MIPS: Hydrogenisation of binops

Port r17104.

R=olivf@chromium.org

Review URL: https://codereview.chromium.org/26002002

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@17108 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
jkummerow@chromium.org 2013-10-04 12:31:57 +00:00
parent 07b15bdfc1
commit 7d819d713f
2 changed files with 17 additions and 949 deletions

View File

@ -1227,956 +1227,16 @@ void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
}
// Generates code to call a C function to do a double operation.
// This code never falls through, but returns with a heap number containing
// the result in v0.
// Register heap_number_result must be a heap number in which the
// result of the operation will be stored.
// Requires the following layout on entry:
// a0: Left value (least significant part of mantissa).
// a1: Left value (sign, exponent, top of mantissa).
// a2: Right value (least significant part of mantissa).
// a3: Right value (sign, exponent, top of mantissa).
static void CallCCodeForDoubleOperation(MacroAssembler* masm,
Token::Value op,
Register heap_number_result,
Register scratch) {
// Assert that heap_number_result is saved.
// We currently always use s0 to pass it.
ASSERT(heap_number_result.is(s0));
// Push the current return address before the C call.
__ push(ra);
__ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
void BinaryOpStub::InitializeInterfaceDescriptor(
Isolate* isolate,
CodeStubInterfaceDescriptor* descriptor) {
static Register registers[] = { a1, a0 };
descriptor->register_param_count_ = 2;
descriptor->register_params_ = registers;
descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
descriptor->SetMissHandler(
ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate));
}
// Store answer in the overwritable heap number.
// Double returned in register f0.
__ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
// Place heap_number_result in v0 and return to the pushed return address.
__ pop(ra);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, heap_number_result);
}
void BinaryOpStub::Initialize() {
platform_specific_bit_ = true; // FPU is a base requirement for V8.
}
void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Label get_result;
__ Push(a1, a0);
__ li(a2, Operand(Smi::FromInt(MinorKey())));
__ push(a2);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
masm->isolate()),
3,
1);
}
void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
MacroAssembler* masm) {
UNIMPLEMENTED();
}
void BinaryOpStub_GenerateSmiSmiOperation(MacroAssembler* masm,
Token::Value op) {
Register left = a1;
Register right = a0;
Register scratch1 = t0;
Register scratch2 = t1;
ASSERT(right.is(a0));
STATIC_ASSERT(kSmiTag == 0);
Label not_smi_result;
switch (op) {
case Token::ADD:
__ AdduAndCheckForOverflow(v0, left, right, scratch1);
__ RetOnNoOverflow(scratch1);
// No need to revert anything - right and left are intact.
break;
case Token::SUB:
__ SubuAndCheckForOverflow(v0, left, right, scratch1);
__ RetOnNoOverflow(scratch1);
// No need to revert anything - right and left are intact.
break;
case Token::MUL: {
// Remove tag from one of the operands. This way the multiplication result
// will be a smi if it fits the smi range.
__ SmiUntag(scratch1, right);
// Do multiplication.
// lo = lower 32 bits of scratch1 * left.
// hi = higher 32 bits of scratch1 * left.
__ Mult(left, scratch1);
// Check for overflowing the smi range - no overflow if higher 33 bits of
// the result are identical.
__ mflo(scratch1);
__ mfhi(scratch2);
__ sra(scratch1, scratch1, 31);
__ Branch(&not_smi_result, ne, scratch1, Operand(scratch2));
// Go slow on zero result to handle -0.
__ mflo(v0);
__ Ret(ne, v0, Operand(zero_reg));
// We need -0 if we were multiplying a negative number with 0 to get 0.
// We know one of them was zero.
__ Addu(scratch2, right, left);
Label skip;
// ARM uses the 'pl' condition, which is 'ge'.
// Negating it results in 'lt'.
__ Branch(&skip, lt, scratch2, Operand(zero_reg));
ASSERT(Smi::FromInt(0) == 0);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, zero_reg); // Return smi 0 if the non-zero one was positive.
__ bind(&skip);
// We fall through here if we multiplied a negative number with 0, because
// that would mean we should produce -0.
}
break;
case Token::DIV: {
Label done;
__ SmiUntag(scratch2, right);
__ SmiUntag(scratch1, left);
__ Div(scratch1, scratch2);
// A minor optimization: div may be calculated asynchronously, so we check
// for division by zero before getting the result.
__ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
// If the result is 0, we need to make sure the dividsor (right) is
// positive, otherwise it is a -0 case.
// Quotient is in 'lo', remainder is in 'hi'.
// Check for no remainder first.
__ mfhi(scratch1);
__ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
__ mflo(scratch1);
__ Branch(&done, ne, scratch1, Operand(zero_reg));
__ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
__ bind(&done);
// Check that the signed result fits in a Smi.
__ Addu(scratch2, scratch1, Operand(0x40000000));
__ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
__ Ret(USE_DELAY_SLOT); // SmiTag emits one instruction in delay slot.
__ SmiTag(v0, scratch1);
}
break;
case Token::MOD: {
Label done;
__ SmiUntag(scratch2, right);
__ SmiUntag(scratch1, left);
__ Div(scratch1, scratch2);
// A minor optimization: div may be calculated asynchronously, so we check
// for division by 0 before calling mfhi.
// Check for zero on the right hand side.
__ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
// If the result is 0, we need to make sure the dividend (left) is
// positive (or 0), otherwise it is a -0 case.
// Remainder is in 'hi'.
__ mfhi(scratch2);
__ Branch(&done, ne, scratch2, Operand(zero_reg));
__ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
__ bind(&done);
// Check that the signed result fits in a Smi.
__ Addu(scratch1, scratch2, Operand(0x40000000));
__ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
__ Ret(USE_DELAY_SLOT); // SmiTag emits one instruction in delay slot.
__ SmiTag(v0, scratch2);
}
break;
case Token::BIT_OR:
__ Ret(USE_DELAY_SLOT);
__ or_(v0, left, right);
break;
case Token::BIT_AND:
__ Ret(USE_DELAY_SLOT);
__ and_(v0, left, right);
break;
case Token::BIT_XOR:
__ Ret(USE_DELAY_SLOT);
__ xor_(v0, left, right);
break;
case Token::SAR:
// Remove tags from right operand.
__ GetLeastBitsFromSmi(scratch1, right, 5);
__ srav(scratch1, left, scratch1);
// Smi tag result.
__ And(v0, scratch1, ~kSmiTagMask);
__ Ret();
break;
case Token::SHR:
// Remove tags from operands. We can't do this on a 31 bit number
// because then the 0s get shifted into bit 30 instead of bit 31.
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ srlv(v0, scratch1, scratch2);
// Unsigned shift is not allowed to produce a negative number, so
// check the sign bit and the sign bit after Smi tagging.
__ And(scratch1, v0, Operand(0xc0000000));
__ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
// Smi tag result.
__ Ret(USE_DELAY_SLOT); // SmiTag emits one instruction in delay slot.
__ SmiTag(v0);
break;
case Token::SHL:
// Remove tags from operands.
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ sllv(scratch1, scratch1, scratch2);
// Check that the signed result fits in a Smi.
__ Addu(scratch2, scratch1, Operand(0x40000000));
__ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
__ Ret(USE_DELAY_SLOT);
__ SmiTag(v0, scratch1); // SmiTag emits one instruction in delay slot.
break;
default:
UNREACHABLE();
}
__ bind(&not_smi_result);
}
void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
Register result,
Register heap_number_map,
Register scratch1,
Register scratch2,
Label* gc_required,
OverwriteMode mode);
void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
BinaryOpIC::TypeInfo left_type,
BinaryOpIC::TypeInfo right_type,
bool smi_operands,
Label* not_numbers,
Label* gc_required,
Label* miss,
Token::Value op,
OverwriteMode mode) {
Register left = a1;
Register right = a0;
Register scratch1 = t3;
Register scratch2 = t5;
ASSERT(smi_operands || (not_numbers != NULL));
if (smi_operands) {
__ AssertSmi(left);
__ AssertSmi(right);
}
if (left_type == BinaryOpIC::SMI) {
__ JumpIfNotSmi(left, miss);
}
if (right_type == BinaryOpIC::SMI) {
__ JumpIfNotSmi(right, miss);
}
Register heap_number_map = t2;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
switch (op) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD: {
// Allocate new heap number for result.
Register result = s0;
BinaryOpStub_GenerateHeapResultAllocation(
masm, result, heap_number_map, scratch1, scratch2, gc_required, mode);
// Load left and right operands into f12 and f14.
if (smi_operands) {
__ SmiUntag(scratch1, a0);
__ mtc1(scratch1, f14);
__ cvt_d_w(f14, f14);
__ SmiUntag(scratch1, a1);
__ mtc1(scratch1, f12);
__ cvt_d_w(f12, f12);
} else {
// Load right operand to f14.
if (right_type == BinaryOpIC::INT32) {
__ LoadNumberAsInt32Double(
right, f14, heap_number_map, scratch1, scratch2, f2, miss);
} else {
Label* fail = (right_type == BinaryOpIC::NUMBER) ? miss : not_numbers;
__ LoadNumber(right, f14, heap_number_map, scratch1, fail);
}
// Load left operand to f12 or a0/a1. This keeps a0/a1 intact if it
// jumps to |miss|.
if (left_type == BinaryOpIC::INT32) {
__ LoadNumberAsInt32Double(
left, f12, heap_number_map, scratch1, scratch2, f2, miss);
} else {
Label* fail = (left_type == BinaryOpIC::NUMBER) ? miss : not_numbers;
__ LoadNumber(left, f12, heap_number_map, scratch1, fail);
}
}
// Calculate the result.
if (op != Token::MOD) {
// Using FPU registers:
// f12: Left value.
// f14: Right value.
switch (op) {
case Token::ADD:
__ add_d(f10, f12, f14);
break;
case Token::SUB:
__ sub_d(f10, f12, f14);
break;
case Token::MUL:
__ mul_d(f10, f12, f14);
break;
case Token::DIV:
__ div_d(f10, f12, f14);
break;
default:
UNREACHABLE();
}
// ARM uses a workaround here because of the unaligned HeapNumber
// kValueOffset. On MIPS this workaround is built into sdc1 so
// there's no point in generating even more instructions.
__ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, result);
} else {
// Call the C function to handle the double operation.
CallCCodeForDoubleOperation(masm, op, result, scratch1);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
}
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SAR:
case Token::SHR:
case Token::SHL: {
if (smi_operands) {
__ SmiUntag(a3, left);
__ SmiUntag(a2, right);
} else {
// Convert operands to 32-bit integers. Right in a2 and left in a3.
__ TruncateNumberToI(left, a3, heap_number_map, scratch1, not_numbers);
__ TruncateNumberToI(right, a2, heap_number_map, scratch1, not_numbers);
}
Label result_not_a_smi;
switch (op) {
case Token::BIT_OR:
__ Or(a2, a3, Operand(a2));
break;
case Token::BIT_XOR:
__ Xor(a2, a3, Operand(a2));
break;
case Token::BIT_AND:
__ And(a2, a3, Operand(a2));
break;
case Token::SAR:
// Use only the 5 least significant bits of the shift count.
__ GetLeastBitsFromInt32(a2, a2, 5);
__ srav(a2, a3, a2);
break;
case Token::SHR:
// Use only the 5 least significant bits of the shift count.
__ GetLeastBitsFromInt32(a2, a2, 5);
__ srlv(a2, a3, a2);
// SHR is special because it is required to produce a positive answer.
// The code below for writing into heap numbers isn't capable of
// writing the register as an unsigned int so we go to slow case if we
// hit this case.
__ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg));
break;
case Token::SHL:
// Use only the 5 least significant bits of the shift count.
__ GetLeastBitsFromInt32(a2, a2, 5);
__ sllv(a2, a3, a2);
break;
default:
UNREACHABLE();
}
// Check that the *signed* result fits in a smi.
__ Addu(a3, a2, Operand(0x40000000));
__ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg));
__ Ret(USE_DELAY_SLOT); // SmiTag emits one instruction in delay slot.
__ SmiTag(v0, a2);
// Allocate new heap number for result.
__ bind(&result_not_a_smi);
Register result = t1;
if (smi_operands) {
__ AllocateHeapNumber(
result, scratch1, scratch2, heap_number_map, gc_required);
} else {
BinaryOpStub_GenerateHeapResultAllocation(
masm, result, heap_number_map, scratch1, scratch2, gc_required,
mode);
}
// a2: Answer as signed int32.
// t1: Heap number to write answer into.
// Nothing can go wrong now, so move the heap number to v0, which is the
// result.
__ mov(v0, t1);
// Convert the int32 in a2 to the heap number in a0. As
// mentioned above SHR needs to always produce a positive result.
__ mtc1(a2, f0);
if (op == Token::SHR) {
__ Cvt_d_uw(f0, f0, f22);
} else {
__ cvt_d_w(f0, f0);
}
// ARM uses a workaround here because of the unaligned HeapNumber
// kValueOffset. On MIPS this workaround is built into sdc1 so
// there's no point in generating even more instructions.
__ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
__ Ret();
break;
}
default:
UNREACHABLE();
}
}
// Generate the smi code. If the operation on smis are successful this return is
// generated. If the result is not a smi and heap number allocation is not
// requested the code falls through. If number allocation is requested but a
// heap number cannot be allocated the code jumps to the label gc_required.
void BinaryOpStub_GenerateSmiCode(
MacroAssembler* masm,
Label* use_runtime,
Label* gc_required,
Token::Value op,
BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results,
OverwriteMode mode) {
Label not_smis;
Register left = a1;
Register right = a0;
Register scratch1 = t3;
// Perform combined smi check on both operands.
__ Or(scratch1, left, Operand(right));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(scratch1, &not_smis);
// If the smi-smi operation results in a smi return is generated.
BinaryOpStub_GenerateSmiSmiOperation(masm, op);
// If heap number results are possible generate the result in an allocated
// heap number.
if (allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS) {
BinaryOpStub_GenerateFPOperation(
masm, BinaryOpIC::UNINITIALIZED, BinaryOpIC::UNINITIALIZED, true,
use_runtime, gc_required, &not_smis, op, mode);
}
__ bind(&not_smis);
}
void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Label right_arg_changed, call_runtime;
if (op_ == Token::MOD && encoded_right_arg_.has_value) {
// It is guaranteed that the value will fit into a Smi, because if it
// didn't, we wouldn't be here, see BinaryOp_Patch.
__ Branch(&right_arg_changed,
ne,
a0,
Operand(Smi::FromInt(fixed_right_arg_value())));
}
if (result_type_ == BinaryOpIC::UNINITIALIZED ||
result_type_ == BinaryOpIC::SMI) {
// Only allow smi results.
BinaryOpStub_GenerateSmiCode(
masm, &call_runtime, NULL, op_, NO_HEAPNUMBER_RESULTS, mode_);
} else {
// Allow heap number result and don't make a transition if a heap number
// cannot be allocated.
BinaryOpStub_GenerateSmiCode(
masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS,
mode_);
}
// Code falls through if the result is not returned as either a smi or heap
// number.
__ bind(&right_arg_changed);
GenerateTypeTransition(masm);
__ bind(&call_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
GenerateRegisterArgsPush(masm);
GenerateCallRuntime(masm);
}
__ Ret();
}
void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
Label call_runtime;
ASSERT(left_type_ == BinaryOpIC::STRING && right_type_ == BinaryOpIC::STRING);
ASSERT(op_ == Token::ADD);
// If both arguments are strings, call the string add stub.
// Otherwise, do a transition.
// Registers containing left and right operands respectively.
Register left = a1;
Register right = a0;
// Test if left operand is a string.
__ JumpIfSmi(left, &call_runtime);
__ GetObjectType(left, a2, a2);
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
// Test if right operand is a string.
__ JumpIfSmi(right, &call_runtime);
__ GetObjectType(right, a2, a2);
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
StringAddStub string_add_stub(
(StringAddFlags)(STRING_ADD_CHECK_NONE | STRING_ADD_ERECT_FRAME));
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_stub);
__ bind(&call_runtime);
GenerateTypeTransition(masm);
}
void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
ASSERT(Max(left_type_, right_type_) == BinaryOpIC::INT32);
Register left = a1;
Register right = a0;
Register scratch1 = t3;
Register scratch2 = t5;
FPURegister double_scratch = f0;
FPURegister single_scratch = f6;
Register heap_number_result = no_reg;
Register heap_number_map = t2;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
Label call_runtime;
// Labels for type transition, used for wrong input or output types.
// Both label are currently actually bound to the same position. We use two
// different label to differentiate the cause leading to type transition.
Label transition;
// Smi-smi fast case.
Label skip;
__ Or(scratch1, left, right);
__ JumpIfNotSmi(scratch1, &skip);
BinaryOpStub_GenerateSmiSmiOperation(masm, op_);
// Fall through if the result is not a smi.
__ bind(&skip);
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD: {
// It could be that only SMIs have been seen at either the left
// or the right operand. For precise type feedback, patch the IC
// again if this changes.
if (left_type_ == BinaryOpIC::SMI) {
__ JumpIfNotSmi(left, &transition);
}
if (right_type_ == BinaryOpIC::SMI) {
__ JumpIfNotSmi(right, &transition);
}
// Load both operands and check that they are 32-bit integer.
// Jump to type transition if they are not. The registers a0 and a1 (right
// and left) are preserved for the runtime call.
__ LoadNumberAsInt32Double(
right, f14, heap_number_map, scratch1, scratch2, f2, &transition);
__ LoadNumberAsInt32Double(
left, f12, heap_number_map, scratch1, scratch2, f2, &transition);
if (op_ != Token::MOD) {
Label return_heap_number;
switch (op_) {
case Token::ADD:
__ add_d(f10, f12, f14);
break;
case Token::SUB:
__ sub_d(f10, f12, f14);
break;
case Token::MUL:
__ mul_d(f10, f12, f14);
break;
case Token::DIV:
__ div_d(f10, f12, f14);
break;
default:
UNREACHABLE();
}
if (result_type_ <= BinaryOpIC::INT32) {
Register except_flag = scratch2;
const FPURoundingMode kRoundingMode = op_ == Token::DIV ?
kRoundToMinusInf : kRoundToZero;
const CheckForInexactConversion kConversion = op_ == Token::DIV ?
kCheckForInexactConversion : kDontCheckForInexactConversion;
__ EmitFPUTruncate(kRoundingMode,
scratch1,
f10,
at,
f16,
except_flag,
kConversion);
// If except_flag != 0, result does not fit in a 32-bit integer.
__ Branch(&transition, ne, except_flag, Operand(zero_reg));
// Try to tag the result as a Smi, return heap number on overflow.
__ SmiTagCheckOverflow(scratch1, scratch1, scratch2);
__ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg));
// Check for minus zero, transition in that case (because we need
// to return a heap number).
Label not_zero;
ASSERT(kSmiTag == 0);
__ Branch(&not_zero, ne, scratch1, Operand(zero_reg));
__ mfc1(scratch2, f11);
__ And(scratch2, scratch2, HeapNumber::kSignMask);
__ Branch(&transition, ne, scratch2, Operand(zero_reg));
__ bind(&not_zero);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, scratch1);
}
__ bind(&return_heap_number);
// Return a heap number, or fall through to type transition or runtime
// call if we can't.
// We are using FPU registers so s0 is available.
heap_number_result = s0;
BinaryOpStub_GenerateHeapResultAllocation(masm,
heap_number_result,
heap_number_map,
scratch1,
scratch2,
&call_runtime,
mode_);
__ sdc1(f10,
FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, heap_number_result);
// A DIV operation expecting an integer result falls through
// to type transition.
} else {
if (encoded_right_arg_.has_value) {
__ Move(f16, fixed_right_arg_value());
__ BranchF(&transition, NULL, ne, f14, f16);
}
Label pop_and_call_runtime;
// Allocate a heap number to store the result.
heap_number_result = s0;
BinaryOpStub_GenerateHeapResultAllocation(masm,
heap_number_result,
heap_number_map,
scratch1,
scratch2,
&pop_and_call_runtime,
mode_);
// Call the C function to handle the double operation.
CallCCodeForDoubleOperation(masm, op_, heap_number_result, scratch1);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
__ bind(&pop_and_call_runtime);
__ Drop(2);
__ Branch(&call_runtime);
}
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SAR:
case Token::SHR:
case Token::SHL: {
Label return_heap_number;
// Convert operands to 32-bit integers. Right in a2 and left in a3. The
// registers a0 and a1 (right and left) are preserved for the runtime
// call.
__ LoadNumberAsInt32(
left, a3, heap_number_map, scratch1, scratch2, f0, f2, &transition);
__ LoadNumberAsInt32(
right, a2, heap_number_map, scratch1, scratch2, f0, f2, &transition);
// The ECMA-262 standard specifies that, for shift operations, only the
// 5 least significant bits of the shift value should be used.
switch (op_) {
case Token::BIT_OR:
__ Or(a2, a3, Operand(a2));
break;
case Token::BIT_XOR:
__ Xor(a2, a3, Operand(a2));
break;
case Token::BIT_AND:
__ And(a2, a3, Operand(a2));
break;
case Token::SAR:
__ And(a2, a2, Operand(0x1f));
__ srav(a2, a3, a2);
break;
case Token::SHR:
__ And(a2, a2, Operand(0x1f));
__ srlv(a2, a3, a2);
// SHR is special because it is required to produce a positive answer.
// We only get a negative result if the shift value (a2) is 0.
// This result cannot be respresented as a signed 32-bit integer, try
// to return a heap number if we can.
__ Branch((result_type_ <= BinaryOpIC::INT32)
? &transition
: &return_heap_number,
lt,
a2,
Operand(zero_reg));
break;
case Token::SHL:
__ And(a2, a2, Operand(0x1f));
__ sllv(a2, a3, a2);
break;
default:
UNREACHABLE();
}
// Check if the result fits in a smi.
__ Addu(scratch1, a2, Operand(0x40000000));
// If not try to return a heap number. (We know the result is an int32.)
__ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg));
// Tag the result and return.
__ Ret(USE_DELAY_SLOT); // SmiTag emits one instruction in delay slot.
__ SmiTag(v0, a2);
__ bind(&return_heap_number);
heap_number_result = t1;
BinaryOpStub_GenerateHeapResultAllocation(masm,
heap_number_result,
heap_number_map,
scratch1,
scratch2,
&call_runtime,
mode_);
if (op_ != Token::SHR) {
// Convert the result to a floating point value.
__ mtc1(a2, double_scratch);
__ cvt_d_w(double_scratch, double_scratch);
} else {
// The result must be interpreted as an unsigned 32-bit integer.
__ mtc1(a2, double_scratch);
__ Cvt_d_uw(double_scratch, double_scratch, single_scratch);
}
// Store the result.
__ sdc1(double_scratch,
FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, heap_number_result);
break;
}
default:
UNREACHABLE();
}
// We never expect DIV to yield an integer result, so we always generate
// type transition code for DIV operations expecting an integer result: the
// code will fall through to this type transition.
if (transition.is_linked() ||
((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
__ bind(&transition);
GenerateTypeTransition(masm);
}
__ bind(&call_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
GenerateRegisterArgsPush(masm);
GenerateCallRuntime(masm);
}
__ Ret();
}
void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Label call_runtime;
if (op_ == Token::ADD) {
// Handle string addition here, because it is the only operation
// that does not do a ToNumber conversion on the operands.
GenerateAddStrings(masm);
}
// Convert oddball arguments to numbers.
Label check, done;
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ Branch(&check, ne, a1, Operand(t0));
if (Token::IsBitOp(op_)) {
__ li(a1, Operand(Smi::FromInt(0)));
} else {
__ LoadRoot(a1, Heap::kNanValueRootIndex);
}
__ jmp(&done);
__ bind(&check);
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
__ Branch(&done, ne, a0, Operand(t0));
if (Token::IsBitOp(op_)) {
__ li(a0, Operand(Smi::FromInt(0)));
} else {
__ LoadRoot(a0, Heap::kNanValueRootIndex);
}
__ bind(&done);
GenerateNumberStub(masm);
}
void BinaryOpStub::GenerateNumberStub(MacroAssembler* masm) {
Label call_runtime, transition;
BinaryOpStub_GenerateFPOperation(
masm, left_type_, right_type_, false,
&transition, &call_runtime, &transition, op_, mode_);
__ bind(&transition);
GenerateTypeTransition(masm);
__ bind(&call_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
GenerateRegisterArgsPush(masm);
GenerateCallRuntime(masm);
}
__ Ret();
}
void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Label call_runtime, call_string_add_or_runtime, transition;
BinaryOpStub_GenerateSmiCode(
masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_);
BinaryOpStub_GenerateFPOperation(
masm, left_type_, right_type_, false,
&call_string_add_or_runtime, &call_runtime, &transition, op_, mode_);
__ bind(&transition);
GenerateTypeTransition(masm);
__ bind(&call_string_add_or_runtime);
if (op_ == Token::ADD) {
GenerateAddStrings(masm);
}
__ bind(&call_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
GenerateRegisterArgsPush(masm);
GenerateCallRuntime(masm);
}
__ Ret();
}
void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
ASSERT(op_ == Token::ADD);
Label left_not_string, call_runtime;
Register left = a1;
Register right = a0;
// Check if left argument is a string.
__ JumpIfSmi(left, &left_not_string);
__ GetObjectType(left, a2, a2);
__ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE));
StringAddStub string_add_left_stub(
(StringAddFlags)(STRING_ADD_CHECK_RIGHT | STRING_ADD_ERECT_FRAME));
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_left_stub);
// Left operand is not a string, test right.
__ bind(&left_not_string);
__ JumpIfSmi(right, &call_runtime);
__ GetObjectType(right, a2, a2);
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
StringAddStub string_add_right_stub(
(StringAddFlags)(STRING_ADD_CHECK_LEFT | STRING_ADD_ERECT_FRAME));
GenerateRegisterArgsPush(masm);
__ TailCallStub(&string_add_right_stub);
// At least one argument is not a string.
__ bind(&call_runtime);
}
void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm,
Register result,
Register heap_number_map,
Register scratch1,
Register scratch2,
Label* gc_required,
OverwriteMode mode) {
// Code below will scratch result if allocation fails. To keep both arguments
// intact for the runtime call result cannot be one of these.
ASSERT(!result.is(a0) && !result.is(a1));
if (mode == OVERWRITE_LEFT || mode == OVERWRITE_RIGHT) {
Label skip_allocation, allocated;
Register overwritable_operand = mode == OVERWRITE_LEFT ? a1 : a0;
// If the overwritable operand is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(overwritable_operand, &skip_allocation);
// Allocate a heap number for the result.
__ AllocateHeapNumber(
result, scratch1, scratch2, heap_number_map, gc_required);
__ Branch(&allocated);
__ bind(&skip_allocation);
// Use object holding the overwritable operand for result.
__ mov(result, overwritable_operand);
__ bind(&allocated);
} else {
ASSERT(mode == NO_OVERWRITE);
__ AllocateHeapNumber(
result, scratch1, scratch2, heap_number_map, gc_required);
}
}
void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
__ Push(a1, a0);
}
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
@ -2648,6 +1708,7 @@ void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
RecordWriteStub::GenerateFixedRegStubsAheadOfTime(isolate);
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
BinaryOpStub::GenerateAheadOfTime(isolate);
}

View File

@ -1077,7 +1077,14 @@ intptr_t PagedSpace::SizeOfFirstPage() {
// upgraded to handle small pages.
size = AreaSize();
} else {
#if V8_TARGET_ARCH_MIPS
// On MIPS, code stubs seem to be quite a bit larger.
// TODO(olivf/MIPS folks): Can we do anything about this? Does it
// indicate the presence of a bug?
size = 464 * KB;
#else
size = 416 * KB;
#endif
}
break;
default: