MIPS: Enable logical shift right and bitwise And matching to Ext, Dext.
TEST=unittests/InstructionSelectorTest/Word32ShrWithWord32AndWithImmediate, Word32AndWithImmediateWithWord32Shr, Word64AndWithImmediateWithWord64Shr, Word64AndWithImmediateWithWord64Shr BUG= Review URL: https://codereview.chromium.org/1457523002 Cr-Commit-Position: refs/heads/master@{#32062}
This commit is contained in:
parent
5d843f26a9
commit
74145470dd
@ -663,6 +663,10 @@ void CodeGenerator::AssembleArchInstruction(Instruction* instr) {
|
||||
__ sra(i.OutputRegister(), i.InputRegister(0), imm);
|
||||
}
|
||||
break;
|
||||
case kMipsExt:
|
||||
__ Ext(i.OutputRegister(), i.InputRegister(0), i.InputInt8(1),
|
||||
i.InputInt8(2));
|
||||
break;
|
||||
case kMipsRor:
|
||||
__ Ror(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1));
|
||||
break;
|
||||
|
@ -30,6 +30,7 @@ namespace compiler {
|
||||
V(MipsShl) \
|
||||
V(MipsShr) \
|
||||
V(MipsSar) \
|
||||
V(MipsExt) \
|
||||
V(MipsRor) \
|
||||
V(MipsMov) \
|
||||
V(MipsTst) \
|
||||
|
@ -252,6 +252,38 @@ void InstructionSelector::VisitStore(Node* node) {
|
||||
|
||||
|
||||
void InstructionSelector::VisitWord32And(Node* node) {
|
||||
MipsOperandGenerator g(this);
|
||||
Int32BinopMatcher m(node);
|
||||
if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
|
||||
m.right().HasValue()) {
|
||||
uint32_t mask = m.right().Value();
|
||||
uint32_t mask_width = base::bits::CountPopulation32(mask);
|
||||
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
|
||||
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
|
||||
// The mask must be contiguous, and occupy the least-significant bits.
|
||||
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
|
||||
|
||||
// Select Ext for And(Shr(x, imm), mask) where the mask is in the least
|
||||
// significant bits.
|
||||
Int32BinopMatcher mleft(m.left().node());
|
||||
if (mleft.right().HasValue()) {
|
||||
// Any shift value can match; int32 shifts use `value % 32`.
|
||||
uint32_t lsb = mleft.right().Value() & 0x1f;
|
||||
|
||||
// Ext cannot extract bits past the register size, however since
|
||||
// shifting the original value would have introduced some zeros we can
|
||||
// still use Ext with a smaller mask and the remaining bits will be
|
||||
// zeros.
|
||||
if (lsb + mask_width > 32) mask_width = 32 - lsb;
|
||||
|
||||
Emit(kMipsExt, g.DefineAsRegister(node),
|
||||
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
|
||||
g.TempImmediate(mask_width));
|
||||
return;
|
||||
}
|
||||
// Other cases fall through to the normal And operation.
|
||||
}
|
||||
}
|
||||
VisitBinop(this, node, kMipsAnd);
|
||||
}
|
||||
|
||||
@ -272,6 +304,26 @@ void InstructionSelector::VisitWord32Shl(Node* node) {
|
||||
|
||||
|
||||
void InstructionSelector::VisitWord32Shr(Node* node) {
|
||||
Int32BinopMatcher m(node);
|
||||
if (m.left().IsWord32And() && m.right().HasValue()) {
|
||||
uint32_t lsb = m.right().Value() & 0x1f;
|
||||
Int32BinopMatcher mleft(m.left().node());
|
||||
if (mleft.right().HasValue()) {
|
||||
// Select Ext for Shr(And(x, mask), imm) where the result of the mask is
|
||||
// shifted into the least-significant bits.
|
||||
uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
|
||||
unsigned mask_width = base::bits::CountPopulation32(mask);
|
||||
unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
|
||||
if ((mask_msb + mask_width + lsb) == 32) {
|
||||
MipsOperandGenerator g(this);
|
||||
DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
|
||||
Emit(kMipsExt, g.DefineAsRegister(node),
|
||||
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
|
||||
g.TempImmediate(mask_width));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
VisitRRO(this, kMipsShr, node);
|
||||
}
|
||||
|
||||
|
@ -263,11 +263,75 @@ void InstructionSelector::VisitStore(Node* node) {
|
||||
|
||||
|
||||
void InstructionSelector::VisitWord32And(Node* node) {
|
||||
Mips64OperandGenerator g(this);
|
||||
Int32BinopMatcher m(node);
|
||||
if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
|
||||
m.right().HasValue()) {
|
||||
uint32_t mask = m.right().Value();
|
||||
uint32_t mask_width = base::bits::CountPopulation32(mask);
|
||||
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
|
||||
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
|
||||
// The mask must be contiguous, and occupy the least-significant bits.
|
||||
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
|
||||
|
||||
// Select Ext for And(Shr(x, imm), mask) where the mask is in the least
|
||||
// significant bits.
|
||||
Int32BinopMatcher mleft(m.left().node());
|
||||
if (mleft.right().HasValue()) {
|
||||
// Any shift value can match; int32 shifts use `value % 32`.
|
||||
uint32_t lsb = mleft.right().Value() & 0x1f;
|
||||
|
||||
// Ext cannot extract bits past the register size, however since
|
||||
// shifting the original value would have introduced some zeros we can
|
||||
// still use Ext with a smaller mask and the remaining bits will be
|
||||
// zeros.
|
||||
if (lsb + mask_width > 32) mask_width = 32 - lsb;
|
||||
|
||||
Emit(kMips64Ext, g.DefineAsRegister(node),
|
||||
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
|
||||
g.TempImmediate(mask_width));
|
||||
return;
|
||||
}
|
||||
// Other cases fall through to the normal And operation.
|
||||
}
|
||||
}
|
||||
VisitBinop(this, node, kMips64And);
|
||||
}
|
||||
|
||||
|
||||
void InstructionSelector::VisitWord64And(Node* node) {
|
||||
Mips64OperandGenerator g(this);
|
||||
Int64BinopMatcher m(node);
|
||||
if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) &&
|
||||
m.right().HasValue()) {
|
||||
uint64_t mask = m.right().Value();
|
||||
uint32_t mask_width = base::bits::CountPopulation64(mask);
|
||||
uint32_t mask_msb = base::bits::CountLeadingZeros64(mask);
|
||||
if ((mask_width != 0) && (mask_msb + mask_width == 64)) {
|
||||
// The mask must be contiguous, and occupy the least-significant bits.
|
||||
DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask));
|
||||
|
||||
// Select Dext for And(Shr(x, imm), mask) where the mask is in the least
|
||||
// significant bits.
|
||||
Int64BinopMatcher mleft(m.left().node());
|
||||
if (mleft.right().HasValue()) {
|
||||
// Any shift value can match; int64 shifts use `value % 64`.
|
||||
uint32_t lsb = static_cast<uint32_t>(mleft.right().Value() & 0x3f);
|
||||
|
||||
// Dext cannot extract bits past the register size, however since
|
||||
// shifting the original value would have introduced some zeros we can
|
||||
// still use Dext with a smaller mask and the remaining bits will be
|
||||
// zeros.
|
||||
if (lsb + mask_width > 64) mask_width = 64 - lsb;
|
||||
|
||||
Emit(kMips64Dext, g.DefineAsRegister(node),
|
||||
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
|
||||
g.TempImmediate(static_cast<int32_t>(mask_width)));
|
||||
return;
|
||||
}
|
||||
// Other cases fall through to the normal And operation.
|
||||
}
|
||||
}
|
||||
VisitBinop(this, node, kMips64And);
|
||||
}
|
||||
|
||||
@ -298,6 +362,26 @@ void InstructionSelector::VisitWord32Shl(Node* node) {
|
||||
|
||||
|
||||
void InstructionSelector::VisitWord32Shr(Node* node) {
|
||||
Int32BinopMatcher m(node);
|
||||
if (m.left().IsWord32And() && m.right().HasValue()) {
|
||||
uint32_t lsb = m.right().Value() & 0x1f;
|
||||
Int32BinopMatcher mleft(m.left().node());
|
||||
if (mleft.right().HasValue()) {
|
||||
// Select Ext for Shr(And(x, mask), imm) where the result of the mask is
|
||||
// shifted into the least-significant bits.
|
||||
uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
|
||||
unsigned mask_width = base::bits::CountPopulation32(mask);
|
||||
unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
|
||||
if ((mask_msb + mask_width + lsb) == 32) {
|
||||
Mips64OperandGenerator g(this);
|
||||
DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
|
||||
Emit(kMips64Ext, g.DefineAsRegister(node),
|
||||
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
|
||||
g.TempImmediate(mask_width));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
VisitRRO(this, kMips64Shr, node);
|
||||
}
|
||||
|
||||
@ -324,6 +408,26 @@ void InstructionSelector::VisitWord64Shl(Node* node) {
|
||||
|
||||
|
||||
void InstructionSelector::VisitWord64Shr(Node* node) {
|
||||
Int64BinopMatcher m(node);
|
||||
if (m.left().IsWord64And() && m.right().HasValue()) {
|
||||
uint32_t lsb = m.right().Value() & 0x3f;
|
||||
Int64BinopMatcher mleft(m.left().node());
|
||||
if (mleft.right().HasValue()) {
|
||||
// Select Dext for Shr(And(x, mask), imm) where the result of the mask is
|
||||
// shifted into the least-significant bits.
|
||||
uint64_t mask = (mleft.right().Value() >> lsb) << lsb;
|
||||
unsigned mask_width = base::bits::CountPopulation64(mask);
|
||||
unsigned mask_msb = base::bits::CountLeadingZeros64(mask);
|
||||
if ((mask_msb + mask_width + lsb) == 64) {
|
||||
Mips64OperandGenerator g(this);
|
||||
DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask));
|
||||
Emit(kMips64Dext, g.DefineAsRegister(node),
|
||||
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
|
||||
g.TempImmediate(mask_width));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
VisitRRO(this, kMips64Dshr, node);
|
||||
}
|
||||
|
||||
|
@ -296,6 +296,46 @@ INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorShiftTest,
|
||||
::testing::ValuesIn(kShiftInstructions));
|
||||
|
||||
|
||||
TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) {
|
||||
// The available shift operand range is `0 <= imm < 32`, but we also test
|
||||
// that immediates outside this range are handled properly (modulo-32).
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
|
||||
uint32_t jnk = rng()->NextInt();
|
||||
jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0;
|
||||
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)),
|
||||
m.Int32Constant(shift)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMipsExt, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
|
||||
uint32_t jnk = rng()->NextInt();
|
||||
jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0;
|
||||
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)),
|
||||
m.Int32Constant(shift)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMipsExt, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Logical instructions.
|
||||
// ----------------------------------------------------------------------------
|
||||
@ -322,6 +362,45 @@ INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorLogicalTest,
|
||||
::testing::ValuesIn(kLogicalInstructions));
|
||||
|
||||
|
||||
TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) {
|
||||
// The available shift operand range is `0 <= imm < 32`, but we also test
|
||||
// that immediates outside this range are handled properly (modulo-32).
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 31) {
|
||||
uint32_t msk = (1 << width) - 1;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)),
|
||||
m.Int32Constant(msk)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMipsExt, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width;
|
||||
EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 31) {
|
||||
uint32_t msk = (1 << width) - 1;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(
|
||||
m.Word32And(m.Int32Constant(msk),
|
||||
m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMipsExt, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width;
|
||||
EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// MUL/DIV instructions.
|
||||
// ----------------------------------------------------------------------------
|
||||
|
@ -295,6 +295,88 @@ TEST_P(InstructionSelectorShiftTest, Immediate) {
|
||||
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorShiftTest,
|
||||
::testing::ValuesIn(kShiftInstructions));
|
||||
|
||||
TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) {
|
||||
// The available shift operand range is `0 <= imm < 32`, but we also test
|
||||
// that immediates outside this range are handled properly (modulo-32).
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
|
||||
uint32_t jnk = rng()->NextInt();
|
||||
jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0;
|
||||
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)),
|
||||
m.Int32Constant(shift)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Ext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
|
||||
uint32_t jnk = rng()->NextInt();
|
||||
jnk = (lsb > 0) ? (jnk >> (32 - lsb)) : 0;
|
||||
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)),
|
||||
m.Int32Constant(shift)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Ext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) {
|
||||
// The available shift operand range is `0 <= imm < 64`, but we also test
|
||||
// that immediates outside this range are handled properly (modulo-64).
|
||||
TRACED_FORRANGE(int32_t, shift, -64, 127) {
|
||||
int32_t lsb = shift & 0x3f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) {
|
||||
uint64_t jnk = rng()->NextInt64();
|
||||
jnk = (lsb > 0) ? (jnk >> (64 - lsb)) : 0;
|
||||
uint64_t msk =
|
||||
((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk;
|
||||
StreamBuilder m(this, kMachInt64, kMachInt64);
|
||||
m.Return(m.Word64Shr(m.Word64And(m.Parameter(0), m.Int64Constant(msk)),
|
||||
m.Int64Constant(shift)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Dext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
|
||||
EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
TRACED_FORRANGE(int32_t, shift, -64, 127) {
|
||||
int32_t lsb = shift & 0x3f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) {
|
||||
uint64_t jnk = rng()->NextInt64();
|
||||
jnk = (lsb > 0) ? (jnk >> (64 - lsb)) : 0;
|
||||
uint64_t msk =
|
||||
((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk;
|
||||
StreamBuilder m(this, kMachInt64, kMachInt64);
|
||||
m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(msk), m.Parameter(0)),
|
||||
m.Int64Constant(shift)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Dext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
|
||||
EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Logical instructions.
|
||||
// ----------------------------------------------------------------------------
|
||||
@ -317,6 +399,85 @@ TEST_P(InstructionSelectorLogicalTest, Parameter) {
|
||||
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorLogicalTest,
|
||||
::testing::ValuesIn(kLogicalInstructions));
|
||||
|
||||
|
||||
TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) {
|
||||
// The available shift operand range is `0 <= imm < 32`, but we also test
|
||||
// that immediates outside this range are handled properly (modulo-32).
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 31) {
|
||||
uint32_t msk = (1 << width) - 1;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(shift)),
|
||||
m.Int32Constant(msk)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Ext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width;
|
||||
EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
TRACED_FORRANGE(int32_t, shift, -32, 63) {
|
||||
int32_t lsb = shift & 0x1f;
|
||||
TRACED_FORRANGE(int32_t, width, 1, 31) {
|
||||
uint32_t msk = (1 << width) - 1;
|
||||
StreamBuilder m(this, kMachInt32, kMachInt32);
|
||||
m.Return(
|
||||
m.Word32And(m.Int32Constant(msk),
|
||||
m.Word32Shr(m.Parameter(0), m.Int32Constant(shift))));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Ext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
|
||||
int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width;
|
||||
EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) {
|
||||
// The available shift operand range is `0 <= imm < 64`, but we also test
|
||||
// that immediates outside this range are handled properly (modulo-64).
|
||||
TRACED_FORRANGE(int64_t, shift, -64, 127) {
|
||||
int64_t lsb = shift & 0x3f;
|
||||
TRACED_FORRANGE(int64_t, width, 1, 63) {
|
||||
uint64_t msk = (V8_UINT64_C(1) << width) - 1;
|
||||
StreamBuilder m(this, kMachInt64, kMachInt64);
|
||||
m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(shift)),
|
||||
m.Int64Constant(msk)));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Dext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
|
||||
int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width;
|
||||
EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
TRACED_FORRANGE(int64_t, shift, -64, 127) {
|
||||
int64_t lsb = shift & 0x3f;
|
||||
TRACED_FORRANGE(int64_t, width, 1, 63) {
|
||||
uint64_t msk = (V8_UINT64_C(1) << width) - 1;
|
||||
StreamBuilder m(this, kMachInt64, kMachInt64);
|
||||
m.Return(
|
||||
m.Word64And(m.Int64Constant(msk),
|
||||
m.Word64Shr(m.Parameter(0), m.Int64Constant(shift))));
|
||||
Stream s = m.Build();
|
||||
ASSERT_EQ(1U, s.size());
|
||||
EXPECT_EQ(kMips64Dext, s[0]->arch_opcode());
|
||||
ASSERT_EQ(3U, s[0]->InputCount());
|
||||
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
|
||||
int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width;
|
||||
EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// MUL/DIV instructions.
|
||||
// ----------------------------------------------------------------------------
|
||||
|
Loading…
Reference in New Issue
Block a user