version is passing all the existing test + a bunch of new tests
(packaged in the change list, too).
The patch extends the SlotRef object to describe captured and duplicated
objects. Since the SlotRefs are not independent of each other anymore,
there is a new SlotRefValueBuilder class that stores the SlotRefs and
later materializes the objects from the SlotRefs.
Note that unlike the previous implementation of SlotRefs, we now build
the SlotRef entries for the entire frame, not just the particular
function. This is because duplicate objects might refer to previous
captured objects (that might live inside other inlined function's part
of the frame).
We also need to store the materialized objects between other potential
invocations of the same arguments object so that we materialize each
captured object at most once. The materialized objects of frames live
in the new MaterielizedObjectStore object (contained in Isolate),
indexed by the frame's FP address. Each argument materialization (and
deoptimization) tries to lookup its captured objects in the store before
building new ones. Deoptimization also removes the materialized objects
from the store. We also schedule a lazy deopt to be sure that we always
get rid of the materialized objects and that the optmized function
adopts the materialized objects (instead of happily computing with its
captured representations).
Concerns:
- Is the FP address the right key for a frame? (Note that deoptimizer's
representation of frame is different from the argument object
materializer's one - it is not easy to find common ground.)
- Performance is suboptimal in several places, but a quick local run of
benchmarks does not seem to show a perf hit. Examples of possible
improvements: smarter generation of SlotRefs (build other functions'
SlotRefs only for captured objects and only if necessary), smarter
lookup of stored materialized objects.
- Ideally, we would like to share the code for argument materialization
with deoptimizer's materializer. However, the supporting data structures
(mainly the frame descriptor) are quite different in each case, so it
looks more like a separate project.
Thanks for any feedback.
R=danno@chromium.org, mstarzinger@chromium.org
LOG=N
BUG=
Committed: https://code.google.com/p/v8/source/detail?r=18918
Review URL: https://codereview.chromium.org/103243005
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
mostly to make sure that it is going in the right direction. The current
version is passing all the existing test + a bunch of new tests
(packaged in the change list, too).
The patch extends the SlotRef object to describe captured and duplicated
objects. Since the SlotRefs are not independent of each other anymore,
there is a new SlotRefValueBuilder class that stores the SlotRefs and
later materializes the objects from the SlotRefs.
Note that unlike the previous implementation of SlotRefs, we now build
the SlotRef entries for the entire frame, not just the particular
function. This is because duplicate objects might refer to previous
captured objects (that might live inside other inlined function's part
of the frame).
We also need to store the materialized objects between other potential
invocations of the same arguments object so that we materialize each
captured object at most once. The materialized objects of frames live
in the new MaterielizedObjectStore object (contained in Isolate),
indexed by the frame's FP address. Each argument materialization (and
deoptimization) tries to lookup its captured objects in the store before
building new ones. Deoptimization also removes the materialized objects
from the store. We also schedule a lazy deopt to be sure that we always
get rid of the materialized objects and that the optmized function
adopts the materialized objects (instead of happily computing with its
captured representations).
Concerns:
- Is there a simpler/more correct way to store the already-materialized
objects? (At the moment there is a custom root reference to JSArray
containing frames' FixedArrays with their captured objects.)
- Is the FP address the right key for a frame? (Note that deoptimizer's
representation of frame is different from the argument object
materializer's one - it is not easy to find common ground.)
- Performance is suboptimal in several places, but a quick local run of
benchmarks does not seem to show a perf hit. Examples of possible
improvements: smarter generation of SlotRefs (build other functions'
SlotRefs only for captured objects and only if necessary), smarter
lookup of stored materialized objects.
- Ideally, we would like to share the code for argument materialization
with deoptimizer's materializer. However, the supporting data structures
(mainly the frame descriptor) are quite different in each case, so it
looks more like a separate project.
Thanks for any feedback.
R=mstarzinger@chromium.org, danno@chromium.org
LOG=N
BUG=
Review URL: https://codereview.chromium.org/103243005
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18918 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This patch makes String::WriteUtf8 replace invalid code points (i.e. unmatched
surrogates) with the unicode replacement character when REPLACE_INVALID_UTF8 is
set. This is done to avoid creating invalid UTF-8 output which can lead to
compatibility issues with software requiring valid UTF-8 inputs (e.g. the
WebSocket protocol requires valid UTF-8 and terminates connections when invalid
UTF-8 is encountered).
R=dcarney@chromium.org
BUG=
Review URL: https://codereview.chromium.org/121173009
Patch from Felix Geisendörfer <haimuiba@gmail.com>.
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18683 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This is done similar to weak embedded objects in optimized code (r17102). The
reference from optimized code to a cell is treated weakly in marking visitors
if the cell points to a JSObject. After marking we iterate over all cells
embedded in optimized code. If a cell is not marked but its value is marked,
then we revive the cell by marking it. Otherwise, the cell value is dead, so
we mark the code for deoptimization.
BUG=v8:2073
TEST=cctest/test-heap/CellsInOptimizedCodeAreWeak
LOG=Y
R=hpayer@chromium.org, mstarzinger@chromium.org
Review URL: https://codereview.chromium.org/117483002
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18616 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This patch contains contributions from the following members of the
BlackBerry Web Technologies team:
Eli Fidler <efidler@blackberry.com>
Konrad Piascik <kpiascik@blackberry.com>
Jeff Rogers <jrogers@blackberry.com>
Cosmin Truta <ctruta@blackberry.com>
Peter Wang <peter.wang@torchmobile.com.cn>
Xiaobo Wang <xiaobwang@blackberry.com>
Ming Xie <mxie@blackberry.com>
Leo Yang <leoyang@blackberry.com>
R=bmeurer@chromium.org, jkummerow@chromium.org
Review URL: https://codereview.chromium.org/61153009
Patch from Cosmin Truta <ctruta@blackberry.com>.
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18430 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
It's of much use when information about function calls is shown on the Events timeline in DevTools: instead of referencing to v8natives.js where bound functions are created, we'll be able to show real function data (name, resource, script line and column numbers) retrieved from original functions.
BUG=None
LOG=Y
R=yangguo@chromium.org, yurys@chromium.org
Review URL: https://codereview.chromium.org/106763002
Patch from Alexandra Mikhaylova <amikhaylova@google.com>.
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18401 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
Introduce API to temporarily interrupt long running JavaScript code.
It is different from termination API as interrupted JavaScript will continue to execute normally when registered InterruptCallback returns.
/**
* Request V8 to interrupt long running JavaScript code and invoke
* the given |callback| passing the given |data| to it. After |callback|
* returns control will be returned to the JavaScript code.
* At any given moment V8 can remember only a single callback for the very
* last interrupt request.
* Can be called from another thread without acquiring a |Locker|.
* Registered |callback| must not reenter interrupted Isolate.
*/
void RequestInterrupt(InterruptCallback callback, void* data);
/**
* Clear interrupt request created by |RequestInterrupt|.
* Can be called from another thread without acquiring a |Locker|.
*/
void ClearInterrupt();
Fix Hydrogen SCE pass to avoid eliminating stack guards too aggressively. Only normal JavaScript functions are guaranteed to have stack guard in the prologue. If function is a builtin or has a custom call IC it will lack one.
Changes from r18363:
- includes r18364 to fix compilation errors: removes debugging only code;
- makes interrupiton related tests not threaded, because they rely on having exclusive access to the V8 instance and the fact that they can only interrupt themselves, if they are interrupted from the outside they break;
- changes HasStackCheck predicate used during SCE pass to avoid handles dereference to make SCE compatible with parallel recompilation.
R=dcarney@chromium.org
Review URL: https://codereview.chromium.org/104823008
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18375 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
It is different from termination API as interrupted JavaScript will continue to execute normally when registered InterruptCallback returns.
/**
* Request V8 to interrupt long running JavaScript code and invoke
* the given |callback| passing the given |data| to it. After |callback|
* returns control will be returned to the JavaScript code.
* At any given moment V8 can remember only a single callback for the very
* last interrupt request.
* Can be called from another thread without acquiring a |Locker|.
* Registered |callback| must not reenter interrupted Isolate.
*/
void RequestInterrupt(InterruptCallback callback, void* data);
/**
* Clear interrupt request created by |RequestInterrupt|.
* Can be called from another thread without acquiring a |Locker|.
*/
void ClearInterrupt();
Fix Hydrogen SCE pass to avoid eliminating stack guards too aggressively. Only normal JavaScript functions are guaranteed to have stack guard in the prologue. If function is a builtin or has a custom call IC it will lack one.
BUG=
R=danno@chromium.org, dcarney@chromium.org
Review URL: https://codereview.chromium.org/102063004
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18363 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
All methods for accessing collected profiles by index are deprecated. The indexed storage may well be implemented by the embedder should he need it. CpuProfiler's responsibility is just to create CpuProfile object that contains all collected data and whose lifetime can be managed by the embedder.
BUG=chromium:327298
LOG=Y
R=svenpanne@chromium.org
Review URL: https://codereview.chromium.org/117353002
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18337 ce2b1a6d-e550-0410-aec6-3dcde31c8c00