v8/src/arm64/simulator-arm64.cc
yangguo f38e48be60 Use fast_sqrt instead of std::sqrt in simulators.
This prevents clang from inlining and returning inconsistent results.

R=bmeurer@chromium.org
BUG=v8:3802
LOG=N

Review URL: https://codereview.chromium.org/831393006

Cr-Commit-Position: refs/heads/master@{#26158}
2015-01-20 13:53:45 +00:00

3841 lines
124 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdlib.h>
#include <cmath>
#include <cstdarg>
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/decoder-arm64-inl.h"
#include "src/arm64/simulator-arm64.h"
#include "src/assembler.h"
#include "src/codegen.h"
#include "src/disasm.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
namespace v8 {
namespace internal {
#if defined(USE_SIMULATOR)
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// Helpers for colors.
#define COLOUR(colour_code) "\033[0;" colour_code "m"
#define COLOUR_BOLD(colour_code) "\033[1;" colour_code "m"
#define NORMAL ""
#define GREY "30"
#define RED "31"
#define GREEN "32"
#define YELLOW "33"
#define BLUE "34"
#define MAGENTA "35"
#define CYAN "36"
#define WHITE "37"
typedef char const * const TEXT_COLOUR;
TEXT_COLOUR clr_normal = FLAG_log_colour ? COLOUR(NORMAL) : "";
TEXT_COLOUR clr_flag_name = FLAG_log_colour ? COLOUR_BOLD(WHITE) : "";
TEXT_COLOUR clr_flag_value = FLAG_log_colour ? COLOUR(NORMAL) : "";
TEXT_COLOUR clr_reg_name = FLAG_log_colour ? COLOUR_BOLD(CYAN) : "";
TEXT_COLOUR clr_reg_value = FLAG_log_colour ? COLOUR(CYAN) : "";
TEXT_COLOUR clr_fpreg_name = FLAG_log_colour ? COLOUR_BOLD(MAGENTA) : "";
TEXT_COLOUR clr_fpreg_value = FLAG_log_colour ? COLOUR(MAGENTA) : "";
TEXT_COLOUR clr_memory_address = FLAG_log_colour ? COLOUR_BOLD(BLUE) : "";
TEXT_COLOUR clr_debug_number = FLAG_log_colour ? COLOUR_BOLD(YELLOW) : "";
TEXT_COLOUR clr_debug_message = FLAG_log_colour ? COLOUR(YELLOW) : "";
TEXT_COLOUR clr_printf = FLAG_log_colour ? COLOUR(GREEN) : "";
// This is basically the same as PrintF, with a guard for FLAG_trace_sim.
void Simulator::TraceSim(const char* format, ...) {
if (FLAG_trace_sim) {
va_list arguments;
va_start(arguments, format);
base::OS::VFPrint(stream_, format, arguments);
va_end(arguments);
}
}
const Instruction* Simulator::kEndOfSimAddress = NULL;
void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) {
int width = msb - lsb + 1;
DCHECK(is_uintn(bits, width) || is_intn(bits, width));
bits <<= lsb;
uint32_t mask = ((1 << width) - 1) << lsb;
DCHECK((mask & write_ignore_mask_) == 0);
value_ = (value_ & ~mask) | (bits & mask);
}
SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) {
switch (id) {
case NZCV:
return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask);
case FPCR:
return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask);
default:
UNREACHABLE();
return SimSystemRegister();
}
}
void Simulator::Initialize(Isolate* isolate) {
if (isolate->simulator_initialized()) return;
isolate->set_simulator_initialized(true);
ExternalReference::set_redirector(isolate, &RedirectExternalReference);
}
// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
Isolate::PerIsolateThreadData* isolate_data =
isolate->FindOrAllocatePerThreadDataForThisThread();
DCHECK(isolate_data != NULL);
Simulator* sim = isolate_data->simulator();
if (sim == NULL) {
if (FLAG_trace_sim || FLAG_log_instruction_stats || FLAG_debug_sim) {
sim = new Simulator(new Decoder<DispatchingDecoderVisitor>(), isolate);
} else {
sim = new Decoder<Simulator>();
sim->isolate_ = isolate;
}
isolate_data->set_simulator(sim);
}
return sim;
}
void Simulator::CallVoid(byte* entry, CallArgument* args) {
int index_x = 0;
int index_d = 0;
std::vector<int64_t> stack_args(0);
for (int i = 0; !args[i].IsEnd(); i++) {
CallArgument arg = args[i];
if (arg.IsX() && (index_x < 8)) {
set_xreg(index_x++, arg.bits());
} else if (arg.IsD() && (index_d < 8)) {
set_dreg_bits(index_d++, arg.bits());
} else {
DCHECK(arg.IsD() || arg.IsX());
stack_args.push_back(arg.bits());
}
}
// Process stack arguments, and make sure the stack is suitably aligned.
uintptr_t original_stack = sp();
uintptr_t entry_stack = original_stack -
stack_args.size() * sizeof(stack_args[0]);
if (base::OS::ActivationFrameAlignment() != 0) {
entry_stack &= -base::OS::ActivationFrameAlignment();
}
char * stack = reinterpret_cast<char*>(entry_stack);
std::vector<int64_t>::const_iterator it;
for (it = stack_args.begin(); it != stack_args.end(); it++) {
memcpy(stack, &(*it), sizeof(*it));
stack += sizeof(*it);
}
DCHECK(reinterpret_cast<uintptr_t>(stack) <= original_stack);
set_sp(entry_stack);
// Call the generated code.
set_pc(entry);
set_lr(kEndOfSimAddress);
CheckPCSComplianceAndRun();
set_sp(original_stack);
}
int64_t Simulator::CallInt64(byte* entry, CallArgument* args) {
CallVoid(entry, args);
return xreg(0);
}
double Simulator::CallDouble(byte* entry, CallArgument* args) {
CallVoid(entry, args);
return dreg(0);
}
int64_t Simulator::CallJS(byte* entry,
byte* function_entry,
JSFunction* func,
Object* revc,
int64_t argc,
Object*** argv) {
CallArgument args[] = {
CallArgument(function_entry),
CallArgument(func),
CallArgument(revc),
CallArgument(argc),
CallArgument(argv),
CallArgument::End()
};
return CallInt64(entry, args);
}
int64_t Simulator::CallRegExp(byte* entry,
String* input,
int64_t start_offset,
const byte* input_start,
const byte* input_end,
int* output,
int64_t output_size,
Address stack_base,
int64_t direct_call,
void* return_address,
Isolate* isolate) {
CallArgument args[] = {
CallArgument(input),
CallArgument(start_offset),
CallArgument(input_start),
CallArgument(input_end),
CallArgument(output),
CallArgument(output_size),
CallArgument(stack_base),
CallArgument(direct_call),
CallArgument(return_address),
CallArgument(isolate),
CallArgument::End()
};
return CallInt64(entry, args);
}
void Simulator::CheckPCSComplianceAndRun() {
#ifdef DEBUG
CHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count());
CHECK_EQ(kNumberOfCalleeSavedFPRegisters, kCalleeSavedFP.Count());
int64_t saved_registers[kNumberOfCalleeSavedRegisters];
uint64_t saved_fpregisters[kNumberOfCalleeSavedFPRegisters];
CPURegList register_list = kCalleeSaved;
CPURegList fpregister_list = kCalleeSavedFP;
for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
// x31 is not a caller saved register, so no need to specify if we want
// the stack or zero.
saved_registers[i] = xreg(register_list.PopLowestIndex().code());
}
for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
saved_fpregisters[i] =
dreg_bits(fpregister_list.PopLowestIndex().code());
}
int64_t original_stack = sp();
#endif
// Start the simulation!
Run();
#ifdef DEBUG
CHECK_EQ(original_stack, sp());
// Check that callee-saved registers have been preserved.
register_list = kCalleeSaved;
fpregister_list = kCalleeSavedFP;
for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
CHECK_EQ(saved_registers[i], xreg(register_list.PopLowestIndex().code()));
}
for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
DCHECK(saved_fpregisters[i] ==
dreg_bits(fpregister_list.PopLowestIndex().code()));
}
// Corrupt caller saved register minus the return regiters.
// In theory x0 to x7 can be used for return values, but V8 only uses x0, x1
// for now .
register_list = kCallerSaved;
register_list.Remove(x0);
register_list.Remove(x1);
// In theory d0 to d7 can be used for return values, but V8 only uses d0
// for now .
fpregister_list = kCallerSavedFP;
fpregister_list.Remove(d0);
CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
#endif
}
#ifdef DEBUG
// The least significant byte of the curruption value holds the corresponding
// register's code.
void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) {
if (list->type() == CPURegister::kRegister) {
while (!list->IsEmpty()) {
unsigned code = list->PopLowestIndex().code();
set_xreg(code, value | code);
}
} else {
DCHECK(list->type() == CPURegister::kFPRegister);
while (!list->IsEmpty()) {
unsigned code = list->PopLowestIndex().code();
set_dreg_bits(code, value | code);
}
}
}
void Simulator::CorruptAllCallerSavedCPURegisters() {
// Corrupt alters its parameter so copy them first.
CPURegList register_list = kCallerSaved;
CPURegList fpregister_list = kCallerSavedFP;
CorruptRegisters(&register_list, kCallerSavedRegisterCorruptionValue);
CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
}
#endif
// Extending the stack by 2 * 64 bits is required for stack alignment purposes.
uintptr_t Simulator::PushAddress(uintptr_t address) {
DCHECK(sizeof(uintptr_t) < 2 * kXRegSize);
intptr_t new_sp = sp() - 2 * kXRegSize;
uintptr_t* alignment_slot =
reinterpret_cast<uintptr_t*>(new_sp + kXRegSize);
memcpy(alignment_slot, &kSlotsZapValue, kPointerSize);
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
memcpy(stack_slot, &address, kPointerSize);
set_sp(new_sp);
return new_sp;
}
uintptr_t Simulator::PopAddress() {
intptr_t current_sp = sp();
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
DCHECK(sizeof(uintptr_t) < 2 * kXRegSize);
set_sp(current_sp + 2 * kXRegSize);
return address;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
// Leave a safety margin of 1024 bytes to prevent overrunning the stack when
// pushing values.
return stack_limit_ + 1024;
}
Simulator::Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
Isolate* isolate, FILE* stream)
: decoder_(decoder),
last_debugger_input_(NULL),
log_parameters_(NO_PARAM),
isolate_(isolate) {
// Setup the decoder.
decoder_->AppendVisitor(this);
Init(stream);
if (FLAG_trace_sim) {
decoder_->InsertVisitorBefore(print_disasm_, this);
log_parameters_ = LOG_ALL;
}
if (FLAG_log_instruction_stats) {
instrument_ = new Instrument(FLAG_log_instruction_file,
FLAG_log_instruction_period);
decoder_->AppendVisitor(instrument_);
}
}
Simulator::Simulator()
: decoder_(NULL),
last_debugger_input_(NULL),
log_parameters_(NO_PARAM),
isolate_(NULL) {
Init(stdout);
CHECK(!FLAG_trace_sim && !FLAG_log_instruction_stats);
}
void Simulator::Init(FILE* stream) {
ResetState();
// Allocate and setup the simulator stack.
stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_);
stack_ = reinterpret_cast<uintptr_t>(new byte[stack_size_]);
stack_limit_ = stack_ + stack_protection_size_;
uintptr_t tos = stack_ + stack_size_ - stack_protection_size_;
// The stack pointer must be 16-byte aligned.
set_sp(tos & ~0xfUL);
stream_ = stream;
print_disasm_ = new PrintDisassembler(stream_);
// The debugger needs to disassemble code without the simulator executing an
// instruction, so we create a dedicated decoder.
disassembler_decoder_ = new Decoder<DispatchingDecoderVisitor>();
disassembler_decoder_->AppendVisitor(print_disasm_);
}
void Simulator::ResetState() {
// Reset the system registers.
nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);
// Reset registers to 0.
pc_ = NULL;
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
set_xreg(i, 0xbadbeef);
}
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
// Set FP registers to a value that is NaN in both 32-bit and 64-bit FP.
set_dreg_bits(i, 0x7ff000007f800001UL);
}
// Returning to address 0 exits the Simulator.
set_lr(kEndOfSimAddress);
// Reset debug helpers.
breakpoints_.empty();
break_on_next_ = false;
}
Simulator::~Simulator() {
delete[] reinterpret_cast<byte*>(stack_);
if (FLAG_log_instruction_stats) {
delete instrument_;
}
delete disassembler_decoder_;
delete print_disasm_;
DeleteArray(last_debugger_input_);
delete decoder_;
}
void Simulator::Run() {
pc_modified_ = false;
while (pc_ != kEndOfSimAddress) {
ExecuteInstruction();
}
}
void Simulator::RunFrom(Instruction* start) {
set_pc(start);
Run();
}
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a svc (Supervisor Call) instruction that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the svc instruction so the simulator knows what to call.
class Redirection {
public:
Redirection(void* external_function, ExternalReference::Type type)
: external_function_(external_function),
type_(type),
next_(NULL) {
redirect_call_.SetInstructionBits(
HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall));
Isolate* isolate = Isolate::Current();
next_ = isolate->simulator_redirection();
// TODO(all): Simulator flush I cache
isolate->set_simulator_redirection(this);
}
void* address_of_redirect_call() {
return reinterpret_cast<void*>(&redirect_call_);
}
template <typename T>
T external_function() { return reinterpret_cast<T>(external_function_); }
ExternalReference::Type type() { return type_; }
static Redirection* Get(void* external_function,
ExternalReference::Type type) {
Isolate* isolate = Isolate::Current();
Redirection* current = isolate->simulator_redirection();
for (; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) {
DCHECK_EQ(current->type(), type);
return current;
}
}
return new Redirection(external_function, type);
}
static Redirection* FromHltInstruction(Instruction* redirect_call) {
char* addr_of_hlt = reinterpret_cast<char*>(redirect_call);
char* addr_of_redirection =
addr_of_hlt - OFFSET_OF(Redirection, redirect_call_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static void* ReverseRedirection(int64_t reg) {
Redirection* redirection =
FromHltInstruction(reinterpret_cast<Instruction*>(reg));
return redirection->external_function<void*>();
}
private:
void* external_function_;
Instruction redirect_call_;
ExternalReference::Type type_;
Redirection* next_;
};
// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair structure.
// The simulator assumes all runtime calls return two 64-bits values. If they
// don't, register x1 is clobbered. This is fine because x1 is caller-saved.
struct ObjectPair {
int64_t res0;
int64_t res1;
};
typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
int64_t arg1,
int64_t arg2,
int64_t arg3,
int64_t arg4,
int64_t arg5,
int64_t arg6,
int64_t arg7);
typedef int64_t (*SimulatorRuntimeCompareCall)(double arg1, double arg2);
typedef double (*SimulatorRuntimeFPFPCall)(double arg1, double arg2);
typedef double (*SimulatorRuntimeFPCall)(double arg1);
typedef double (*SimulatorRuntimeFPIntCall)(double arg1, int32_t arg2);
// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
// This signature supports direct call to accessor getter callback.
typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
typedef void (*SimulatorRuntimeProfilingGetterCall)(int64_t arg0, int64_t arg1,
void* arg2);
void Simulator::DoRuntimeCall(Instruction* instr) {
Redirection* redirection = Redirection::FromHltInstruction(instr);
// The called C code might itself call simulated code, so any
// caller-saved registers (including lr) could still be clobbered by a
// redirected call.
Instruction* return_address = lr();
int64_t external = redirection->external_function<int64_t>();
TraceSim("Call to host function at %p\n",
redirection->external_function<void*>());
// SP must be 16-byte-aligned at the call interface.
bool stack_alignment_exception = ((sp() & 0xf) != 0);
if (stack_alignment_exception) {
TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp());
FATAL("ALIGNMENT EXCEPTION");
}
switch (redirection->type()) {
default:
TraceSim("Type: Unknown.\n");
UNREACHABLE();
break;
case ExternalReference::BUILTIN_CALL: {
// Object* f(v8::internal::Arguments).
TraceSim("Type: BUILTIN_CALL\n");
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
// We don't know how many arguments are being passed, but we can
// pass 8 without touching the stack. They will be ignored by the
// host function if they aren't used.
TraceSim("Arguments: "
"0x%016" PRIx64 ", 0x%016" PRIx64 ", "
"0x%016" PRIx64 ", 0x%016" PRIx64 ", "
"0x%016" PRIx64 ", 0x%016" PRIx64 ", "
"0x%016" PRIx64 ", 0x%016" PRIx64,
xreg(0), xreg(1), xreg(2), xreg(3),
xreg(4), xreg(5), xreg(6), xreg(7));
ObjectPair result = target(xreg(0), xreg(1), xreg(2), xreg(3),
xreg(4), xreg(5), xreg(6), xreg(7));
TraceSim("Returned: {0x%" PRIx64 ", 0x%" PRIx64 "}\n",
result.res0, result.res1);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_xreg(0, result.res0);
set_xreg(1, result.res1);
break;
}
case ExternalReference::DIRECT_API_CALL: {
// void f(v8::FunctionCallbackInfo&)
TraceSim("Type: DIRECT_API_CALL\n");
SimulatorRuntimeDirectApiCall target =
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0));
target(xreg(0));
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
case ExternalReference::BUILTIN_COMPARE_CALL: {
// int f(double, double)
TraceSim("Type: BUILTIN_COMPARE_CALL\n");
SimulatorRuntimeCompareCall target =
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
int64_t result = target(dreg(0), dreg(1));
TraceSim("Returned: %" PRId64 "\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_xreg(0, result);
break;
}
case ExternalReference::BUILTIN_FP_CALL: {
// double f(double)
TraceSim("Type: BUILTIN_FP_CALL\n");
SimulatorRuntimeFPCall target =
reinterpret_cast<SimulatorRuntimeFPCall>(external);
TraceSim("Argument: %f\n", dreg(0));
double result = target(dreg(0));
TraceSim("Returned: %f\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_dreg(0, result);
break;
}
case ExternalReference::BUILTIN_FP_FP_CALL: {
// double f(double, double)
TraceSim("Type: BUILTIN_FP_FP_CALL\n");
SimulatorRuntimeFPFPCall target =
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
double result = target(dreg(0), dreg(1));
TraceSim("Returned: %f\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_dreg(0, result);
break;
}
case ExternalReference::BUILTIN_FP_INT_CALL: {
// double f(double, int)
TraceSim("Type: BUILTIN_FP_INT_CALL\n");
SimulatorRuntimeFPIntCall target =
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0));
double result = target(dreg(0), wreg(0));
TraceSim("Returned: %f\n", result);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
set_dreg(0, result);
break;
}
case ExternalReference::DIRECT_GETTER_CALL: {
// void f(Local<String> property, PropertyCallbackInfo& info)
TraceSim("Type: DIRECT_GETTER_CALL\n");
SimulatorRuntimeDirectGetterCall target =
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n",
xreg(0), xreg(1));
target(xreg(0), xreg(1));
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
case ExternalReference::PROFILING_API_CALL: {
// void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
TraceSim("Type: PROFILING_API_CALL\n");
SimulatorRuntimeProfilingApiCall target =
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
void* arg1 = Redirection::ReverseRedirection(xreg(1));
TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1);
target(xreg(0), arg1);
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
case ExternalReference::PROFILING_GETTER_CALL: {
// void f(Local<String> property, PropertyCallbackInfo& info,
// AccessorNameGetterCallback callback)
TraceSim("Type: PROFILING_GETTER_CALL\n");
SimulatorRuntimeProfilingGetterCall target =
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
external);
void* arg2 = Redirection::ReverseRedirection(xreg(2));
TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n",
xreg(0), xreg(1), arg2);
target(xreg(0), xreg(1), arg2);
TraceSim("No return value.");
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
break;
}
}
set_lr(return_address);
set_pc(return_address);
}
void* Simulator::RedirectExternalReference(void* external_function,
ExternalReference::Type type) {
Redirection* redirection = Redirection::Get(external_function, type);
return redirection->address_of_redirect_call();
}
const char* Simulator::xreg_names[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"ip0", "ip1", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "cp", "jssp", "fp", "lr", "xzr", "csp"};
const char* Simulator::wreg_names[] = {
"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7",
"w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15",
"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23",
"w24", "w25", "w26", "wcp", "wjssp", "wfp", "wlr", "wzr", "wcsp"};
const char* Simulator::sreg_names[] = {
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};
const char* Simulator::dreg_names[] = {
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
const char* Simulator::vreg_names[] = {
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"};
const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) {
STATIC_ASSERT(arraysize(Simulator::wreg_names) == (kNumberOfRegisters + 1));
DCHECK(code < kNumberOfRegisters);
// The modulo operator has no effect here, but it silences a broken GCC
// warning about out-of-bounds array accesses.
code %= kNumberOfRegisters;
// If the code represents the stack pointer, index the name after zr.
if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
code = kZeroRegCode + 1;
}
return wreg_names[code];
}
const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) {
STATIC_ASSERT(arraysize(Simulator::xreg_names) == (kNumberOfRegisters + 1));
DCHECK(code < kNumberOfRegisters);
code %= kNumberOfRegisters;
// If the code represents the stack pointer, index the name after zr.
if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
code = kZeroRegCode + 1;
}
return xreg_names[code];
}
const char* Simulator::SRegNameForCode(unsigned code) {
STATIC_ASSERT(arraysize(Simulator::sreg_names) == kNumberOfFPRegisters);
DCHECK(code < kNumberOfFPRegisters);
return sreg_names[code % kNumberOfFPRegisters];
}
const char* Simulator::DRegNameForCode(unsigned code) {
STATIC_ASSERT(arraysize(Simulator::dreg_names) == kNumberOfFPRegisters);
DCHECK(code < kNumberOfFPRegisters);
return dreg_names[code % kNumberOfFPRegisters];
}
const char* Simulator::VRegNameForCode(unsigned code) {
STATIC_ASSERT(arraysize(Simulator::vreg_names) == kNumberOfFPRegisters);
DCHECK(code < kNumberOfFPRegisters);
return vreg_names[code % kNumberOfFPRegisters];
}
int Simulator::CodeFromName(const char* name) {
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
if ((strcmp(xreg_names[i], name) == 0) ||
(strcmp(wreg_names[i], name) == 0)) {
return i;
}
}
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
if ((strcmp(vreg_names[i], name) == 0) ||
(strcmp(dreg_names[i], name) == 0) ||
(strcmp(sreg_names[i], name) == 0)) {
return i;
}
}
if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) {
return kSPRegInternalCode;
}
return -1;
}
// Helpers ---------------------------------------------------------------------
template <typename T>
T Simulator::AddWithCarry(bool set_flags,
T src1,
T src2,
T carry_in) {
typedef typename make_unsigned<T>::type unsignedT;
DCHECK((carry_in == 0) || (carry_in == 1));
T signed_sum = src1 + src2 + carry_in;
T result = signed_sum;
bool N, Z, C, V;
// Compute the C flag
unsignedT u1 = static_cast<unsignedT>(src1);
unsignedT u2 = static_cast<unsignedT>(src2);
unsignedT urest = std::numeric_limits<unsignedT>::max() - u1;
C = (u2 > urest) || (carry_in && (((u2 + 1) > urest) || (u2 > (urest - 1))));
// Overflow iff the sign bit is the same for the two inputs and different
// for the result.
V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0);
N = CalcNFlag(result);
Z = CalcZFlag(result);
if (set_flags) {
nzcv().SetN(N);
nzcv().SetZ(Z);
nzcv().SetC(C);
nzcv().SetV(V);
LogSystemRegister(NZCV);
}
return result;
}
template<typename T>
void Simulator::AddSubWithCarry(Instruction* instr) {
T op2 = reg<T>(instr->Rm());
T new_val;
if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) {
op2 = ~op2;
}
new_val = AddWithCarry<T>(instr->FlagsUpdate(),
reg<T>(instr->Rn()),
op2,
nzcv().C());
set_reg<T>(instr->Rd(), new_val);
}
template <typename T>
T Simulator::ShiftOperand(T value, Shift shift_type, unsigned amount) {
typedef typename make_unsigned<T>::type unsignedT;
if (amount == 0) {
return value;
}
switch (shift_type) {
case LSL:
return value << amount;
case LSR:
return static_cast<unsignedT>(value) >> amount;
case ASR:
return value >> amount;
case ROR:
return (static_cast<unsignedT>(value) >> amount) |
((value & ((1L << amount) - 1L)) <<
(sizeof(unsignedT) * 8 - amount));
default:
UNIMPLEMENTED();
return 0;
}
}
template <typename T>
T Simulator::ExtendValue(T value, Extend extend_type, unsigned left_shift) {
const unsigned kSignExtendBShift = (sizeof(T) - 1) * 8;
const unsigned kSignExtendHShift = (sizeof(T) - 2) * 8;
const unsigned kSignExtendWShift = (sizeof(T) - 4) * 8;
switch (extend_type) {
case UXTB:
value &= kByteMask;
break;
case UXTH:
value &= kHalfWordMask;
break;
case UXTW:
value &= kWordMask;
break;
case SXTB:
value = (value << kSignExtendBShift) >> kSignExtendBShift;
break;
case SXTH:
value = (value << kSignExtendHShift) >> kSignExtendHShift;
break;
case SXTW:
value = (value << kSignExtendWShift) >> kSignExtendWShift;
break;
case UXTX:
case SXTX:
break;
default:
UNREACHABLE();
}
return value << left_shift;
}
template <typename T>
void Simulator::Extract(Instruction* instr) {
unsigned lsb = instr->ImmS();
T op2 = reg<T>(instr->Rm());
T result = op2;
if (lsb) {
T op1 = reg<T>(instr->Rn());
result = op2 >> lsb | (op1 << ((sizeof(T) * 8) - lsb));
}
set_reg<T>(instr->Rd(), result);
}
template<> double Simulator::FPDefaultNaN<double>() const {
return kFP64DefaultNaN;
}
template<> float Simulator::FPDefaultNaN<float>() const {
return kFP32DefaultNaN;
}
void Simulator::FPCompare(double val0, double val1) {
AssertSupportedFPCR();
// TODO(jbramley): This assumes that the C++ implementation handles
// comparisons in the way that we expect (as per AssertSupportedFPCR()).
if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) {
nzcv().SetRawValue(FPUnorderedFlag);
} else if (val0 < val1) {
nzcv().SetRawValue(FPLessThanFlag);
} else if (val0 > val1) {
nzcv().SetRawValue(FPGreaterThanFlag);
} else if (val0 == val1) {
nzcv().SetRawValue(FPEqualFlag);
} else {
UNREACHABLE();
}
LogSystemRegister(NZCV);
}
void Simulator::SetBreakpoint(Instruction* location) {
for (unsigned i = 0; i < breakpoints_.size(); i++) {
if (breakpoints_.at(i).location == location) {
PrintF(stream_,
"Existing breakpoint at %p was %s\n",
reinterpret_cast<void*>(location),
breakpoints_.at(i).enabled ? "disabled" : "enabled");
breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled;
return;
}
}
Breakpoint new_breakpoint = {location, true};
breakpoints_.push_back(new_breakpoint);
PrintF(stream_,
"Set a breakpoint at %p\n", reinterpret_cast<void*>(location));
}
void Simulator::ListBreakpoints() {
PrintF(stream_, "Breakpoints:\n");
for (unsigned i = 0; i < breakpoints_.size(); i++) {
PrintF(stream_, "%p : %s\n",
reinterpret_cast<void*>(breakpoints_.at(i).location),
breakpoints_.at(i).enabled ? "enabled" : "disabled");
}
}
void Simulator::CheckBreakpoints() {
bool hit_a_breakpoint = false;
for (unsigned i = 0; i < breakpoints_.size(); i++) {
if ((breakpoints_.at(i).location == pc_) &&
breakpoints_.at(i).enabled) {
hit_a_breakpoint = true;
// Disable this breakpoint.
breakpoints_.at(i).enabled = false;
}
}
if (hit_a_breakpoint) {
PrintF(stream_, "Hit and disabled a breakpoint at %p.\n",
reinterpret_cast<void*>(pc_));
Debug();
}
}
void Simulator::CheckBreakNext() {
// If the current instruction is a BL, insert a breakpoint just after it.
if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) {
SetBreakpoint(pc_->following());
break_on_next_ = false;
}
}
void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) {
Instruction* end = start->InstructionAtOffset(count * kInstructionSize);
for (Instruction* pc = start; pc < end; pc = pc->following()) {
disassembler_decoder_->Decode(pc);
}
}
void Simulator::PrintSystemRegisters() {
PrintSystemRegister(NZCV);
PrintSystemRegister(FPCR);
}
void Simulator::PrintRegisters() {
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
PrintRegister(i);
}
}
void Simulator::PrintFPRegisters() {
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
PrintFPRegister(i);
}
}
void Simulator::PrintRegister(unsigned code, Reg31Mode r31mode) {
// Don't print writes into xzr.
if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) {
return;
}
// The template is "# x<code>:value".
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s\n",
clr_reg_name, XRegNameForCode(code, r31mode),
clr_reg_value, reg<uint64_t>(code, r31mode), clr_normal);
}
void Simulator::PrintFPRegister(unsigned code, PrintFPRegisterSizes sizes) {
// The template is "# v<code>:bits (d<code>:value, ...)".
DCHECK(sizes != 0);
DCHECK((sizes & kPrintAllFPRegValues) == sizes);
// Print the raw bits.
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (",
clr_fpreg_name, VRegNameForCode(code),
clr_fpreg_value, fpreg<uint64_t>(code), clr_normal);
// Print all requested value interpretations.
bool need_separator = false;
if (sizes & kPrintDRegValue) {
fprintf(stream_, "%s%s%s: %s%g%s",
need_separator ? ", " : "",
clr_fpreg_name, DRegNameForCode(code),
clr_fpreg_value, fpreg<double>(code), clr_normal);
need_separator = true;
}
if (sizes & kPrintSRegValue) {
fprintf(stream_, "%s%s%s: %s%g%s",
need_separator ? ", " : "",
clr_fpreg_name, SRegNameForCode(code),
clr_fpreg_value, fpreg<float>(code), clr_normal);
need_separator = true;
}
// End the value list.
fprintf(stream_, ")\n");
}
void Simulator::PrintSystemRegister(SystemRegister id) {
switch (id) {
case NZCV:
fprintf(stream_, "# %sNZCV: %sN:%d Z:%d C:%d V:%d%s\n",
clr_flag_name, clr_flag_value,
nzcv().N(), nzcv().Z(), nzcv().C(), nzcv().V(),
clr_normal);
break;
case FPCR: {
static const char * rmode[] = {
"0b00 (Round to Nearest)",
"0b01 (Round towards Plus Infinity)",
"0b10 (Round towards Minus Infinity)",
"0b11 (Round towards Zero)"
};
DCHECK(fpcr().RMode() < arraysize(rmode));
fprintf(stream_,
"# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n",
clr_flag_name, clr_flag_value,
fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()],
clr_normal);
break;
}
default:
UNREACHABLE();
}
}
void Simulator::PrintRead(uintptr_t address,
size_t size,
unsigned reg_code) {
USE(size); // Size is unused here.
// The template is "# x<code>:value <- address".
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s",
clr_reg_name, XRegNameForCode(reg_code),
clr_reg_value, reg<uint64_t>(reg_code), clr_normal);
fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n",
clr_memory_address, address, clr_normal);
}
void Simulator::PrintReadFP(uintptr_t address,
size_t size,
unsigned reg_code) {
// The template is "# reg:bits (reg:value) <- address".
switch (size) {
case kSRegSize:
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (%s%s: %s%gf%s)",
clr_fpreg_name, VRegNameForCode(reg_code),
clr_fpreg_value, fpreg<uint64_t>(reg_code), clr_normal,
clr_fpreg_name, SRegNameForCode(reg_code),
clr_fpreg_value, fpreg<float>(reg_code), clr_normal);
break;
case kDRegSize:
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (%s%s: %s%g%s)",
clr_fpreg_name, VRegNameForCode(reg_code),
clr_fpreg_value, fpreg<uint64_t>(reg_code), clr_normal,
clr_fpreg_name, DRegNameForCode(reg_code),
clr_fpreg_value, fpreg<double>(reg_code), clr_normal);
break;
default:
UNREACHABLE();
}
fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n",
clr_memory_address, address, clr_normal);
}
void Simulator::PrintWrite(uintptr_t address,
size_t size,
unsigned reg_code) {
// The template is "# reg:value -> address". To keep the trace tidy and
// readable, the value is aligned with the values in the register trace.
switch (size) {
case kByteSizeInBytes:
fprintf(stream_, "# %s%5s<7:0>: %s0x%02" PRIx8 "%s",
clr_reg_name, WRegNameForCode(reg_code),
clr_reg_value, reg<uint8_t>(reg_code), clr_normal);
break;
case kHalfWordSizeInBytes:
fprintf(stream_, "# %s%5s<15:0>: %s0x%04" PRIx16 "%s",
clr_reg_name, WRegNameForCode(reg_code),
clr_reg_value, reg<uint16_t>(reg_code), clr_normal);
break;
case kWRegSize:
fprintf(stream_, "# %s%5s: %s0x%08" PRIx32 "%s",
clr_reg_name, WRegNameForCode(reg_code),
clr_reg_value, reg<uint32_t>(reg_code), clr_normal);
break;
case kXRegSize:
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s",
clr_reg_name, XRegNameForCode(reg_code),
clr_reg_value, reg<uint64_t>(reg_code), clr_normal);
break;
default:
UNREACHABLE();
}
fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n",
clr_memory_address, address, clr_normal);
}
void Simulator::PrintWriteFP(uintptr_t address,
size_t size,
unsigned reg_code) {
// The template is "# reg:bits (reg:value) -> address". To keep the trace tidy
// and readable, the value is aligned with the values in the register trace.
switch (size) {
case kSRegSize:
fprintf(stream_, "# %s%5s<31:0>: %s0x%08" PRIx32 "%s (%s%s: %s%gf%s)",
clr_fpreg_name, VRegNameForCode(reg_code),
clr_fpreg_value, fpreg<uint32_t>(reg_code), clr_normal,
clr_fpreg_name, SRegNameForCode(reg_code),
clr_fpreg_value, fpreg<float>(reg_code), clr_normal);
break;
case kDRegSize:
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (%s%s: %s%g%s)",
clr_fpreg_name, VRegNameForCode(reg_code),
clr_fpreg_value, fpreg<uint64_t>(reg_code), clr_normal,
clr_fpreg_name, DRegNameForCode(reg_code),
clr_fpreg_value, fpreg<double>(reg_code), clr_normal);
break;
default:
UNREACHABLE();
}
fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n",
clr_memory_address, address, clr_normal);
}
// Visitors---------------------------------------------------------------------
void Simulator::VisitUnimplemented(Instruction* instr) {
fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n",
reinterpret_cast<void*>(instr), instr->InstructionBits());
UNIMPLEMENTED();
}
void Simulator::VisitUnallocated(Instruction* instr) {
fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n",
reinterpret_cast<void*>(instr), instr->InstructionBits());
UNIMPLEMENTED();
}
void Simulator::VisitPCRelAddressing(Instruction* instr) {
switch (instr->Mask(PCRelAddressingMask)) {
case ADR:
set_reg(instr->Rd(), instr->ImmPCOffsetTarget());
break;
case ADRP: // Not implemented in the assembler.
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
break;
}
}
void Simulator::VisitUnconditionalBranch(Instruction* instr) {
switch (instr->Mask(UnconditionalBranchMask)) {
case BL:
set_lr(instr->following());
// Fall through.
case B:
set_pc(instr->ImmPCOffsetTarget());
break;
default:
UNREACHABLE();
}
}
void Simulator::VisitConditionalBranch(Instruction* instr) {
DCHECK(instr->Mask(ConditionalBranchMask) == B_cond);
if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) {
set_pc(instr->ImmPCOffsetTarget());
}
}
void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) {
Instruction* target = reg<Instruction*>(instr->Rn());
switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
case BLR: {
set_lr(instr->following());
if (instr->Rn() == 31) {
// BLR XZR is used as a guard for the constant pool. We should never hit
// this, but if we do trap to allow debugging.
Debug();
}
// Fall through.
}
case BR:
case RET: set_pc(target); break;
default: UNIMPLEMENTED();
}
}
void Simulator::VisitTestBranch(Instruction* instr) {
unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) |
instr->ImmTestBranchBit40();
bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0);
switch (instr->Mask(TestBranchMask)) {
case TBZ: break;
case TBNZ: take_branch = !take_branch; break;
default: UNIMPLEMENTED();
}
if (take_branch) {
set_pc(instr->ImmPCOffsetTarget());
}
}
void Simulator::VisitCompareBranch(Instruction* instr) {
unsigned rt = instr->Rt();
bool take_branch = false;
switch (instr->Mask(CompareBranchMask)) {
case CBZ_w: take_branch = (wreg(rt) == 0); break;
case CBZ_x: take_branch = (xreg(rt) == 0); break;
case CBNZ_w: take_branch = (wreg(rt) != 0); break;
case CBNZ_x: take_branch = (xreg(rt) != 0); break;
default: UNIMPLEMENTED();
}
if (take_branch) {
set_pc(instr->ImmPCOffsetTarget());
}
}
template<typename T>
void Simulator::AddSubHelper(Instruction* instr, T op2) {
bool set_flags = instr->FlagsUpdate();
T new_val = 0;
Instr operation = instr->Mask(AddSubOpMask);
switch (operation) {
case ADD:
case ADDS: {
new_val = AddWithCarry<T>(set_flags,
reg<T>(instr->Rn(), instr->RnMode()),
op2);
break;
}
case SUB:
case SUBS: {
new_val = AddWithCarry<T>(set_flags,
reg<T>(instr->Rn(), instr->RnMode()),
~op2,
1);
break;
}
default: UNREACHABLE();
}
set_reg<T>(instr->Rd(), new_val, instr->RdMode());
}
void Simulator::VisitAddSubShifted(Instruction* instr) {
Shift shift_type = static_cast<Shift>(instr->ShiftDP());
unsigned shift_amount = instr->ImmDPShift();
if (instr->SixtyFourBits()) {
int64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount);
AddSubHelper(instr, op2);
} else {
int32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount);
AddSubHelper(instr, op2);
}
}
void Simulator::VisitAddSubImmediate(Instruction* instr) {
int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0);
if (instr->SixtyFourBits()) {
AddSubHelper<int64_t>(instr, op2);
} else {
AddSubHelper<int32_t>(instr, op2);
}
}
void Simulator::VisitAddSubExtended(Instruction* instr) {
Extend ext = static_cast<Extend>(instr->ExtendMode());
unsigned left_shift = instr->ImmExtendShift();
if (instr->SixtyFourBits()) {
int64_t op2 = ExtendValue(xreg(instr->Rm()), ext, left_shift);
AddSubHelper(instr, op2);
} else {
int32_t op2 = ExtendValue(wreg(instr->Rm()), ext, left_shift);
AddSubHelper(instr, op2);
}
}
void Simulator::VisitAddSubWithCarry(Instruction* instr) {
if (instr->SixtyFourBits()) {
AddSubWithCarry<int64_t>(instr);
} else {
AddSubWithCarry<int32_t>(instr);
}
}
void Simulator::VisitLogicalShifted(Instruction* instr) {
Shift shift_type = static_cast<Shift>(instr->ShiftDP());
unsigned shift_amount = instr->ImmDPShift();
if (instr->SixtyFourBits()) {
int64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount);
op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2;
LogicalHelper<int64_t>(instr, op2);
} else {
int32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount);
op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2;
LogicalHelper<int32_t>(instr, op2);
}
}
void Simulator::VisitLogicalImmediate(Instruction* instr) {
if (instr->SixtyFourBits()) {
LogicalHelper<int64_t>(instr, instr->ImmLogical());
} else {
LogicalHelper<int32_t>(instr, instr->ImmLogical());
}
}
template<typename T>
void Simulator::LogicalHelper(Instruction* instr, T op2) {
T op1 = reg<T>(instr->Rn());
T result = 0;
bool update_flags = false;
// Switch on the logical operation, stripping out the NOT bit, as it has a
// different meaning for logical immediate instructions.
switch (instr->Mask(LogicalOpMask & ~NOT)) {
case ANDS: update_flags = true; // Fall through.
case AND: result = op1 & op2; break;
case ORR: result = op1 | op2; break;
case EOR: result = op1 ^ op2; break;
default:
UNIMPLEMENTED();
}
if (update_flags) {
nzcv().SetN(CalcNFlag(result));
nzcv().SetZ(CalcZFlag(result));
nzcv().SetC(0);
nzcv().SetV(0);
LogSystemRegister(NZCV);
}
set_reg<T>(instr->Rd(), result, instr->RdMode());
}
void Simulator::VisitConditionalCompareRegister(Instruction* instr) {
if (instr->SixtyFourBits()) {
ConditionalCompareHelper(instr, xreg(instr->Rm()));
} else {
ConditionalCompareHelper(instr, wreg(instr->Rm()));
}
}
void Simulator::VisitConditionalCompareImmediate(Instruction* instr) {
if (instr->SixtyFourBits()) {
ConditionalCompareHelper<int64_t>(instr, instr->ImmCondCmp());
} else {
ConditionalCompareHelper<int32_t>(instr, instr->ImmCondCmp());
}
}
template<typename T>
void Simulator::ConditionalCompareHelper(Instruction* instr, T op2) {
T op1 = reg<T>(instr->Rn());
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
// If the condition passes, set the status flags to the result of comparing
// the operands.
if (instr->Mask(ConditionalCompareMask) == CCMP) {
AddWithCarry<T>(true, op1, ~op2, 1);
} else {
DCHECK(instr->Mask(ConditionalCompareMask) == CCMN);
AddWithCarry<T>(true, op1, op2, 0);
}
} else {
// If the condition fails, set the status flags to the nzcv immediate.
nzcv().SetFlags(instr->Nzcv());
LogSystemRegister(NZCV);
}
}
void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) {
int offset = instr->ImmLSUnsigned() << instr->SizeLS();
LoadStoreHelper(instr, offset, Offset);
}
void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) {
LoadStoreHelper(instr, instr->ImmLS(), Offset);
}
void Simulator::VisitLoadStorePreIndex(Instruction* instr) {
LoadStoreHelper(instr, instr->ImmLS(), PreIndex);
}
void Simulator::VisitLoadStorePostIndex(Instruction* instr) {
LoadStoreHelper(instr, instr->ImmLS(), PostIndex);
}
void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) {
Extend ext = static_cast<Extend>(instr->ExtendMode());
DCHECK((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();
int64_t offset = ExtendValue(xreg(instr->Rm()), ext, shift_amount);
LoadStoreHelper(instr, offset, Offset);
}
void Simulator::LoadStoreHelper(Instruction* instr,
int64_t offset,
AddrMode addrmode) {
unsigned srcdst = instr->Rt();
unsigned addr_reg = instr->Rn();
uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode);
uintptr_t stack = 0;
// Handle the writeback for stores before the store. On a CPU the writeback
// and the store are atomic, but when running on the simulator it is possible
// to be interrupted in between. The simulator is not thread safe and V8 does
// not require it to be to run JavaScript therefore the profiler may sample
// the "simulated" CPU in the middle of load/store with writeback. The code
// below ensures that push operations are safe even when interrupted: the
// stack pointer will be decremented before adding an element to the stack.
if (instr->IsStore()) {
LoadStoreWriteBack(addr_reg, offset, addrmode);
// For store the address post writeback is used to check access below the
// stack.
stack = sp();
}
LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask));
switch (op) {
// Use _no_log variants to suppress the register trace (LOG_REGS,
// LOG_FP_REGS). We will print a more detailed log.
case LDRB_w: set_wreg_no_log(srcdst, MemoryRead<uint8_t>(address)); break;
case LDRH_w: set_wreg_no_log(srcdst, MemoryRead<uint16_t>(address)); break;
case LDR_w: set_wreg_no_log(srcdst, MemoryRead<uint32_t>(address)); break;
case LDR_x: set_xreg_no_log(srcdst, MemoryRead<uint64_t>(address)); break;
case LDRSB_w: set_wreg_no_log(srcdst, MemoryRead<int8_t>(address)); break;
case LDRSH_w: set_wreg_no_log(srcdst, MemoryRead<int16_t>(address)); break;
case LDRSB_x: set_xreg_no_log(srcdst, MemoryRead<int8_t>(address)); break;
case LDRSH_x: set_xreg_no_log(srcdst, MemoryRead<int16_t>(address)); break;
case LDRSW_x: set_xreg_no_log(srcdst, MemoryRead<int32_t>(address)); break;
case LDR_s: set_sreg_no_log(srcdst, MemoryRead<float>(address)); break;
case LDR_d: set_dreg_no_log(srcdst, MemoryRead<double>(address)); break;
case STRB_w: MemoryWrite<uint8_t>(address, wreg(srcdst)); break;
case STRH_w: MemoryWrite<uint16_t>(address, wreg(srcdst)); break;
case STR_w: MemoryWrite<uint32_t>(address, wreg(srcdst)); break;
case STR_x: MemoryWrite<uint64_t>(address, xreg(srcdst)); break;
case STR_s: MemoryWrite<float>(address, sreg(srcdst)); break;
case STR_d: MemoryWrite<double>(address, dreg(srcdst)); break;
default: UNIMPLEMENTED();
}
// Print a detailed trace (including the memory address) instead of the basic
// register:value trace generated by set_*reg().
size_t access_size = 1 << instr->SizeLS();
if (instr->IsLoad()) {
if ((op == LDR_s) || (op == LDR_d)) {
LogReadFP(address, access_size, srcdst);
} else {
LogRead(address, access_size, srcdst);
}
} else {
if ((op == STR_s) || (op == STR_d)) {
LogWriteFP(address, access_size, srcdst);
} else {
LogWrite(address, access_size, srcdst);
}
}
// Handle the writeback for loads after the load to ensure safe pop
// operation even when interrupted in the middle of it. The stack pointer
// is only updated after the load so pop(fp) will never break the invariant
// sp <= fp expected while walking the stack in the sampler.
if (instr->IsLoad()) {
// For loads the address pre writeback is used to check access below the
// stack.
stack = sp();
LoadStoreWriteBack(addr_reg, offset, addrmode);
}
// Accesses below the stack pointer (but above the platform stack limit) are
// not allowed in the ABI.
CheckMemoryAccess(address, stack);
}
void Simulator::VisitLoadStorePairOffset(Instruction* instr) {
LoadStorePairHelper(instr, Offset);
}
void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) {
LoadStorePairHelper(instr, PreIndex);
}
void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) {
LoadStorePairHelper(instr, PostIndex);
}
void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) {
LoadStorePairHelper(instr, Offset);
}
void Simulator::LoadStorePairHelper(Instruction* instr,
AddrMode addrmode) {
unsigned rt = instr->Rt();
unsigned rt2 = instr->Rt2();
unsigned addr_reg = instr->Rn();
size_t access_size = 1 << instr->SizeLSPair();
int64_t offset = instr->ImmLSPair() * access_size;
uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode);
uintptr_t address2 = address + access_size;
uintptr_t stack = 0;
// Handle the writeback for stores before the store. On a CPU the writeback
// and the store are atomic, but when running on the simulator it is possible
// to be interrupted in between. The simulator is not thread safe and V8 does
// not require it to be to run JavaScript therefore the profiler may sample
// the "simulated" CPU in the middle of load/store with writeback. The code
// below ensures that push operations are safe even when interrupted: the
// stack pointer will be decremented before adding an element to the stack.
if (instr->IsStore()) {
LoadStoreWriteBack(addr_reg, offset, addrmode);
// For store the address post writeback is used to check access below the
// stack.
stack = sp();
}
LoadStorePairOp op =
static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask));
// 'rt' and 'rt2' can only be aliased for stores.
DCHECK(((op & LoadStorePairLBit) == 0) || (rt != rt2));
switch (op) {
// Use _no_log variants to suppress the register trace (LOG_REGS,
// LOG_FP_REGS). We will print a more detailed log.
case LDP_w: {
DCHECK(access_size == kWRegSize);
set_wreg_no_log(rt, MemoryRead<uint32_t>(address));
set_wreg_no_log(rt2, MemoryRead<uint32_t>(address2));
break;
}
case LDP_s: {
DCHECK(access_size == kSRegSize);
set_sreg_no_log(rt, MemoryRead<float>(address));
set_sreg_no_log(rt2, MemoryRead<float>(address2));
break;
}
case LDP_x: {
DCHECK(access_size == kXRegSize);
set_xreg_no_log(rt, MemoryRead<uint64_t>(address));
set_xreg_no_log(rt2, MemoryRead<uint64_t>(address2));
break;
}
case LDP_d: {
DCHECK(access_size == kDRegSize);
set_dreg_no_log(rt, MemoryRead<double>(address));
set_dreg_no_log(rt2, MemoryRead<double>(address2));
break;
}
case LDPSW_x: {
DCHECK(access_size == kWRegSize);
set_xreg_no_log(rt, MemoryRead<int32_t>(address));
set_xreg_no_log(rt2, MemoryRead<int32_t>(address2));
break;
}
case STP_w: {
DCHECK(access_size == kWRegSize);
MemoryWrite<uint32_t>(address, wreg(rt));
MemoryWrite<uint32_t>(address2, wreg(rt2));
break;
}
case STP_s: {
DCHECK(access_size == kSRegSize);
MemoryWrite<float>(address, sreg(rt));
MemoryWrite<float>(address2, sreg(rt2));
break;
}
case STP_x: {
DCHECK(access_size == kXRegSize);
MemoryWrite<uint64_t>(address, xreg(rt));
MemoryWrite<uint64_t>(address2, xreg(rt2));
break;
}
case STP_d: {
DCHECK(access_size == kDRegSize);
MemoryWrite<double>(address, dreg(rt));
MemoryWrite<double>(address2, dreg(rt2));
break;
}
default: UNREACHABLE();
}
// Print a detailed trace (including the memory address) instead of the basic
// register:value trace generated by set_*reg().
if (instr->IsLoad()) {
if ((op == LDP_s) || (op == LDP_d)) {
LogReadFP(address, access_size, rt);
LogReadFP(address2, access_size, rt2);
} else {
LogRead(address, access_size, rt);
LogRead(address2, access_size, rt2);
}
} else {
if ((op == STP_s) || (op == STP_d)) {
LogWriteFP(address, access_size, rt);
LogWriteFP(address2, access_size, rt2);
} else {
LogWrite(address, access_size, rt);
LogWrite(address2, access_size, rt2);
}
}
// Handle the writeback for loads after the load to ensure safe pop
// operation even when interrupted in the middle of it. The stack pointer
// is only updated after the load so pop(fp) will never break the invariant
// sp <= fp expected while walking the stack in the sampler.
if (instr->IsLoad()) {
// For loads the address pre writeback is used to check access below the
// stack.
stack = sp();
LoadStoreWriteBack(addr_reg, offset, addrmode);
}
// Accesses below the stack pointer (but above the platform stack limit) are
// not allowed in the ABI.
CheckMemoryAccess(address, stack);
}
void Simulator::VisitLoadLiteral(Instruction* instr) {
uintptr_t address = instr->LiteralAddress();
unsigned rt = instr->Rt();
switch (instr->Mask(LoadLiteralMask)) {
// Use _no_log variants to suppress the register trace (LOG_REGS,
// LOG_FP_REGS), then print a more detailed log.
case LDR_w_lit:
set_wreg_no_log(rt, MemoryRead<uint32_t>(address));
LogRead(address, kWRegSize, rt);
break;
case LDR_x_lit:
set_xreg_no_log(rt, MemoryRead<uint64_t>(address));
LogRead(address, kXRegSize, rt);
break;
case LDR_s_lit:
set_sreg_no_log(rt, MemoryRead<float>(address));
LogReadFP(address, kSRegSize, rt);
break;
case LDR_d_lit:
set_dreg_no_log(rt, MemoryRead<double>(address));
LogReadFP(address, kDRegSize, rt);
break;
default: UNREACHABLE();
}
}
uintptr_t Simulator::LoadStoreAddress(unsigned addr_reg, int64_t offset,
AddrMode addrmode) {
const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask;
uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) {
// When the base register is SP the stack pointer is required to be
// quadword aligned prior to the address calculation and write-backs.
// Misalignment will cause a stack alignment fault.
FATAL("ALIGNMENT EXCEPTION");
}
if ((addrmode == Offset) || (addrmode == PreIndex)) {
address += offset;
}
return address;
}
void Simulator::LoadStoreWriteBack(unsigned addr_reg,
int64_t offset,
AddrMode addrmode) {
if ((addrmode == PreIndex) || (addrmode == PostIndex)) {
DCHECK(offset != 0);
uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
set_reg(addr_reg, address + offset, Reg31IsStackPointer);
}
}
void Simulator::CheckMemoryAccess(uintptr_t address, uintptr_t stack) {
if ((address >= stack_limit_) && (address < stack)) {
fprintf(stream_, "ACCESS BELOW STACK POINTER:\n");
fprintf(stream_, " sp is here: 0x%016" PRIx64 "\n",
static_cast<uint64_t>(stack));
fprintf(stream_, " access was here: 0x%016" PRIx64 "\n",
static_cast<uint64_t>(address));
fprintf(stream_, " stack limit is here: 0x%016" PRIx64 "\n",
static_cast<uint64_t>(stack_limit_));
fprintf(stream_, "\n");
FATAL("ACCESS BELOW STACK POINTER");
}
}
void Simulator::VisitMoveWideImmediate(Instruction* instr) {
MoveWideImmediateOp mov_op =
static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask));
int64_t new_xn_val = 0;
bool is_64_bits = instr->SixtyFourBits() == 1;
// Shift is limited for W operations.
DCHECK(is_64_bits || (instr->ShiftMoveWide() < 2));
// Get the shifted immediate.
int64_t shift = instr->ShiftMoveWide() * 16;
int64_t shifted_imm16 = instr->ImmMoveWide() << shift;
// Compute the new value.
switch (mov_op) {
case MOVN_w:
case MOVN_x: {
new_xn_val = ~shifted_imm16;
if (!is_64_bits) new_xn_val &= kWRegMask;
break;
}
case MOVK_w:
case MOVK_x: {
unsigned reg_code = instr->Rd();
int64_t prev_xn_val = is_64_bits ? xreg(reg_code)
: wreg(reg_code);
new_xn_val = (prev_xn_val & ~(0xffffL << shift)) | shifted_imm16;
break;
}
case MOVZ_w:
case MOVZ_x: {
new_xn_val = shifted_imm16;
break;
}
default:
UNREACHABLE();
}
// Update the destination register.
set_xreg(instr->Rd(), new_xn_val);
}
void Simulator::VisitConditionalSelect(Instruction* instr) {
if (ConditionFailed(static_cast<Condition>(instr->Condition()))) {
uint64_t new_val = xreg(instr->Rm());
switch (instr->Mask(ConditionalSelectMask)) {
case CSEL_w: set_wreg(instr->Rd(), new_val); break;
case CSEL_x: set_xreg(instr->Rd(), new_val); break;
case CSINC_w: set_wreg(instr->Rd(), new_val + 1); break;
case CSINC_x: set_xreg(instr->Rd(), new_val + 1); break;
case CSINV_w: set_wreg(instr->Rd(), ~new_val); break;
case CSINV_x: set_xreg(instr->Rd(), ~new_val); break;
case CSNEG_w: set_wreg(instr->Rd(), -new_val); break;
case CSNEG_x: set_xreg(instr->Rd(), -new_val); break;
default: UNIMPLEMENTED();
}
} else {
if (instr->SixtyFourBits()) {
set_xreg(instr->Rd(), xreg(instr->Rn()));
} else {
set_wreg(instr->Rd(), wreg(instr->Rn()));
}
}
}
void Simulator::VisitDataProcessing1Source(Instruction* instr) {
unsigned dst = instr->Rd();
unsigned src = instr->Rn();
switch (instr->Mask(DataProcessing1SourceMask)) {
case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSizeInBits)); break;
case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSizeInBits)); break;
case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break;
case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break;
case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break;
case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break;
case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break;
case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSizeInBits));
break;
case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSizeInBits));
break;
case CLS_w: {
set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSizeInBits));
break;
}
case CLS_x: {
set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSizeInBits));
break;
}
default: UNIMPLEMENTED();
}
}
uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) {
DCHECK((num_bits == kWRegSizeInBits) || (num_bits == kXRegSizeInBits));
uint64_t result = 0;
for (unsigned i = 0; i < num_bits; i++) {
result = (result << 1) | (value & 1);
value >>= 1;
}
return result;
}
uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) {
// Split the 64-bit value into an 8-bit array, where b[0] is the least
// significant byte, and b[7] is the most significant.
uint8_t bytes[8];
uint64_t mask = 0xff00000000000000UL;
for (int i = 7; i >= 0; i--) {
bytes[i] = (value & mask) >> (i * 8);
mask >>= 8;
}
// Permutation tables for REV instructions.
// permute_table[Reverse16] is used by REV16_x, REV16_w
// permute_table[Reverse32] is used by REV32_x, REV_w
// permute_table[Reverse64] is used by REV_x
DCHECK((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2));
static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
{4, 5, 6, 7, 0, 1, 2, 3},
{0, 1, 2, 3, 4, 5, 6, 7} };
uint64_t result = 0;
for (int i = 0; i < 8; i++) {
result <<= 8;
result |= bytes[permute_table[mode][i]];
}
return result;
}
template <typename T>
void Simulator::DataProcessing2Source(Instruction* instr) {
Shift shift_op = NO_SHIFT;
T result = 0;
switch (instr->Mask(DataProcessing2SourceMask)) {
case SDIV_w:
case SDIV_x: {
T rn = reg<T>(instr->Rn());
T rm = reg<T>(instr->Rm());
if ((rn == std::numeric_limits<T>::min()) && (rm == -1)) {
result = std::numeric_limits<T>::min();
} else if (rm == 0) {
// Division by zero can be trapped, but not on A-class processors.
result = 0;
} else {
result = rn / rm;
}
break;
}
case UDIV_w:
case UDIV_x: {
typedef typename make_unsigned<T>::type unsignedT;
unsignedT rn = static_cast<unsignedT>(reg<T>(instr->Rn()));
unsignedT rm = static_cast<unsignedT>(reg<T>(instr->Rm()));
if (rm == 0) {
// Division by zero can be trapped, but not on A-class processors.
result = 0;
} else {
result = rn / rm;
}
break;
}
case LSLV_w:
case LSLV_x: shift_op = LSL; break;
case LSRV_w:
case LSRV_x: shift_op = LSR; break;
case ASRV_w:
case ASRV_x: shift_op = ASR; break;
case RORV_w:
case RORV_x: shift_op = ROR; break;
default: UNIMPLEMENTED();
}
if (shift_op != NO_SHIFT) {
// Shift distance encoded in the least-significant five/six bits of the
// register.
unsigned shift = wreg(instr->Rm());
if (sizeof(T) == kWRegSize) {
shift &= kShiftAmountWRegMask;
} else {
shift &= kShiftAmountXRegMask;
}
result = ShiftOperand(reg<T>(instr->Rn()), shift_op, shift);
}
set_reg<T>(instr->Rd(), result);
}
void Simulator::VisitDataProcessing2Source(Instruction* instr) {
if (instr->SixtyFourBits()) {
DataProcessing2Source<int64_t>(instr);
} else {
DataProcessing2Source<int32_t>(instr);
}
}
// The algorithm used is described in section 8.2 of
// Hacker's Delight, by Henry S. Warren, Jr.
// It assumes that a right shift on a signed integer is an arithmetic shift.
static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
uint64_t u0, v0, w0;
int64_t u1, v1, w1, w2, t;
u0 = u & 0xffffffffL;
u1 = u >> 32;
v0 = v & 0xffffffffL;
v1 = v >> 32;
w0 = u0 * v0;
t = u1 * v0 + (w0 >> 32);
w1 = t & 0xffffffffL;
w2 = t >> 32;
w1 = u0 * v1 + w1;
return u1 * v1 + w2 + (w1 >> 32);
}
void Simulator::VisitDataProcessing3Source(Instruction* instr) {
int64_t result = 0;
// Extract and sign- or zero-extend 32-bit arguments for widening operations.
uint64_t rn_u32 = reg<uint32_t>(instr->Rn());
uint64_t rm_u32 = reg<uint32_t>(instr->Rm());
int64_t rn_s32 = reg<int32_t>(instr->Rn());
int64_t rm_s32 = reg<int32_t>(instr->Rm());
switch (instr->Mask(DataProcessing3SourceMask)) {
case MADD_w:
case MADD_x:
result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm()));
break;
case MSUB_w:
case MSUB_x:
result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm()));
break;
case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break;
case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break;
case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break;
case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break;
case SMULH_x:
DCHECK(instr->Ra() == kZeroRegCode);
result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm()));
break;
default: UNIMPLEMENTED();
}
if (instr->SixtyFourBits()) {
set_xreg(instr->Rd(), result);
} else {
set_wreg(instr->Rd(), result);
}
}
template <typename T>
void Simulator::BitfieldHelper(Instruction* instr) {
typedef typename make_unsigned<T>::type unsignedT;
T reg_size = sizeof(T) * 8;
T R = instr->ImmR();
T S = instr->ImmS();
T diff = S - R;
T mask;
if (diff >= 0) {
mask = diff < reg_size - 1 ? (static_cast<T>(1) << (diff + 1)) - 1
: static_cast<T>(-1);
} else {
mask = ((1L << (S + 1)) - 1);
mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R));
diff += reg_size;
}
// inzero indicates if the extracted bitfield is inserted into the
// destination register value or in zero.
// If extend is true, extend the sign of the extracted bitfield.
bool inzero = false;
bool extend = false;
switch (instr->Mask(BitfieldMask)) {
case BFM_x:
case BFM_w:
break;
case SBFM_x:
case SBFM_w:
inzero = true;
extend = true;
break;
case UBFM_x:
case UBFM_w:
inzero = true;
break;
default:
UNIMPLEMENTED();
}
T dst = inzero ? 0 : reg<T>(instr->Rd());
T src = reg<T>(instr->Rn());
// Rotate source bitfield into place.
T result = (static_cast<unsignedT>(src) >> R) | (src << (reg_size - R));
// Determine the sign extension.
T topbits_preshift = (static_cast<T>(1) << (reg_size - diff - 1)) - 1;
T signbits = (extend && ((src >> S) & 1) ? topbits_preshift : 0)
<< (diff + 1);
// Merge sign extension, dest/zero and bitfield.
result = signbits | (result & mask) | (dst & ~mask);
set_reg<T>(instr->Rd(), result);
}
void Simulator::VisitBitfield(Instruction* instr) {
if (instr->SixtyFourBits()) {
BitfieldHelper<int64_t>(instr);
} else {
BitfieldHelper<int32_t>(instr);
}
}
void Simulator::VisitExtract(Instruction* instr) {
if (instr->SixtyFourBits()) {
Extract<uint64_t>(instr);
} else {
Extract<uint32_t>(instr);
}
}
void Simulator::VisitFPImmediate(Instruction* instr) {
AssertSupportedFPCR();
unsigned dest = instr->Rd();
switch (instr->Mask(FPImmediateMask)) {
case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break;
case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break;
default: UNREACHABLE();
}
}
void Simulator::VisitFPIntegerConvert(Instruction* instr) {
AssertSupportedFPCR();
unsigned dst = instr->Rd();
unsigned src = instr->Rn();
FPRounding round = fpcr().RMode();
switch (instr->Mask(FPIntegerConvertMask)) {
case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break;
case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break;
case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break;
case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break;
case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break;
case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break;
case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break;
case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break;
case FCVTMS_ws:
set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity));
break;
case FCVTMS_xs:
set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity));
break;
case FCVTMS_wd:
set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity));
break;
case FCVTMS_xd:
set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity));
break;
case FCVTMU_ws:
set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity));
break;
case FCVTMU_xs:
set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity));
break;
case FCVTMU_wd:
set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity));
break;
case FCVTMU_xd:
set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity));
break;
case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break;
case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break;
case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break;
case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break;
case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break;
case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break;
case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break;
case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break;
case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break;
case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break;
case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break;
case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break;
case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break;
case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break;
case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break;
case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break;
case FMOV_ws: set_wreg(dst, sreg_bits(src)); break;
case FMOV_xd: set_xreg(dst, dreg_bits(src)); break;
case FMOV_sw: set_sreg_bits(dst, wreg(src)); break;
case FMOV_dx: set_dreg_bits(dst, xreg(src)); break;
// A 32-bit input can be handled in the same way as a 64-bit input, since
// the sign- or zero-extension will not affect the conversion.
case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break;
case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break;
case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break;
case UCVTF_dw: {
set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), 0, round));
break;
}
case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break;
case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break;
case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break;
case UCVTF_sw: {
set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), 0, round));
break;
}
default: UNREACHABLE();
}
}
void Simulator::VisitFPFixedPointConvert(Instruction* instr) {
AssertSupportedFPCR();
unsigned dst = instr->Rd();
unsigned src = instr->Rn();
int fbits = 64 - instr->FPScale();
FPRounding round = fpcr().RMode();
switch (instr->Mask(FPFixedPointConvertMask)) {
// A 32-bit input can be handled in the same way as a 64-bit input, since
// the sign- or zero-extension will not affect the conversion.
case SCVTF_dx_fixed:
set_dreg(dst, FixedToDouble(xreg(src), fbits, round));
break;
case SCVTF_dw_fixed:
set_dreg(dst, FixedToDouble(wreg(src), fbits, round));
break;
case UCVTF_dx_fixed:
set_dreg(dst, UFixedToDouble(xreg(src), fbits, round));
break;
case UCVTF_dw_fixed: {
set_dreg(dst,
UFixedToDouble(reg<uint32_t>(src), fbits, round));
break;
}
case SCVTF_sx_fixed:
set_sreg(dst, FixedToFloat(xreg(src), fbits, round));
break;
case SCVTF_sw_fixed:
set_sreg(dst, FixedToFloat(wreg(src), fbits, round));
break;
case UCVTF_sx_fixed:
set_sreg(dst, UFixedToFloat(xreg(src), fbits, round));
break;
case UCVTF_sw_fixed: {
set_sreg(dst,
UFixedToFloat(reg<uint32_t>(src), fbits, round));
break;
}
default: UNREACHABLE();
}
}
int32_t Simulator::FPToInt32(double value, FPRounding rmode) {
value = FPRoundInt(value, rmode);
if (value >= kWMaxInt) {
return kWMaxInt;
} else if (value < kWMinInt) {
return kWMinInt;
}
return std::isnan(value) ? 0 : static_cast<int32_t>(value);
}
int64_t Simulator::FPToInt64(double value, FPRounding rmode) {
value = FPRoundInt(value, rmode);
if (value >= kXMaxInt) {
return kXMaxInt;
} else if (value < kXMinInt) {
return kXMinInt;
}
return std::isnan(value) ? 0 : static_cast<int64_t>(value);
}
uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) {
value = FPRoundInt(value, rmode);
if (value >= kWMaxUInt) {
return kWMaxUInt;
} else if (value < 0.0) {
return 0;
}
return std::isnan(value) ? 0 : static_cast<uint32_t>(value);
}
uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
value = FPRoundInt(value, rmode);
if (value >= kXMaxUInt) {
return kXMaxUInt;
} else if (value < 0.0) {
return 0;
}
return std::isnan(value) ? 0 : static_cast<uint64_t>(value);
}
void Simulator::VisitFPCompare(Instruction* instr) {
AssertSupportedFPCR();
unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
: kSRegSizeInBits;
double fn_val = fpreg(reg_size, instr->Rn());
switch (instr->Mask(FPCompareMask)) {
case FCMP_s:
case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break;
case FCMP_s_zero:
case FCMP_d_zero: FPCompare(fn_val, 0.0); break;
default: UNIMPLEMENTED();
}
}
void Simulator::VisitFPConditionalCompare(Instruction* instr) {
AssertSupportedFPCR();
switch (instr->Mask(FPConditionalCompareMask)) {
case FCCMP_s:
case FCCMP_d: {
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
// If the condition passes, set the status flags to the result of
// comparing the operands.
unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
: kSRegSizeInBits;
FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm()));
} else {
// If the condition fails, set the status flags to the nzcv immediate.
nzcv().SetFlags(instr->Nzcv());
LogSystemRegister(NZCV);
}
break;
}
default: UNIMPLEMENTED();
}
}
void Simulator::VisitFPConditionalSelect(Instruction* instr) {
AssertSupportedFPCR();
Instr selected;
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
selected = instr->Rn();
} else {
selected = instr->Rm();
}
switch (instr->Mask(FPConditionalSelectMask)) {
case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break;
case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break;
default: UNIMPLEMENTED();
}
}
void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
AssertSupportedFPCR();
unsigned fd = instr->Rd();
unsigned fn = instr->Rn();
switch (instr->Mask(FPDataProcessing1SourceMask)) {
case FMOV_s: set_sreg(fd, sreg(fn)); break;
case FMOV_d: set_dreg(fd, dreg(fn)); break;
case FABS_s: set_sreg(fd, std::fabs(sreg(fn))); break;
case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break;
case FNEG_s: set_sreg(fd, -sreg(fn)); break;
case FNEG_d: set_dreg(fd, -dreg(fn)); break;
case FSQRT_s: set_sreg(fd, FPSqrt(sreg(fn))); break;
case FSQRT_d: set_dreg(fd, FPSqrt(dreg(fn))); break;
case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break;
case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break;
case FRINTM_s:
set_sreg(fd, FPRoundInt(sreg(fn), FPNegativeInfinity)); break;
case FRINTM_d:
set_dreg(fd, FPRoundInt(dreg(fn), FPNegativeInfinity)); break;
case FRINTP_s:
set_sreg(fd, FPRoundInt(sreg(fn), FPPositiveInfinity));
break;
case FRINTP_d:
set_dreg(fd, FPRoundInt(dreg(fn), FPPositiveInfinity));
break;
case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break;
case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break;
case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break;
case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break;
case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break;
case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break;
default: UNIMPLEMENTED();
}
}
// Assemble the specified IEEE-754 components into the target type and apply
// appropriate rounding.
// sign: 0 = positive, 1 = negative
// exponent: Unbiased IEEE-754 exponent.
// mantissa: The mantissa of the input. The top bit (which is not encoded for
// normal IEEE-754 values) must not be omitted. This bit has the
// value 'pow(2, exponent)'.
//
// The input value is assumed to be a normalized value. That is, the input may
// not be infinity or NaN. If the source value is subnormal, it must be
// normalized before calling this function such that the highest set bit in the
// mantissa has the value 'pow(2, exponent)'.
//
// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
// calling a templated FPRound.
template <class T, int ebits, int mbits>
static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
FPRounding round_mode) {
DCHECK((sign == 0) || (sign == 1));
// Only the FPTieEven rounding mode is implemented.
DCHECK(round_mode == FPTieEven);
USE(round_mode);
// Rounding can promote subnormals to normals, and normals to infinities. For
// example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
// encodable as a float, but rounding based on the low-order mantissa bits
// could make it overflow. With ties-to-even rounding, this value would become
// an infinity.
// ---- Rounding Method ----
//
// The exponent is irrelevant in the rounding operation, so we treat the
// lowest-order bit that will fit into the result ('onebit') as having
// the value '1'. Similarly, the highest-order bit that won't fit into
// the result ('halfbit') has the value '0.5'. The 'point' sits between
// 'onebit' and 'halfbit':
//
// These bits fit into the result.
// |---------------------|
// mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// ||
// / |
// / halfbit
// onebit
//
// For subnormal outputs, the range of representable bits is smaller and
// the position of onebit and halfbit depends on the exponent of the
// input, but the method is otherwise similar.
//
// onebit(frac)
// |
// | halfbit(frac) halfbit(adjusted)
// | / /
// | | |
// 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
// 0b00.0... -> 0b00.0... -> 0b00
// 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
// 0b00.1... -> 0b00.1... -> 0b01
// 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
// 0b01.0... -> 0b01.0... -> 0b01
// 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
// 0b01.1... -> 0b01.1... -> 0b10
// 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
// 0b10.0... -> 0b10.0... -> 0b10
// 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
// 0b10.1... -> 0b10.1... -> 0b11
// 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
// ... / | / |
// / | / |
// / |
// adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
//
// mantissa = (mantissa >> shift) + halfbit(adjusted);
static const int mantissa_offset = 0;
static const int exponent_offset = mantissa_offset + mbits;
static const int sign_offset = exponent_offset + ebits;
STATIC_ASSERT(sign_offset == (sizeof(T) * kByteSize - 1));
// Bail out early for zero inputs.
if (mantissa == 0) {
return sign << sign_offset;
}
// If all bits in the exponent are set, the value is infinite or NaN.
// This is true for all binary IEEE-754 formats.
static const int infinite_exponent = (1 << ebits) - 1;
static const int max_normal_exponent = infinite_exponent - 1;
// Apply the exponent bias to encode it for the result. Doing this early makes
// it easy to detect values that will be infinite or subnormal.
exponent += max_normal_exponent >> 1;
if (exponent > max_normal_exponent) {
// Overflow: The input is too large for the result type to represent. The
// FPTieEven rounding mode handles overflows using infinities.
exponent = infinite_exponent;
mantissa = 0;
return (sign << sign_offset) |
(exponent << exponent_offset) |
(mantissa << mantissa_offset);
}
// Calculate the shift required to move the top mantissa bit to the proper
// place in the destination type.
const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64);
int shift = highest_significant_bit - mbits;
if (exponent <= 0) {
// The output will be subnormal (before rounding).
// For subnormal outputs, the shift must be adjusted by the exponent. The +1
// is necessary because the exponent of a subnormal value (encoded as 0) is
// the same as the exponent of the smallest normal value (encoded as 1).
shift += -exponent + 1;
// Handle inputs that would produce a zero output.
//
// Shifts higher than highest_significant_bit+1 will always produce a zero
// result. A shift of exactly highest_significant_bit+1 might produce a
// non-zero result after rounding.
if (shift > (highest_significant_bit + 1)) {
// The result will always be +/-0.0.
return sign << sign_offset;
}
// Properly encode the exponent for a subnormal output.
exponent = 0;
} else {
// Clear the topmost mantissa bit, since this is not encoded in IEEE-754
// normal values.
mantissa &= ~(1UL << highest_significant_bit);
}
if (shift > 0) {
// We have to shift the mantissa to the right. Some precision is lost, so we
// need to apply rounding.
uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1;
uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa);
T halfbit_adjusted = (adjusted >> (shift-1)) & 1;
T result = (sign << sign_offset) |
(exponent << exponent_offset) |
((mantissa >> shift) << mantissa_offset);
// A very large mantissa can overflow during rounding. If this happens, the
// exponent should be incremented and the mantissa set to 1.0 (encoded as
// 0). Applying halfbit_adjusted after assembling the float has the nice
// side-effect that this case is handled for free.
//
// This also handles cases where a very large finite value overflows to
// infinity, or where a very large subnormal value overflows to become
// normal.
return result + halfbit_adjusted;
} else {
// We have to shift the mantissa to the left (or not at all). The input
// mantissa is exactly representable in the output mantissa, so apply no
// rounding correction.
return (sign << sign_offset) |
(exponent << exponent_offset) |
((mantissa << -shift) << mantissa_offset);
}
}
// See FPRound for a description of this function.
static inline double FPRoundToDouble(int64_t sign, int64_t exponent,
uint64_t mantissa, FPRounding round_mode) {
int64_t bits =
FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
exponent,
mantissa,
round_mode);
return rawbits_to_double(bits);
}
// See FPRound for a description of this function.
static inline float FPRoundToFloat(int64_t sign, int64_t exponent,
uint64_t mantissa, FPRounding round_mode) {
int32_t bits =
FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
exponent,
mantissa,
round_mode);
return rawbits_to_float(bits);
}
double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) {
if (src >= 0) {
return UFixedToDouble(src, fbits, round);
} else {
// This works for all negative values, including INT64_MIN.
return -UFixedToDouble(-src, fbits, round);
}
}
double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) {
// An input of 0 is a special case because the result is effectively
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
if (src == 0) {
return 0.0;
}
// Calculate the exponent. The highest significant bit will have the value
// 2^exponent.
const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
const int64_t exponent = highest_significant_bit - fbits;
return FPRoundToDouble(0, exponent, src, round);
}
float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) {
if (src >= 0) {
return UFixedToFloat(src, fbits, round);
} else {
// This works for all negative values, including INT64_MIN.
return -UFixedToFloat(-src, fbits, round);
}
}
float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
// An input of 0 is a special case because the result is effectively
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
if (src == 0) {
return 0.0f;
}
// Calculate the exponent. The highest significant bit will have the value
// 2^exponent.
const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
const int32_t exponent = highest_significant_bit - fbits;
return FPRoundToFloat(0, exponent, src, round);
}
double Simulator::FPRoundInt(double value, FPRounding round_mode) {
if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
(value == kFP64NegativeInfinity)) {
return value;
} else if (std::isnan(value)) {
return FPProcessNaN(value);
}
double int_result = floor(value);
double error = value - int_result;
switch (round_mode) {
case FPTieAway: {
// Take care of correctly handling the range ]-0.5, -0.0], which must
// yield -0.0.
if ((-0.5 < value) && (value < 0.0)) {
int_result = -0.0;
} else if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) {
// If the error is greater than 0.5, or is equal to 0.5 and the integer
// result is positive, round up.
int_result++;
}
break;
}
case FPTieEven: {
// Take care of correctly handling the range [-0.5, -0.0], which must
// yield -0.0.
if ((-0.5 <= value) && (value < 0.0)) {
int_result = -0.0;
// If the error is greater than 0.5, or is equal to 0.5 and the integer
// result is odd, round up.
} else if ((error > 0.5) ||
((error == 0.5) && (fmod(int_result, 2) != 0))) {
int_result++;
}
break;
}
case FPZero: {
// If value > 0 then we take floor(value)
// otherwise, ceil(value)
if (value < 0) {
int_result = ceil(value);
}
break;
}
case FPNegativeInfinity: {
// We always use floor(value).
break;
}
case FPPositiveInfinity: {
int_result = ceil(value);
break;
}
default: UNIMPLEMENTED();
}
return int_result;
}
double Simulator::FPToDouble(float value) {
switch (std::fpclassify(value)) {
case FP_NAN: {
if (fpcr().DN()) return kFP64DefaultNaN;
// Convert NaNs as the processor would:
// - The sign is propagated.
// - The payload (mantissa) is transferred entirely, except that the top
// bit is forced to '1', making the result a quiet NaN. The unused
// (low-order) payload bits are set to 0.
uint32_t raw = float_to_rawbits(value);
uint64_t sign = raw >> 31;
uint64_t exponent = (1 << 11) - 1;
uint64_t payload = unsigned_bitextract_64(21, 0, raw);
payload <<= (52 - 23); // The unused low-order bits should be 0.
payload |= (1L << 51); // Force a quiet NaN.
return rawbits_to_double((sign << 63) | (exponent << 52) | payload);
}
case FP_ZERO:
case FP_NORMAL:
case FP_SUBNORMAL:
case FP_INFINITE: {
// All other inputs are preserved in a standard cast, because every value
// representable using an IEEE-754 float is also representable using an
// IEEE-754 double.
return static_cast<double>(value);
}
}
UNREACHABLE();
return static_cast<double>(value);
}
float Simulator::FPToFloat(double value, FPRounding round_mode) {
// Only the FPTieEven rounding mode is implemented.
DCHECK(round_mode == FPTieEven);
USE(round_mode);
switch (std::fpclassify(value)) {
case FP_NAN: {
if (fpcr().DN()) return kFP32DefaultNaN;
// Convert NaNs as the processor would:
// - The sign is propagated.
// - The payload (mantissa) is transferred as much as possible, except
// that the top bit is forced to '1', making the result a quiet NaN.
uint64_t raw = double_to_rawbits(value);
uint32_t sign = raw >> 63;
uint32_t exponent = (1 << 8) - 1;
uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw);
payload |= (1 << 22); // Force a quiet NaN.
return rawbits_to_float((sign << 31) | (exponent << 23) | payload);
}
case FP_ZERO:
case FP_INFINITE: {
// In a C++ cast, any value representable in the target type will be
// unchanged. This is always the case for +/-0.0 and infinities.
return static_cast<float>(value);
}
case FP_NORMAL:
case FP_SUBNORMAL: {
// Convert double-to-float as the processor would, assuming that FPCR.FZ
// (flush-to-zero) is not set.
uint64_t raw = double_to_rawbits(value);
// Extract the IEEE-754 double components.
uint32_t sign = raw >> 63;
// Extract the exponent and remove the IEEE-754 encoding bias.
int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023;
// Extract the mantissa and add the implicit '1' bit.
uint64_t mantissa = unsigned_bitextract_64(51, 0, raw);
if (std::fpclassify(value) == FP_NORMAL) {
mantissa |= (1UL << 52);
}
return FPRoundToFloat(sign, exponent, mantissa, round_mode);
}
}
UNREACHABLE();
return value;
}
void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
AssertSupportedFPCR();
unsigned fd = instr->Rd();
unsigned fn = instr->Rn();
unsigned fm = instr->Rm();
// Fmaxnm and Fminnm have special NaN handling.
switch (instr->Mask(FPDataProcessing2SourceMask)) {
case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); return;
case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); return;
case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); return;
case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); return;
default:
break; // Fall through.
}
if (FPProcessNaNs(instr)) return;
switch (instr->Mask(FPDataProcessing2SourceMask)) {
case FADD_s: set_sreg(fd, FPAdd(sreg(fn), sreg(fm))); break;
case FADD_d: set_dreg(fd, FPAdd(dreg(fn), dreg(fm))); break;
case FSUB_s: set_sreg(fd, FPSub(sreg(fn), sreg(fm))); break;
case FSUB_d: set_dreg(fd, FPSub(dreg(fn), dreg(fm))); break;
case FMUL_s: set_sreg(fd, FPMul(sreg(fn), sreg(fm))); break;
case FMUL_d: set_dreg(fd, FPMul(dreg(fn), dreg(fm))); break;
case FDIV_s: set_sreg(fd, FPDiv(sreg(fn), sreg(fm))); break;
case FDIV_d: set_dreg(fd, FPDiv(dreg(fn), dreg(fm))); break;
case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break;
case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break;
case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break;
case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break;
case FMAXNM_s:
case FMAXNM_d:
case FMINNM_s:
case FMINNM_d:
// These were handled before the standard FPProcessNaNs() stage.
UNREACHABLE();
default: UNIMPLEMENTED();
}
}
void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
AssertSupportedFPCR();
unsigned fd = instr->Rd();
unsigned fn = instr->Rn();
unsigned fm = instr->Rm();
unsigned fa = instr->Ra();
switch (instr->Mask(FPDataProcessing3SourceMask)) {
// fd = fa +/- (fn * fm)
case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break;
case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break;
case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break;
case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break;
// Negated variants of the above.
case FNMADD_s:
set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm)));
break;
case FNMSUB_s:
set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm)));
break;
case FNMADD_d:
set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm)));
break;
case FNMSUB_d:
set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm)));
break;
default: UNIMPLEMENTED();
}
}
template <typename T>
T Simulator::FPAdd(T op1, T op2) {
// NaNs should be handled elsewhere.
DCHECK(!std::isnan(op1) && !std::isnan(op2));
if (std::isinf(op1) && std::isinf(op2) && (op1 != op2)) {
// inf + -inf returns the default NaN.
return FPDefaultNaN<T>();
} else {
// Other cases should be handled by standard arithmetic.
return op1 + op2;
}
}
template <typename T>
T Simulator::FPDiv(T op1, T op2) {
// NaNs should be handled elsewhere.
DCHECK(!std::isnan(op1) && !std::isnan(op2));
if ((std::isinf(op1) && std::isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) {
// inf / inf and 0.0 / 0.0 return the default NaN.
return FPDefaultNaN<T>();
} else {
// Other cases should be handled by standard arithmetic.
return op1 / op2;
}
}
template <typename T>
T Simulator::FPMax(T a, T b) {
// NaNs should be handled elsewhere.
DCHECK(!std::isnan(a) && !std::isnan(b));
if ((a == 0.0) && (b == 0.0) &&
(copysign(1.0, a) != copysign(1.0, b))) {
// a and b are zero, and the sign differs: return +0.0.
return 0.0;
} else {
return (a > b) ? a : b;
}
}
template <typename T>
T Simulator::FPMaxNM(T a, T b) {
if (IsQuietNaN(a) && !IsQuietNaN(b)) {
a = kFP64NegativeInfinity;
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
b = kFP64NegativeInfinity;
}
T result = FPProcessNaNs(a, b);
return std::isnan(result) ? result : FPMax(a, b);
}
template <typename T>
T Simulator::FPMin(T a, T b) {
// NaNs should be handled elsewhere.
DCHECK(!std::isnan(a) && !std::isnan(b));
if ((a == 0.0) && (b == 0.0) &&
(copysign(1.0, a) != copysign(1.0, b))) {
// a and b are zero, and the sign differs: return -0.0.
return -0.0;
} else {
return (a < b) ? a : b;
}
}
template <typename T>
T Simulator::FPMinNM(T a, T b) {
if (IsQuietNaN(a) && !IsQuietNaN(b)) {
a = kFP64PositiveInfinity;
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
b = kFP64PositiveInfinity;
}
T result = FPProcessNaNs(a, b);
return std::isnan(result) ? result : FPMin(a, b);
}
template <typename T>
T Simulator::FPMul(T op1, T op2) {
// NaNs should be handled elsewhere.
DCHECK(!std::isnan(op1) && !std::isnan(op2));
if ((std::isinf(op1) && (op2 == 0.0)) || (std::isinf(op2) && (op1 == 0.0))) {
// inf * 0.0 returns the default NaN.
return FPDefaultNaN<T>();
} else {
// Other cases should be handled by standard arithmetic.
return op1 * op2;
}
}
template<typename T>
T Simulator::FPMulAdd(T a, T op1, T op2) {
T result = FPProcessNaNs3(a, op1, op2);
T sign_a = copysign(1.0, a);
T sign_prod = copysign(1.0, op1) * copysign(1.0, op2);
bool isinf_prod = std::isinf(op1) || std::isinf(op2);
bool operation_generates_nan =
(std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0
(std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf
(std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf
if (std::isnan(result)) {
// Generated NaNs override quiet NaNs propagated from a.
if (operation_generates_nan && IsQuietNaN(a)) {
return FPDefaultNaN<T>();
} else {
return result;
}
}
// If the operation would produce a NaN, return the default NaN.
if (operation_generates_nan) {
return FPDefaultNaN<T>();
}
// Work around broken fma implementations for exact zero results: The sign of
// exact 0.0 results is positive unless both a and op1 * op2 are negative.
if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) {
return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0;
}
result = FusedMultiplyAdd(op1, op2, a);
DCHECK(!std::isnan(result));
// Work around broken fma implementations for rounded zero results: If a is
// 0.0, the sign of the result is the sign of op1 * op2 before rounding.
if ((a == 0.0) && (result == 0.0)) {
return copysign(0.0, sign_prod);
}
return result;
}
template <typename T>
T Simulator::FPSqrt(T op) {
if (std::isnan(op)) {
return FPProcessNaN(op);
} else if (op < 0.0) {
return FPDefaultNaN<T>();
} else {
return fast_sqrt(op);
}
}
template <typename T>
T Simulator::FPSub(T op1, T op2) {
// NaNs should be handled elsewhere.
DCHECK(!std::isnan(op1) && !std::isnan(op2));
if (std::isinf(op1) && std::isinf(op2) && (op1 == op2)) {
// inf - inf returns the default NaN.
return FPDefaultNaN<T>();
} else {
// Other cases should be handled by standard arithmetic.
return op1 - op2;
}
}
template <typename T>
T Simulator::FPProcessNaN(T op) {
DCHECK(std::isnan(op));
return fpcr().DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
}
template <typename T>
T Simulator::FPProcessNaNs(T op1, T op2) {
if (IsSignallingNaN(op1)) {
return FPProcessNaN(op1);
} else if (IsSignallingNaN(op2)) {
return FPProcessNaN(op2);
} else if (std::isnan(op1)) {
DCHECK(IsQuietNaN(op1));
return FPProcessNaN(op1);
} else if (std::isnan(op2)) {
DCHECK(IsQuietNaN(op2));
return FPProcessNaN(op2);
} else {
return 0.0;
}
}
template <typename T>
T Simulator::FPProcessNaNs3(T op1, T op2, T op3) {
if (IsSignallingNaN(op1)) {
return FPProcessNaN(op1);
} else if (IsSignallingNaN(op2)) {
return FPProcessNaN(op2);
} else if (IsSignallingNaN(op3)) {
return FPProcessNaN(op3);
} else if (std::isnan(op1)) {
DCHECK(IsQuietNaN(op1));
return FPProcessNaN(op1);
} else if (std::isnan(op2)) {
DCHECK(IsQuietNaN(op2));
return FPProcessNaN(op2);
} else if (std::isnan(op3)) {
DCHECK(IsQuietNaN(op3));
return FPProcessNaN(op3);
} else {
return 0.0;
}
}
bool Simulator::FPProcessNaNs(Instruction* instr) {
unsigned fd = instr->Rd();
unsigned fn = instr->Rn();
unsigned fm = instr->Rm();
bool done = false;
if (instr->Mask(FP64) == FP64) {
double result = FPProcessNaNs(dreg(fn), dreg(fm));
if (std::isnan(result)) {
set_dreg(fd, result);
done = true;
}
} else {
float result = FPProcessNaNs(sreg(fn), sreg(fm));
if (std::isnan(result)) {
set_sreg(fd, result);
done = true;
}
}
return done;
}
void Simulator::VisitSystem(Instruction* instr) {
// Some system instructions hijack their Op and Cp fields to represent a
// range of immediates instead of indicating a different instruction. This
// makes the decoding tricky.
if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
switch (instr->Mask(SystemSysRegMask)) {
case MRS: {
switch (instr->ImmSystemRegister()) {
case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break;
case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break;
default: UNIMPLEMENTED();
}
break;
}
case MSR: {
switch (instr->ImmSystemRegister()) {
case NZCV:
nzcv().SetRawValue(xreg(instr->Rt()));
LogSystemRegister(NZCV);
break;
case FPCR:
fpcr().SetRawValue(xreg(instr->Rt()));
LogSystemRegister(FPCR);
break;
default: UNIMPLEMENTED();
}
break;
}
}
} else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
DCHECK(instr->Mask(SystemHintMask) == HINT);
switch (instr->ImmHint()) {
case NOP: break;
default: UNIMPLEMENTED();
}
} else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
__sync_synchronize();
} else {
UNIMPLEMENTED();
}
}
bool Simulator::GetValue(const char* desc, int64_t* value) {
int regnum = CodeFromName(desc);
if (regnum >= 0) {
unsigned code = regnum;
if (code == kZeroRegCode) {
// Catch the zero register and return 0.
*value = 0;
return true;
} else if (code == kSPRegInternalCode) {
// Translate the stack pointer code to 31, for Reg31IsStackPointer.
code = 31;
}
if (desc[0] == 'w') {
*value = wreg(code, Reg31IsStackPointer);
} else {
*value = xreg(code, Reg31IsStackPointer);
}
return true;
} else if (strncmp(desc, "0x", 2) == 0) {
return SScanF(desc + 2, "%" SCNx64,
reinterpret_cast<uint64_t*>(value)) == 1;
} else {
return SScanF(desc, "%" SCNu64,
reinterpret_cast<uint64_t*>(value)) == 1;
}
}
bool Simulator::PrintValue(const char* desc) {
if (strcmp(desc, "csp") == 0) {
DCHECK(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
PrintF(stream_, "%s csp:%s 0x%016" PRIx64 "%s\n",
clr_reg_name, clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal);
return true;
} else if (strcmp(desc, "wcsp") == 0) {
DCHECK(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
PrintF(stream_, "%s wcsp:%s 0x%08" PRIx32 "%s\n",
clr_reg_name, clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal);
return true;
}
int i = CodeFromName(desc);
STATIC_ASSERT(kNumberOfRegisters == kNumberOfFPRegisters);
if (i < 0 || static_cast<unsigned>(i) >= kNumberOfFPRegisters) return false;
if (desc[0] == 'v') {
PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
clr_fpreg_name, VRegNameForCode(i),
clr_fpreg_value, double_to_rawbits(dreg(i)),
clr_normal,
clr_fpreg_name, DRegNameForCode(i),
clr_fpreg_value, dreg(i),
clr_fpreg_name, SRegNameForCode(i),
clr_fpreg_value, sreg(i),
clr_normal);
return true;
} else if (desc[0] == 'd') {
PrintF(stream_, "%s %s:%s %g%s\n",
clr_fpreg_name, DRegNameForCode(i),
clr_fpreg_value, dreg(i),
clr_normal);
return true;
} else if (desc[0] == 's') {
PrintF(stream_, "%s %s:%s %g%s\n",
clr_fpreg_name, SRegNameForCode(i),
clr_fpreg_value, sreg(i),
clr_normal);
return true;
} else if (desc[0] == 'w') {
PrintF(stream_, "%s %s:%s 0x%08" PRIx32 "%s\n",
clr_reg_name, WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal);
return true;
} else {
// X register names have a wide variety of starting characters, but anything
// else will be an X register.
PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s\n",
clr_reg_name, XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal);
return true;
}
}
void Simulator::Debug() {
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
char* argv[3] = { cmd, arg1, arg2 };
// Make sure to have a proper terminating character if reaching the limit.
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
bool done = false;
bool cleared_log_disasm_bit = false;
while (!done) {
// Disassemble the next instruction to execute before doing anything else.
PrintInstructionsAt(pc_, 1);
// Read the command line.
char* line = ReadLine("sim> ");
if (line == NULL) {
break;
} else {
// Repeat last command by default.
char* last_input = last_debugger_input();
if (strcmp(line, "\n") == 0 && (last_input != NULL)) {
DeleteArray(line);
line = last_input;
} else {
// Update the latest command ran
set_last_debugger_input(line);
}
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int argc = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
// stepi / si ------------------------------------------------------------
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
// We are about to execute instructions, after which by default we
// should increment the pc_. If it was set when reaching this debug
// instruction, it has not been cleared because this instruction has not
// completed yet. So clear it manually.
pc_modified_ = false;
if (argc == 1) {
ExecuteInstruction();
} else {
int64_t number_of_instructions_to_execute = 1;
GetValue(arg1, &number_of_instructions_to_execute);
set_log_parameters(log_parameters() | LOG_DISASM);
while (number_of_instructions_to_execute-- > 0) {
ExecuteInstruction();
}
set_log_parameters(log_parameters() & ~LOG_DISASM);
PrintF("\n");
}
// If it was necessary, the pc has already been updated or incremented
// when executing the instruction. So we do not want it to be updated
// again. It will be cleared when exiting.
pc_modified_ = true;
// next / n --------------------------------------------------------------
} else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) {
// Tell the simulator to break after the next executed BL.
break_on_next_ = true;
// Continue.
done = true;
// continue / cont / c ---------------------------------------------------
} else if ((strcmp(cmd, "continue") == 0) ||
(strcmp(cmd, "cont") == 0) ||
(strcmp(cmd, "c") == 0)) {
// Leave the debugger shell.
done = true;
// disassemble / disasm / di ---------------------------------------------
} else if (strcmp(cmd, "disassemble") == 0 ||
strcmp(cmd, "disasm") == 0 ||
strcmp(cmd, "di") == 0) {
int64_t n_of_instrs_to_disasm = 10; // default value.
int64_t address = reinterpret_cast<int64_t>(pc_); // default value.
if (argc >= 2) { // disasm <n of instrs>
GetValue(arg1, &n_of_instrs_to_disasm);
}
if (argc >= 3) { // disasm <n of instrs> <address>
GetValue(arg2, &address);
}
// Disassemble.
PrintInstructionsAt(reinterpret_cast<Instruction*>(address),
n_of_instrs_to_disasm);
PrintF("\n");
// print / p -------------------------------------------------------------
} else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) {
if (argc == 2) {
if (strcmp(arg1, "all") == 0) {
PrintRegisters();
PrintFPRegisters();
} else {
if (!PrintValue(arg1)) {
PrintF("%s unrecognized\n", arg1);
}
}
} else {
PrintF(
"print <register>\n"
" Print the content of a register. (alias 'p')\n"
" 'print all' will print all registers.\n"
" Use 'printobject' to get more details about the value.\n");
}
// printobject / po ------------------------------------------------------
} else if ((strcmp(cmd, "printobject") == 0) ||
(strcmp(cmd, "po") == 0)) {
if (argc == 2) {
int64_t value;
OFStream os(stdout);
if (GetValue(arg1, &value)) {
Object* obj = reinterpret_cast<Object*>(value);
os << arg1 << ": \n";
#ifdef DEBUG
obj->Print(os);
os << "\n";
#else
os << Brief(obj) << "\n";
#endif
} else {
os << arg1 << " unrecognized\n";
}
} else {
PrintF("printobject <value>\n"
"printobject <register>\n"
" Print details about the value. (alias 'po')\n");
}
// stack / mem ----------------------------------------------------------
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
int64_t* cur = NULL;
int64_t* end = NULL;
int next_arg = 1;
if (strcmp(cmd, "stack") == 0) {
cur = reinterpret_cast<int64_t*>(jssp());
} else { // "mem"
int64_t value;
if (!GetValue(arg1, &value)) {
PrintF("%s unrecognized\n", arg1);
continue;
}
cur = reinterpret_cast<int64_t*>(value);
next_arg++;
}
int64_t words = 0;
if (argc == next_arg) {
words = 10;
} else if (argc == next_arg + 1) {
if (!GetValue(argv[next_arg], &words)) {
PrintF("%s unrecognized\n", argv[next_arg]);
PrintF("Printing 10 double words by default");
words = 10;
}
} else {
UNREACHABLE();
}
end = cur + words;
while (cur < end) {
PrintF(" 0x%016" PRIx64 ": 0x%016" PRIx64 " %10" PRId64,
reinterpret_cast<uint64_t>(cur), *cur, *cur);
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
int64_t value = *cur;
Heap* current_heap = v8::internal::Isolate::Current()->heap();
if (((value & 1) == 0) || current_heap->Contains(obj)) {
PrintF(" (");
if ((value & kSmiTagMask) == 0) {
STATIC_ASSERT(kSmiValueSize == 32);
int32_t untagged = (value >> kSmiShift) & 0xffffffff;
PrintF("smi %" PRId32, untagged);
} else {
obj->ShortPrint();
}
PrintF(")");
}
PrintF("\n");
cur++;
}
// trace / t -------------------------------------------------------------
} else if (strcmp(cmd, "trace") == 0 || strcmp(cmd, "t") == 0) {
if ((log_parameters() & (LOG_DISASM | LOG_REGS)) !=
(LOG_DISASM | LOG_REGS)) {
PrintF("Enabling disassembly and registers tracing\n");
set_log_parameters(log_parameters() | LOG_DISASM | LOG_REGS);
} else {
PrintF("Disabling disassembly and registers tracing\n");
set_log_parameters(log_parameters() & ~(LOG_DISASM | LOG_REGS));
}
// break / b -------------------------------------------------------------
} else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0) {
if (argc == 2) {
int64_t value;
if (GetValue(arg1, &value)) {
SetBreakpoint(reinterpret_cast<Instruction*>(value));
} else {
PrintF("%s unrecognized\n", arg1);
}
} else {
ListBreakpoints();
PrintF("Use `break <address>` to set or disable a breakpoint\n");
}
// gdb -------------------------------------------------------------------
} else if (strcmp(cmd, "gdb") == 0) {
PrintF("Relinquishing control to gdb.\n");
base::OS::DebugBreak();
PrintF("Regaining control from gdb.\n");
// sysregs ---------------------------------------------------------------
} else if (strcmp(cmd, "sysregs") == 0) {
PrintSystemRegisters();
// help / h --------------------------------------------------------------
} else if (strcmp(cmd, "help") == 0 || strcmp(cmd, "h") == 0) {
PrintF(
"stepi / si\n"
" stepi <n>\n"
" Step <n> instructions.\n"
"next / n\n"
" Continue execution until a BL instruction is reached.\n"
" At this point a breakpoint is set just after this BL.\n"
" Then execution is resumed. It will probably later hit the\n"
" breakpoint just set.\n"
"continue / cont / c\n"
" Continue execution from here.\n"
"disassemble / disasm / di\n"
" disassemble <n> <address>\n"
" Disassemble <n> instructions from current <address>.\n"
" By default <n> is 20 and <address> is the current pc.\n"
"print / p\n"
" print <register>\n"
" Print the content of a register.\n"
" 'print all' will print all registers.\n"
" Use 'printobject' to get more details about the value.\n"
"printobject / po\n"
" printobject <value>\n"
" printobject <register>\n"
" Print details about the value.\n"
"stack\n"
" stack [<words>]\n"
" Dump stack content, default dump 10 words\n"
"mem\n"
" mem <address> [<words>]\n"
" Dump memory content, default dump 10 words\n"
"trace / t\n"
" Toggle disassembly and register tracing\n"
"break / b\n"
" break : list all breakpoints\n"
" break <address> : set / enable / disable a breakpoint.\n"
"gdb\n"
" Enter gdb.\n"
"sysregs\n"
" Print all system registers (including NZCV).\n");
} else {
PrintF("Unknown command: %s\n", cmd);
PrintF("Use 'help' for more information.\n");
}
}
if (cleared_log_disasm_bit == true) {
set_log_parameters(log_parameters_ | LOG_DISASM);
}
}
}
void Simulator::VisitException(Instruction* instr) {
switch (instr->Mask(ExceptionMask)) {
case HLT: {
if (instr->ImmException() == kImmExceptionIsDebug) {
// Read the arguments encoded inline in the instruction stream.
uint32_t code;
uint32_t parameters;
memcpy(&code,
pc_->InstructionAtOffset(kDebugCodeOffset),
sizeof(code));
memcpy(&parameters,
pc_->InstructionAtOffset(kDebugParamsOffset),
sizeof(parameters));
char const *message =
reinterpret_cast<char const*>(
pc_->InstructionAtOffset(kDebugMessageOffset));
// Always print something when we hit a debug point that breaks.
// We are going to break, so printing something is not an issue in
// terms of speed.
if (FLAG_trace_sim_messages || FLAG_trace_sim || (parameters & BREAK)) {
if (message != NULL) {
PrintF(stream_,
"# %sDebugger hit %d: %s%s%s\n",
clr_debug_number,
code,
clr_debug_message,
message,
clr_normal);
} else {
PrintF(stream_,
"# %sDebugger hit %d.%s\n",
clr_debug_number,
code,
clr_normal);
}
}
// Other options.
switch (parameters & kDebuggerTracingDirectivesMask) {
case TRACE_ENABLE:
set_log_parameters(log_parameters() | parameters);
if (parameters & LOG_SYS_REGS) { PrintSystemRegisters(); }
if (parameters & LOG_REGS) { PrintRegisters(); }
if (parameters & LOG_FP_REGS) { PrintFPRegisters(); }
break;
case TRACE_DISABLE:
set_log_parameters(log_parameters() & ~parameters);
break;
case TRACE_OVERRIDE:
set_log_parameters(parameters);
break;
default:
// We don't support a one-shot LOG_DISASM.
DCHECK((parameters & LOG_DISASM) == 0);
// Don't print information that is already being traced.
parameters &= ~log_parameters();
// Print the requested information.
if (parameters & LOG_SYS_REGS) PrintSystemRegisters();
if (parameters & LOG_REGS) PrintRegisters();
if (parameters & LOG_FP_REGS) PrintFPRegisters();
}
// The stop parameters are inlined in the code. Skip them:
// - Skip to the end of the message string.
size_t size = kDebugMessageOffset + strlen(message) + 1;
pc_ = pc_->InstructionAtOffset(RoundUp(size, kInstructionSize));
// - Verify that the unreachable marker is present.
DCHECK(pc_->Mask(ExceptionMask) == HLT);
DCHECK(pc_->ImmException() == kImmExceptionIsUnreachable);
// - Skip past the unreachable marker.
set_pc(pc_->following());
// Check if the debugger should break.
if (parameters & BREAK) Debug();
} else if (instr->ImmException() == kImmExceptionIsRedirectedCall) {
DoRuntimeCall(instr);
} else if (instr->ImmException() == kImmExceptionIsPrintf) {
DoPrintf(instr);
} else if (instr->ImmException() == kImmExceptionIsUnreachable) {
fprintf(stream_, "Hit UNREACHABLE marker at PC=%p.\n",
reinterpret_cast<void*>(pc_));
abort();
} else {
base::OS::DebugBreak();
}
break;
}
default:
UNIMPLEMENTED();
}
}
void Simulator::DoPrintf(Instruction* instr) {
DCHECK((instr->Mask(ExceptionMask) == HLT) &&
(instr->ImmException() == kImmExceptionIsPrintf));
// Read the arguments encoded inline in the instruction stream.
uint32_t arg_count;
uint32_t arg_pattern_list;
STATIC_ASSERT(sizeof(*instr) == 1);
memcpy(&arg_count,
instr + kPrintfArgCountOffset,
sizeof(arg_count));
memcpy(&arg_pattern_list,
instr + kPrintfArgPatternListOffset,
sizeof(arg_pattern_list));
DCHECK(arg_count <= kPrintfMaxArgCount);
DCHECK((arg_pattern_list >> (kPrintfArgPatternBits * arg_count)) == 0);
// We need to call the host printf function with a set of arguments defined by
// arg_pattern_list. Because we don't know the types and sizes of the
// arguments, this is very difficult to do in a robust and portable way. To
// work around the problem, we pick apart the format string, and print one
// format placeholder at a time.
// Allocate space for the format string. We take a copy, so we can modify it.
// Leave enough space for one extra character per expected argument (plus the
// '\0' termination).
const char * format_base = reg<const char *>(0);
DCHECK(format_base != NULL);
size_t length = strlen(format_base) + 1;
char * const format = new char[length + arg_count];
// A list of chunks, each with exactly one format placeholder.
const char * chunks[kPrintfMaxArgCount];
// Copy the format string and search for format placeholders.
uint32_t placeholder_count = 0;
char * format_scratch = format;
for (size_t i = 0; i < length; i++) {
if (format_base[i] != '%') {
*format_scratch++ = format_base[i];
} else {
if (format_base[i + 1] == '%') {
// Ignore explicit "%%" sequences.
*format_scratch++ = format_base[i];
if (placeholder_count == 0) {
// The first chunk is passed to printf using "%s", so we need to
// unescape "%%" sequences in this chunk. (Just skip the next '%'.)
i++;
} else {
// Otherwise, pass through "%%" unchanged.
*format_scratch++ = format_base[++i];
}
} else {
CHECK(placeholder_count < arg_count);
// Insert '\0' before placeholders, and store their locations.
*format_scratch++ = '\0';
chunks[placeholder_count++] = format_scratch;
*format_scratch++ = format_base[i];
}
}
}
DCHECK(format_scratch <= (format + length + arg_count));
CHECK(placeholder_count == arg_count);
// Finally, call printf with each chunk, passing the appropriate register
// argument. Normally, printf returns the number of bytes transmitted, so we
// can emulate a single printf call by adding the result from each chunk. If
// any call returns a negative (error) value, though, just return that value.
fprintf(stream_, "%s", clr_printf);
// Because '\0' is inserted before each placeholder, the first string in
// 'format' contains no format placeholders and should be printed literally.
int result = fprintf(stream_, "%s", format);
int pcs_r = 1; // Start at x1. x0 holds the format string.
int pcs_f = 0; // Start at d0.
if (result >= 0) {
for (uint32_t i = 0; i < placeholder_count; i++) {
int part_result = -1;
uint32_t arg_pattern = arg_pattern_list >> (i * kPrintfArgPatternBits);
arg_pattern &= (1 << kPrintfArgPatternBits) - 1;
switch (arg_pattern) {
case kPrintfArgW:
part_result = fprintf(stream_, chunks[i], wreg(pcs_r++));
break;
case kPrintfArgX:
part_result = fprintf(stream_, chunks[i], xreg(pcs_r++));
break;
case kPrintfArgD:
part_result = fprintf(stream_, chunks[i], dreg(pcs_f++));
break;
default: UNREACHABLE();
}
if (part_result < 0) {
// Handle error values.
result = part_result;
break;
}
result += part_result;
}
}
fprintf(stream_, "%s", clr_normal);
#ifdef DEBUG
CorruptAllCallerSavedCPURegisters();
#endif
// Printf returns its result in x0 (just like the C library's printf).
set_xreg(0, result);
// The printf parameters are inlined in the code, so skip them.
set_pc(instr->InstructionAtOffset(kPrintfLength));
// Set LR as if we'd just called a native printf function.
set_lr(pc());
delete[] format;
}
#endif // USE_SIMULATOR
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM64