Increase precision when finding the remainder after division by pi/2.
R=jkummerow@chromium.org Review URL: https://codereview.chromium.org/66703005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@17933 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
parent
e7511b6234
commit
2c7ebfa7f0
74
src/math.js
74
src/math.js
@ -217,16 +217,19 @@ var InitTrigonometricFunctions;
|
||||
// Also define the initialization function that populates the lookup table
|
||||
// and then wires up the function definitions.
|
||||
function SetupTrigonometricFunctions() {
|
||||
// TODO(yangguo): The following table size has been chosen to satisfy
|
||||
// Sunspider's brittle result verification. Reconsider relevance.
|
||||
var samples = 4489;
|
||||
var pi = 3.1415926535897932;
|
||||
var pi_half = pi / 2;
|
||||
var inverse_pi_half = 2 / pi;
|
||||
var two_pi = 2 * pi;
|
||||
var four_pi = 4 * pi;
|
||||
var interval = pi_half / samples;
|
||||
var inverse_interval = samples / pi_half;
|
||||
var samples = 1800; // Table size. Do not change arbitrarily.
|
||||
var inverse_pi_half = 0.636619772367581343; // 2 / pi
|
||||
var inverse_pi_half_s_26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
|
||||
var s_26 = 1 << 26;
|
||||
var two_step_threshold = 1 << 27;
|
||||
var index_convert = 1145.915590261646418; // samples / (pi / 2)
|
||||
// pi / 2 rounded up
|
||||
var pi_half = 1.570796326794896780; // 0x192d4454fb21f93f
|
||||
// We use two parts for pi/2 to emulate a higher precision.
|
||||
// pi_half_1 only has 26 significant bits for mantissa.
|
||||
// Note that pi_half > pi_half_1 + pi_half_2
|
||||
var pi_half_1 = 1.570796325802803040; // 0x00000054fb21f93f
|
||||
var pi_half_2 = 9.920935796805404252e-10; // 0x3326a611460b113e
|
||||
var table_sin;
|
||||
var table_cos_interval;
|
||||
|
||||
@ -234,6 +237,9 @@ function SetupTrigonometricFunctions() {
|
||||
// 1) Multiplication takes care of to-number conversion.
|
||||
// 2) Reduce x to the first quadrant [0, pi/2].
|
||||
// Conveniently enough, in case of +/-Infinity, we get NaN.
|
||||
// Note that we try to use only 26 instead of 52 significant bits for
|
||||
// mantissa to avoid rounding errors when multiplying. For very large
|
||||
// input we therefore have additional steps.
|
||||
// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
|
||||
// 4) Do a table lookup for the closest samples to the left and right of x.
|
||||
// 5) Find the derivatives at those sampling points by table lookup:
|
||||
@ -241,8 +247,30 @@ function SetupTrigonometricFunctions() {
|
||||
// 6) Use cubic spline interpolation to approximate sin(x).
|
||||
// 7) Negate the result if x was in the 3rd or 4th quadrant.
|
||||
// 8) Get rid of -0 by adding 0.
|
||||
var Interpolation = function(x) {
|
||||
var double_index = x * inverse_interval;
|
||||
var Interpolation = function(x, phase) {
|
||||
if (x < 0 || x > pi_half) {
|
||||
var multiple;
|
||||
while (x < -two_step_threshold || x > two_step_threshold) {
|
||||
// Let's assume this loop does not terminate.
|
||||
// All numbers x in each loop forms a set S.
|
||||
// (1) abs(x) > 2^27 for all x in S.
|
||||
// (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
|
||||
// (3) multiple is rounded down in 2^26 steps, so the rounding error is
|
||||
// at most max(ulp, 2^26).
|
||||
// (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
|
||||
// (1-pi/4)x
|
||||
// (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
|
||||
// Note that this difference cannot be simply rounded off.
|
||||
// Set S cannot exist since (5) violates (1). Loop must terminate.
|
||||
multiple = MathFloor(x * inverse_pi_half_s_26) * s_26;
|
||||
x = x - multiple * pi_half_1 - multiple * pi_half_2;
|
||||
}
|
||||
multiple = MathFloor(x * inverse_pi_half);
|
||||
x = x - multiple * pi_half_1 - multiple * pi_half_2;
|
||||
phase += multiple;
|
||||
}
|
||||
var double_index = x * index_convert;
|
||||
if (phase & 1) double_index = samples - double_index;
|
||||
var index = double_index | 0;
|
||||
var t1 = double_index - index;
|
||||
var t2 = 1 - t1;
|
||||
@ -251,26 +279,20 @@ function SetupTrigonometricFunctions() {
|
||||
var dy = y2 - y1;
|
||||
return (t2 * y1 + t1 * y2 +
|
||||
t1 * t2 * ((table_cos_interval[index] - dy) * t2 +
|
||||
(dy - table_cos_interval[index + 1]) * t1));
|
||||
(dy - table_cos_interval[index + 1]) * t1))
|
||||
* (1 - (phase & 2)) + 0;
|
||||
}
|
||||
|
||||
var MathSinInterpolation = function(x) {
|
||||
// This is to make Sunspider's result verification happy.
|
||||
if (x > four_pi) x -= four_pi;
|
||||
var multiple = MathFloor(x * inverse_pi_half);
|
||||
if (%_IsMinusZero(multiple)) return multiple;
|
||||
x = (multiple & 1) * pi_half +
|
||||
(1 - ((multiple & 1) << 1)) * (x - multiple * pi_half);
|
||||
return Interpolation(x) * (1 - (multiple & 2)) + 0;
|
||||
x = x * 1; // Convert to number and deal with -0.
|
||||
if (%_IsMinusZero(x)) return x;
|
||||
return Interpolation(x, 0);
|
||||
}
|
||||
|
||||
// Cosine is sine with a phase offset of pi/2.
|
||||
// Cosine is sine with a phase offset.
|
||||
var MathCosInterpolation = function(x) {
|
||||
var multiple = MathFloor(x * inverse_pi_half);
|
||||
var phase = multiple + 1;
|
||||
x = (phase & 1) * pi_half +
|
||||
(1 - ((phase & 1) << 1)) * (x - multiple * pi_half);
|
||||
return Interpolation(x) * (1 - (phase & 2)) + 0;
|
||||
x = MathAbs(x); // Convert to number and get rid of -0.
|
||||
return Interpolation(x, 1);
|
||||
};
|
||||
|
||||
%SetInlineBuiltinFlag(Interpolation);
|
||||
|
@ -54,6 +54,10 @@ var assertSame;
|
||||
// and the properties of non-Array objects).
|
||||
var assertEquals;
|
||||
|
||||
|
||||
// The difference between expected and found value is within certain tolerance.
|
||||
var assertEqualsDelta;
|
||||
|
||||
// The found object is an Array with the same length and elements
|
||||
// as the expected object. The expected object doesn't need to be an Array,
|
||||
// as long as it's "array-ish".
|
||||
@ -247,6 +251,12 @@ var assertUnoptimized;
|
||||
};
|
||||
|
||||
|
||||
assertEqualsDelta =
|
||||
function assertEqualsDelta(expected, found, delta, name_opt) {
|
||||
assertTrue(Math.abs(expected - found) <= delta, name_opt);
|
||||
};
|
||||
|
||||
|
||||
assertArrayEquals = function assertArrayEquals(expected, found, name_opt) {
|
||||
var start = "";
|
||||
if (name_opt) {
|
||||
|
@ -27,6 +27,8 @@
|
||||
|
||||
// Test Math.sin and Math.cos.
|
||||
|
||||
// Flags: --allow-natives-syntax
|
||||
|
||||
function sinTest() {
|
||||
assertEquals(0, Math.sin(0));
|
||||
assertEquals(1, Math.sin(Math.PI / 2));
|
||||
@ -97,7 +99,7 @@ function abs_error(fun, ref, x) {
|
||||
|
||||
var test_inputs = [];
|
||||
for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257);
|
||||
var epsilon = 0.000001;
|
||||
var epsilon = 0.0000001;
|
||||
|
||||
test_inputs.push(0);
|
||||
test_inputs.push(0 + epsilon);
|
||||
@ -117,8 +119,8 @@ for (var i = 0; i < test_inputs.length; i++) {
|
||||
var x = test_inputs[i];
|
||||
var err_sin = abs_error(Math.sin, sin, x);
|
||||
var err_cos = abs_error(Math.cos, cos, x)
|
||||
assertTrue(err_sin < 1E-13);
|
||||
assertTrue(err_cos < 1E-13);
|
||||
assertEqualsDelta(0, err_sin, 1E-13);
|
||||
assertEqualsDelta(0, err_cos, 1E-13);
|
||||
squares.push(err_sin*err_sin + err_cos*err_cos);
|
||||
}
|
||||
|
||||
@ -132,7 +134,7 @@ while (squares.length > 1) {
|
||||
}
|
||||
|
||||
var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2);
|
||||
assertTrue(err_rms < 1E-14);
|
||||
assertEqualsDelta(0, err_rms, 1E-14);
|
||||
|
||||
assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } }));
|
||||
assertEquals(0, Math.sin("0x00000"));
|
||||
@ -141,3 +143,40 @@ assertTrue(isNaN(Math.sin(Infinity)));
|
||||
assertTrue(isNaN(Math.cos("-Infinity")));
|
||||
assertEquals("Infinity", String(Math.tan(Math.PI/2)));
|
||||
assertEquals("-Infinity", String(Math.tan(-Math.PI/2)));
|
||||
assertEquals("-Infinity", String(1/Math.sin("-0")));
|
||||
|
||||
// Assert that the remainder after division by pi is reasonably precise.
|
||||
function assertError(expected, x, epsilon) {
|
||||
assertTrue(Math.abs(x - expected) < epsilon);
|
||||
}
|
||||
|
||||
assertEqualsDelta(0.9367521275331447, Math.cos(1e06), 1e-15);
|
||||
assertEqualsDelta(0.8731196226768560, Math.cos(1e10), 1e-08);
|
||||
assertEqualsDelta(0.9367521275331447, Math.cos(-1e06), 1e-15);
|
||||
assertEqualsDelta(0.8731196226768560, Math.cos(-1e10), 1e-08);
|
||||
assertEqualsDelta(-0.3499935021712929, Math.sin(1e06), 1e-15);
|
||||
assertEqualsDelta(-0.4875060250875106, Math.sin(1e10), 1e-08);
|
||||
assertEqualsDelta(0.3499935021712929, Math.sin(-1e06), 1e-15);
|
||||
assertEqualsDelta(0.4875060250875106, Math.sin(-1e10), 1e-08);
|
||||
assertEqualsDelta(0.7796880066069787, Math.sin(1e16), 1e-05);
|
||||
assertEqualsDelta(-0.6261681981330861, Math.cos(1e16), 1e-05);
|
||||
|
||||
// Assert that remainder calculation terminates.
|
||||
for (var i = -1024; i < 1024; i++) {
|
||||
assertFalse(isNaN(Math.sin(Math.pow(2, i))));
|
||||
}
|
||||
|
||||
assertFalse(isNaN(Math.cos(1.57079632679489700)));
|
||||
assertFalse(isNaN(Math.cos(-1e-100)));
|
||||
assertFalse(isNaN(Math.cos(-1e-323)));
|
||||
|
||||
|
||||
function no_deopt_on_minus_zero(x) {
|
||||
return Math.sin(x) + Math.cos(x) + Math.tan(x);
|
||||
}
|
||||
|
||||
no_deopt_on_minus_zero(1);
|
||||
no_deopt_on_minus_zero(1);
|
||||
%OptimizeFunctionOnNextCall(no_deopt_on_minus_zero);
|
||||
no_deopt_on_minus_zero(-0);
|
||||
assertOptimized(no_deopt_on_minus_zero);
|
||||
|
@ -599,10 +599,6 @@
|
||||
# Negative hexadecimal literals are parsed as NaN. This test is outdated.
|
||||
'ecma/TypeConversion/9.3.1-3': [FAIL_OK],
|
||||
|
||||
|
||||
# Math.tan expectations are more strict than the spec.
|
||||
'ecma/Math/15.8.2.18': [FAIL_OK],
|
||||
|
||||
##################### FAILING TESTS #####################
|
||||
|
||||
# This section is for tests that fail in V8 and pass in JSC.
|
||||
|
Loading…
Reference in New Issue
Block a user