This allows us to get rid of the "push TruncateFloat64ToInt32 into Phi"
trick that was used in the MachineOperatorReducer to combine the
ChangeTaggedToFloat64 and TruncateFloat64ToInt32 operations. Instead of
doing that later, we can just introduce the proper operator during the
representation selection directly.
Also separate the TruncateFloat64ToInt32 machine operator, which had two
different meanings depending on a flag (either JavaScript truncation or
C++ style round to zero). Now there's a TruncateFloat64ToWord32 which
represents the JavaScript truncation (implemented via TruncateDoubleToI
macro + code stub) and the RoundFloat64ToInt32, which implements the C++
round towards zero operation (in the same style as the other WebAssembly
driven Round* machine operators).
R=jarin@chromium.org
Review URL: https://codereview.chromium.org/1919513002
Cr-Commit-Position: refs/heads/master@{#35743}
The CL #35651 (https://codereview.chromium.org/1858323003) exposed one hiden issue in RunTruncateFloat32ToUint32 test cases and X87 failed at it.
Here is the issue in RunTruncateFloat32ToUint32:
For float input = static_cast<float>(*i), the x87 GCC would optimize the input viariable in float floating register for release build.
The problem is:
SSE float register has single precision rounding semantic While X87 register hasn't when directly use floating register value. It will cause the value of input viariable has
different precision for IA32 and X87 port. So static_cast<uint32_t>(input) will be different for IA32 and X87 port too.
This led to CHECK_EQ(static_cast<uint32_t>(input), m.Call(input)) fail although V8 turbofan JITTed code m.Call(input) has exactly same result in both X87 and IA32 port.
So we add the following sentence to do type cast to keep the single precision for RunTruncateFloat32ToUint32 by forcing the input viariable get value from memory insread of
floating register.
Such as: volatile float input = static_cast<float>(*i).
BUG=
Review URL: https://codereview.chromium.org/1905883002
Cr-Commit-Position: refs/heads/master@{#35689}
Also factor out test cases from test-run-machops.cc into test-run-load-store.cc
BUG=chromium:599717
LOG=Y
Review URL: https://codereview.chromium.org/1858323003
Cr-Commit-Position: refs/heads/master@{#35651}
AddInt + WordShl cases can be optimized on MIPS and this CL contains
tests for those special cases. These test also must be passed on other
architectures.
BUG=
Review URL: https://codereview.chromium.org/1867923002
Cr-Commit-Position: refs/heads/master@{#35349}
Int64Mul is lowered to a new turbofan operator, Int32MulPair. The new
operator takes 4 inputs an generates 2 outputs. The inputs are the low
word of the left input, high word of the left input, the low word of the
right input, and high word of the right input. The ouputs are the low
and high word of the result of the multiplication.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1807273002
Cr-Commit-Position: refs/heads/master@{#35131}
Port 33c08596e1
Original commit message:
Int64Sub is lowered to a new turbofan operator, Int32SubPair. The new
operator takes 4 inputs an generates 2 outputs. The inputs are the low
word of the left input, high word of the left input, the low word of the
right input, and high word of the right input. The ouputs are the low
and high word of the result of the subtraction.
The implementation is very similar to the implementation of Int64Add.
R=ahaas@chromium.org, joransiu@ca.ibm.com, jyan@ca.ibm.com, michael_dawson@ca.ibm.com
BUG=
Review URL: https://codereview.chromium.org/1812473002
Cr-Commit-Position: refs/heads/master@{#34821}
Int64Sub is lowered to a new turbofan operator, Int32SubPair. The new
operator takes 4 inputs an generates 2 outputs. The inputs are the low
word of the left input, high word of the left input, the low word of the
right input, and high word of the right input. The ouputs are the low
and high word of the result of the subtraction.
The implementation is very similar to the implementation of Int64Add.
@v8-arm-ports: please take a careful look at the implementation of sbc
in the simulator.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1778893005
Cr-Commit-Position: refs/heads/master@{#34808}
The previous register allocation allowed invalid register aliasing in
cases where in the TF graph the node was used for multiple inputs of the
Word32PairShl node.
Additionally I renamed PairLsl to LslPair in the code generation for
consistency.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1776393004
Cr-Commit-Position: refs/heads/master@{#34755}
Int64Add is lowered to a new turbofan operator, Int32AddPair. The new
operator takes 4 inputs an generates 2 outputs. The inputs are the low
word of the left input, high word of the left input, the low word of the
right input, and high word of the right input. The ouputs are the low
and high word of the result of the addition.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1778493004
Cr-Commit-Position: refs/heads/master@{#34747}
Instead of using CheckFloatEq and CheckDoubleEq directly, I introduced
a macro which first stores the expected result in a volatile variable.
Here are some comments of previous CLs:
The reason is same as the CL #31808 (issue 1430943002, X87: Change the test case for X87 float operations), please refer: https://codereview.chromium.org/1430943002/.
Here is the key comments from CL #31808
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function,
those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
So we add the following sentence to do type cast to keep the same precision for RunCallInt64ToFloat32/RunCallInt64ToFloat64. Such as: volatile double expect = static_cast<float>(*i).
R=titzer@chromium.org, weiliang.lin@intel.com
Review URL: https://codereview.chromium.org/1773513002
Cr-Commit-Position: refs/heads/master@{#34534}
On 32-bit systems FXXXConvertI64 instructions are compiled to calls to
C functions. The TF node for the function call is already generated in
the wasm compiler, the lowering of the I64 parameter is done in the
Int64Lowering.
R=titzer@chromium.org, yangguo@chromium.org
Review URL: https://codereview.chromium.org/1738623003
Cr-Commit-Position: refs/heads/master@{#34487}
The CL #33796 (https://codereview.chromium.org/1628133002) added the RunRoundUint32ToFloat32 test case and X87 failed at it.
The reason is same as the CL #33630 (Issue 1649323002: X87: Change the test case for X87 RunRoundInt32ToFloat32), please refer: https://codereview.chromium.org/1649323002.
Here is the key comments from CL #33630:
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function,
those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
For CHECK_EQ(a, b) function, if a and b are doubles, it will has similar behaviors like CheckFloatEq(...) and CheckDoubleEq(...) function when compiled by GCC and causes the test case
fail.
So we add the following sentence to do type case to keep the same precision for RunRoundUint32ToFloat32. Such as: volatile double expect = static_cast<float>(*i).
BUG=
Review URL: https://codereview.chromium.org/1714413002
Cr-Commit-Position: refs/heads/master@{#34202}
This functionality is useful for stubs that need to walk the stack. The new
machine operator, LoadParentFramePointer dosn't force the currently compiling
method to have a frame in contrast to LoadFramePointer. Instead, it adapts
accordingly when frame elision is possible, making efficient stack walks
possible without incurring a performance penalty for small stubs that can
benefit from frame elision.
R=bmeurer@chromium.org
LOG=N
Review URL: https://codereview.chromium.org/1695313002
Cr-Commit-Position: refs/heads/master@{#34014}
If the architecture does not provide rounding instructions, then C
implementations of these rounding instructions are called. The C
implementations from math.h are used, function pointers are registered
as external references so that they can be call from the simulator.
R=titzer@chromium.org
BUG=575379
LOG=Y
Review URL: https://codereview.chromium.org/1661463002
Cr-Commit-Position: refs/heads/master@{#33677}
The CL #33347 (https://codereview.chromium.org/1589363002) added the RunRoundInt32ToFloat32 test case and X87 failed at it.
The reason is same as the CL #31808 (issue 1430943002, X87: Change the test case for X87 float operations), please refer: https://codereview.chromium.org/1430943002/.
Here is the key comments from CL #31808
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function,
those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
For CHECK_EQ(a, b) function, if a and b are doubles, it will has similar behaviors like CheckFloatEq(...) and CheckDoubleEq(...) function when compiled by GCC and causes the test case
fail.
So we add the following sentence to do type case to keep the same precision for RunRoundInt32ToFloat32. Such as: volatile double expect = static_cast<float>(*i).
BUG=
Review URL: https://codereview.chromium.org/1649323002
Cr-Commit-Position: refs/heads/master@{#33630}
Reason for revert:
problems on Mac64
Original issue's description:
> [turbofan] Add the StackSlot operator to turbofan.
>
> The StackSlot operator allows to allocate a spill slot on the stack. We
> are going to use this operator to pass floats through pointers to c
> functions, which we need for floating point rounding in the case where
> the architecture does not provide rounding instructions.
>
> R=titzer@chromium.org, v8-arm-ports@googlegroups.com, v8-ppc-ports@googlegroups.com, v8-mips-ports@googlegroups.com
>
> Committed: https://crrev.com/7a693437787090d62d937b862e29521debcc5223
> Cr-Commit-Position: refs/heads/master@{#33600}
TBR=titzer@chromium.org,v8-arm-ports@googlegroups.com,v8-mips-ports@googlegroups.com,v8-ppc-ports@googlegroups.com
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
Review URL: https://codereview.chromium.org/1644283002
Cr-Commit-Position: refs/heads/master@{#33601}
The CL #32908 (https://codereview.chromium.org/1526293002) updated the Float64 test data and cause the RunFloat64Add and RunFloat64Sub test cases failed.
The reason is same as the CL #31808 (issue 1430943002, X87: Change the test case for X87 float operations), please refer: https://codereview.chromium.org/1430943002/
Here is the key comments from CL #31808
Some new test cases use CheckFloatEq(...) and CheckDoubleEq(...) function for result check. When GCC compiling the CheckFloatEq() and CheckDoubleEq() function,
those inlined functions has different behavior comparing with GCC ia32 build and x87 build.
The major difference is sse float register still has single precision rounding semantic. While X87 register has no such rounding precsion semantic when directly use register value.
The V8 turbofan JITTed has exactly same result in both X87 and IA32 port.
So we add the following sentence to do type case to keep the same precision for RunFloat64Add and RunFloat64Sub.
Such as: volatile double expect = *i +/- *j; // *i +/- *j, etc.
BUG=
Review URL: https://codereview.chromium.org/1533593003
Cr-Commit-Position: refs/heads/master@{#32988}
TryTruncateFloat32ToUint64 converts a float32 to a uint64. Additionally it
provides an optional second return value which indicates whether the conversion
succeeded (i.e. float32 value was within uint64 range) or not.
I implemented the new operator on x64, arm64, and mips64. @v8-ppc-ports, can you
please take care of the ppc64 implementation of the second output?
Additionally I fixed a bug on x64 and mips64 in the implementation of
TryTruncateFloat64ToUint64. Cases where the input value was between -1 and 0
were handled incorrectly.
R=titzer@chromium.org, v8-arm-ports@googlegroups.com, v8-mips-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1512023002
Cr-Commit-Position: refs/heads/master@{#32796}
MachineType is now a class with two enum fields:
- MachineRepresentation
- MachineSemantic
Both enums are usable on their own, and this change switches some places from using MachineType to use just MachineRepresentation. Most notably:
- register allocator now uses just the representation.
- Phi and Select nodes only refer to representations.
Review URL: https://codereview.chromium.org/1513543003
Cr-Commit-Position: refs/heads/master@{#32738}
This operator now provides a second output which indicates whether the
conversion from float32 to int64 was successful or not. The second output
returns 0 if the conversion fails, or something else if the conversion succeeds.
The second output can be ignored, which means that the operator can be used the
same as the original operator.
I implement the new operator on x64, arm64, and mips64. @v8-ppc-ports, can you
please take care of the ppc64 implementation of the second output?
R=titzer@chromium.org, v8-arm-ports@googlegroups.com, v8-mips-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1504363002
Cr-Commit-Position: refs/heads/master@{#32737}
This operator now provides a second output which indicates whether the conversion from float64 to uint64 was successful or not. The second output returns 0 if the conversion fails, or something else if the conversion succeeds.
The second output can be ignored, which means that the operator can be used the same as the original operator.
I implement the new operator on x64 and arm64. @v8-mips-ports and @v8-ppc-ports, can you please take care of the mips64 and ppc64 implementation of the second output?
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1507703002
Cr-Commit-Position: refs/heads/master@{#32705}
The new operator provides a second output which indicates whether the
conversion from float64 to int64 was successful or not. The second
output returns 0 if the conversion fails. If the conversion succeeds,
then the second output is differs from 0.
The second output can be ignored, which means that the operator can be
used the same way as the original operator.
I implemented the new operator on x64 and arm64. @v8-mips-ports and
@v8-ppc-ports, can you please take care of the mips64 and ppc64
implementation of the second output?
R=titzer@chromium.org, v8-arm-ports@googlegroups.com
Review URL: https://codereview.chromium.org/1495213003
Cr-Commit-Position: refs/heads/master@{#32653}
The TruncateFloat32ToUint64 operator converts a float32 to an uint64 using
round-to-zero rounding mode. If the input value is outside uint64 range, then
the result depends on the architecture. I provide an implementation for x64 and
arm64.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1479713003
Cr-Commit-Position: refs/heads/master@{#32379}
Reason for revert:
Unexpected error occurred.
Original issue's description:
> [turbofan] Implemented the TruncateFloat32ToInt64 TurboFan operator.
>
> The TruncateFloat32ToInt64 operator converts a float32 to an int64 using
> the round-to-zero rounding mode (truncate). If the input value is
> outside the int64 range, then the result depends on the architecture. I
> implemented the operator on x64, arm64, and mips64.
>
> R=titzer@chromium.org, jacob.bramley@arm.com
>
> Committed: https://crrev.com/1df1066c3c77464d2a68d7c8d501a5a0f3ad195a
> Cr-Commit-Position: refs/heads/master@{#32315}
TBR=jacob.bramley@arm.com,titzer@chromium.org,v8-mips-ports@googlegroups.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
Review URL: https://codereview.chromium.org/1475343002
Cr-Commit-Position: refs/heads/master@{#32316}
The TruncateFloat32ToInt64 operator converts a float32 to an int64 using
the round-to-zero rounding mode (truncate). If the input value is
outside the int64 range, then the result depends on the architecture. I
implemented the operator on x64, arm64, and mips64.
R=titzer@chromium.org, jacob.bramley@arm.com
Review URL: https://codereview.chromium.org/1476063002
Cr-Commit-Position: refs/heads/master@{#32315}
The Float32RoundTiesEven operator rounds float32 numbers towards the nearest
integer. If the distance to two integers is the same, then the result is
the even integer. This is the default rounding mode of the ieee 754 floating
point standard.
I implemented the optional Float32RoundTiesEven operator on x64, ia32, arm, and arm64.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1477753002
Cr-Commit-Position: refs/heads/master@{#32308}
The Float32RoundTruncate operator rounds float32 numbers towards zero.
The operator is currently implemented on x64, ia32, arm, and arm64.
Additionally I added support for the float32 vrintz, vrintn, and vrinta
instructions to the arm simulator.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1468303005
Cr-Commit-Position: refs/heads/master@{#32301}
The Float32RoundUp operator rounds float32 numbers towards infinity.
The operator is currently implemented on x64, ia32, arm, and arm64.
R=titzer@chromium.org
Review URL: https://codereview.chromium.org/1474963002
Cr-Commit-Position: refs/heads/master@{#32262}