST_INT32_SUB_WITH_RET(16)
TEST_INT32_SUB_WITH_RET(17)
TEST_INT32_SUB_WITH_RET(18)
TEST_INT32_SUB_WITH_RET(19)
TEST(Run_Int32Sub_all_allocatable_single) {
#ifdef NATIVE_STACK_PARAMS_OK
Int32Signature sig(2);
RegisterPairs pairs;
while (pairs.More()) {
Zone zone;
int parray[1];
int rarray[1];
pairs.Next(&rarray[0], &parray[0], true);
Allocator params(parray, 1, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
TestInt32Sub(desc);
}
#endif // NATIVE_STACK_PARAMS_OK
}
TEST(Run_CopyTwentyInt32_all_allocatable_pairs) {
#ifdef NATIVE_STACK_PARAMS_OK
Int32Signature sig(20);
RegisterPairs pairs;
while (pairs.More()) {
Zone zone;
int parray[2];
int rarray[] = {0};
pairs.Next(&parray[0], &parray[1], false);
Allocator params(parray, 2, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
CopyTwentyInt32(desc);
}
#endif // NATIVE_STACK_PARAMS_OK
}
#ifdef NATIVE_STACK_PARAMS_OK
int ParamCount(CallDescriptor* desc) {
return static_cast<int>(desc->GetMachineSignature()->parameter_count());
}
// Super mega helper routine to generate a computation with a given
// call descriptor, compile the code, wrap the code, and pass various inputs,
// comparing against a reference implementation.
static void Run_Int32_Computation(
CallDescriptor* desc, void (*build)(CallDescriptor*, RawMachineAssembler&),
int32_t (*compute)(CallDescriptor*, int32_t* inputs), int seed = 1) {
int num_params = ParamCount(desc);
CHECK_LE(num_params, kMaxParamCount);
int32_t input[kMaxParamCount];
Isolate* isolate = CcTest::InitIsolateOnce();
HandleScope scope(isolate);
Handle<Code> inner = Handle<Code>::null();
{
// Build the graph for the computation.
Zone zone;
Graph graph(&zone);
RawMachineAssembler raw(isolate, &graph, desc);
build(desc, raw);
inner = CompileGraph("Compute", desc, &graph, raw.Export());
}
CSignature0<int32_t> csig;
if (false) {
// constant mode.
Handle<Code> wrapper = Handle<Code>::null();
{
// Wrap the above code with a callable function that passes constants.
Zone zone;
Graph graph(&zone);
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, &csig);
RawMachineAssembler raw(isolate, &graph, cdesc);
Unique<HeapObject> unique =
Unique<HeapObject>::CreateUninitialized(inner);
Node* target = raw.HeapConstant(unique);
Node** args = zone.NewArray<Node*>(kMaxParamCount);
for (int i = 0; i < num_params; i++) {
args[i] = raw.Int32Constant(0x100 + i);
}
Node* call = raw.CallN(desc, target, args);
raw.Return(call);
wrapper = CompileGraph("Compute-wrapper", cdesc, &graph, raw.Export());
}
CodeRunner<int32_t> runnable(isolate, wrapper, &csig);
// Run the code, checking it against the reference.
for (int j = 0; j < kMaxParamCount; j++) {
input[j] = 0x100 + j;
}
int32_t expected = compute(desc, input);
int32_t result = runnable.Call();
CHECK_EQ(expected, result);
}
{
// buffer mode.
Handle<Code> wrapper = Handle<Code>::null();
{
// Wrap the above code with a callable function that loads from {input}.
Zone zone;
Graph graph(&zone);
CallDescriptor* cdesc = Linkage::GetSimplifiedCDescriptor(&zone, &csig);
RawMachineAssembler raw(isolate, &graph, cdesc);
Node* base = raw.PointerConstant(input);
Unique<HeapObject> unique =
Unique<HeapObject>::CreateUninitialized(inner);
Node* target = raw.HeapConstant(unique);
Node** args = zone.NewArray<Node*>(kMaxParamCount);
for (int i = 0; i < num_params; i++) {
Node* offset = raw.Int32Constant(i * sizeof(int32_t));
args[i] = raw.Load(kMachInt32, base, offset);
}
Node* call = raw.CallN(desc, target, args);
raw.Return(call);
wrapper = CompileGraph("Compute-wrapper", cdesc, &graph, raw.Export());
}
CodeRunner<int32_t> runnable(isolate, wrapper, &csig);
// Run the code, checking it against the reference.
for (int i = 0; i < 5; i++) {
// Use pseudo-random values for each run, but the first run gets args
// 100, 101, 102, 103... for easier diagnosis.
uint32_t base = 1111111111u * i * seed;
for (int j = 0; j < kMaxParamCount; j++) {
input[j] = static_cast<int32_t>(100 + base + j);
}
int32_t expected = compute(desc, input);
int32_t result = runnable.Call();
CHECK_EQ(expected, result);
}
}
}
static uint32_t coeff[] = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113};
static void Build_Int32_WeightedSum(CallDescriptor* desc,
RawMachineAssembler& raw) {
Node* result = raw.Int32Constant(0);
for (int i = 0; i < ParamCount(desc); i++) {
Node* term = raw.Int32Mul(raw.Parameter(i), raw.Int32Constant(coeff[i]));
result = raw.Int32Add(result, term);
}
raw.Return(result);
}
static int32_t Compute_Int32_WeightedSum(CallDescriptor* desc, int32_t* input) {
uint32_t result = 0;
for (int i = 0; i < ParamCount(desc); i++) {
result += static_cast<uint32_t>(input[i]) * coeff[i];
}
return static_cast<int32_t>(result);
}
static void Test_Int32_WeightedSum_of_size(int count) {
Int32Signature sig(count);
for (int p0 = 0; p0 < Register::kMaxNumAllocatableRegisters; p0++) {
Zone zone;
int parray[] = {p0};
int rarray[] = {0};
Allocator params(parray, 1, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
CallDescriptor* desc = config.Create(&zone, &sig);
Run_Int32_Computation(desc, Build_Int32_WeightedSum,
Compute_Int32_WeightedSum, 257 + count);
}
}
// Separate tests for parallelization.
#define TEST_INT32_WEIGHTEDSUM(x) \
TEST(Run_Int32_WeightedSum_##x) { Test_Int32_WeightedSum_of_size(x); }
TEST_INT32_WEIGHTEDSUM(1)
TEST_INT32_WEIGHTEDSUM(2)
TEST_INT32_WEIGHTEDSUM(3)
TEST_INT32_WEIGHTEDSUM(4)
TEST_INT32_WEIGHTEDSUM(5)
TEST_INT32_WEIGHTEDSUM(7)
TEST_INT32_WEIGHTEDSUM(9)
TEST_INT32_WEIGHTEDSUM(11)
TEST_INT32_WEIGHTEDSUM(17)
TEST_INT32_WEIGHTEDSUM(19)
template <int which>
static void Build_Int32_Select(CallDescriptor* desc, RawMachineAssembler& raw) {
raw.Return(raw.Parameter(which));
}
template <int which>
static int32_t Compute_Int32_Select(CallDescriptor* desc, int32_t* inputs) {
return inputs[which];
}
template <int which>
void Test_Int32_Select() {
int parray[] = {0};
int rarray[] = {0};
Allocator params(parray, 1, nullptr, 0);
Allocator rets(rarray, 1, nullptr, 0);
RegisterConfig config(params, rets);
Zone zone;
for (int i = which + 1; i <= 64; i++) {
Int32Signature sig(i);
CallDescriptor* desc = config.Create(&zone, &sig);
Run_Int32_Computation(desc, Build_Int32_Select<which>,
Compute_Int32_Select<which>, 1025 + which);
}
}
// Separate tests for parallelization.
#define TEST_INT32_SELECT(x) \
TEST(Run_Int32_Select_##x) { Test_Int32_Select<x>(); }
TEST_INT32_SELECT(0)
TEST_INT32_SELECT(1)
TEST_INT32_SELECT(2)
TEST_INT32_SELECT(3)
TEST_INT32_SELECT(4)
TEST_INT32_SELECT(5)
TEST_INT32_SELECT(6)
TEST_INT32_SELECT(11)
TEST_INT32_SELECT(15)
TEST_INT32_SELECT(19)
TEST_INT32_SELECT(45)
TEST_INT32_SELECT(62)
TEST_INT32_SELECT(63)
#endif // NATIVE_STACK_PARAMS_OK
TEST(TheLastTestForLint) {
// Yes, thank you.
}