f38e48be60
This prevents clang from inlining and returning inconsistent results. R=bmeurer@chromium.org BUG=v8:3802 LOG=N Review URL: https://codereview.chromium.org/831393006 Cr-Commit-Position: refs/heads/master@{#26158}
3841 lines
124 KiB
C++
3841 lines
124 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <stdlib.h>
|
|
#include <cmath>
|
|
#include <cstdarg>
|
|
#include "src/v8.h"
|
|
|
|
#if V8_TARGET_ARCH_ARM64
|
|
|
|
#include "src/arm64/decoder-arm64-inl.h"
|
|
#include "src/arm64/simulator-arm64.h"
|
|
#include "src/assembler.h"
|
|
#include "src/codegen.h"
|
|
#include "src/disasm.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/ostreams.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
#if defined(USE_SIMULATOR)
|
|
|
|
|
|
// This macro provides a platform independent use of sscanf. The reason for
|
|
// SScanF not being implemented in a platform independent way through
|
|
// ::v8::internal::OS in the same way as SNPrintF is that the
|
|
// Windows C Run-Time Library does not provide vsscanf.
|
|
#define SScanF sscanf // NOLINT
|
|
|
|
|
|
// Helpers for colors.
|
|
#define COLOUR(colour_code) "\033[0;" colour_code "m"
|
|
#define COLOUR_BOLD(colour_code) "\033[1;" colour_code "m"
|
|
#define NORMAL ""
|
|
#define GREY "30"
|
|
#define RED "31"
|
|
#define GREEN "32"
|
|
#define YELLOW "33"
|
|
#define BLUE "34"
|
|
#define MAGENTA "35"
|
|
#define CYAN "36"
|
|
#define WHITE "37"
|
|
typedef char const * const TEXT_COLOUR;
|
|
TEXT_COLOUR clr_normal = FLAG_log_colour ? COLOUR(NORMAL) : "";
|
|
TEXT_COLOUR clr_flag_name = FLAG_log_colour ? COLOUR_BOLD(WHITE) : "";
|
|
TEXT_COLOUR clr_flag_value = FLAG_log_colour ? COLOUR(NORMAL) : "";
|
|
TEXT_COLOUR clr_reg_name = FLAG_log_colour ? COLOUR_BOLD(CYAN) : "";
|
|
TEXT_COLOUR clr_reg_value = FLAG_log_colour ? COLOUR(CYAN) : "";
|
|
TEXT_COLOUR clr_fpreg_name = FLAG_log_colour ? COLOUR_BOLD(MAGENTA) : "";
|
|
TEXT_COLOUR clr_fpreg_value = FLAG_log_colour ? COLOUR(MAGENTA) : "";
|
|
TEXT_COLOUR clr_memory_address = FLAG_log_colour ? COLOUR_BOLD(BLUE) : "";
|
|
TEXT_COLOUR clr_debug_number = FLAG_log_colour ? COLOUR_BOLD(YELLOW) : "";
|
|
TEXT_COLOUR clr_debug_message = FLAG_log_colour ? COLOUR(YELLOW) : "";
|
|
TEXT_COLOUR clr_printf = FLAG_log_colour ? COLOUR(GREEN) : "";
|
|
|
|
|
|
// This is basically the same as PrintF, with a guard for FLAG_trace_sim.
|
|
void Simulator::TraceSim(const char* format, ...) {
|
|
if (FLAG_trace_sim) {
|
|
va_list arguments;
|
|
va_start(arguments, format);
|
|
base::OS::VFPrint(stream_, format, arguments);
|
|
va_end(arguments);
|
|
}
|
|
}
|
|
|
|
|
|
const Instruction* Simulator::kEndOfSimAddress = NULL;
|
|
|
|
|
|
void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) {
|
|
int width = msb - lsb + 1;
|
|
DCHECK(is_uintn(bits, width) || is_intn(bits, width));
|
|
|
|
bits <<= lsb;
|
|
uint32_t mask = ((1 << width) - 1) << lsb;
|
|
DCHECK((mask & write_ignore_mask_) == 0);
|
|
|
|
value_ = (value_ & ~mask) | (bits & mask);
|
|
}
|
|
|
|
|
|
SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) {
|
|
switch (id) {
|
|
case NZCV:
|
|
return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask);
|
|
case FPCR:
|
|
return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask);
|
|
default:
|
|
UNREACHABLE();
|
|
return SimSystemRegister();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::Initialize(Isolate* isolate) {
|
|
if (isolate->simulator_initialized()) return;
|
|
isolate->set_simulator_initialized(true);
|
|
ExternalReference::set_redirector(isolate, &RedirectExternalReference);
|
|
}
|
|
|
|
|
|
// Get the active Simulator for the current thread.
|
|
Simulator* Simulator::current(Isolate* isolate) {
|
|
Isolate::PerIsolateThreadData* isolate_data =
|
|
isolate->FindOrAllocatePerThreadDataForThisThread();
|
|
DCHECK(isolate_data != NULL);
|
|
|
|
Simulator* sim = isolate_data->simulator();
|
|
if (sim == NULL) {
|
|
if (FLAG_trace_sim || FLAG_log_instruction_stats || FLAG_debug_sim) {
|
|
sim = new Simulator(new Decoder<DispatchingDecoderVisitor>(), isolate);
|
|
} else {
|
|
sim = new Decoder<Simulator>();
|
|
sim->isolate_ = isolate;
|
|
}
|
|
isolate_data->set_simulator(sim);
|
|
}
|
|
return sim;
|
|
}
|
|
|
|
|
|
void Simulator::CallVoid(byte* entry, CallArgument* args) {
|
|
int index_x = 0;
|
|
int index_d = 0;
|
|
|
|
std::vector<int64_t> stack_args(0);
|
|
for (int i = 0; !args[i].IsEnd(); i++) {
|
|
CallArgument arg = args[i];
|
|
if (arg.IsX() && (index_x < 8)) {
|
|
set_xreg(index_x++, arg.bits());
|
|
} else if (arg.IsD() && (index_d < 8)) {
|
|
set_dreg_bits(index_d++, arg.bits());
|
|
} else {
|
|
DCHECK(arg.IsD() || arg.IsX());
|
|
stack_args.push_back(arg.bits());
|
|
}
|
|
}
|
|
|
|
// Process stack arguments, and make sure the stack is suitably aligned.
|
|
uintptr_t original_stack = sp();
|
|
uintptr_t entry_stack = original_stack -
|
|
stack_args.size() * sizeof(stack_args[0]);
|
|
if (base::OS::ActivationFrameAlignment() != 0) {
|
|
entry_stack &= -base::OS::ActivationFrameAlignment();
|
|
}
|
|
char * stack = reinterpret_cast<char*>(entry_stack);
|
|
std::vector<int64_t>::const_iterator it;
|
|
for (it = stack_args.begin(); it != stack_args.end(); it++) {
|
|
memcpy(stack, &(*it), sizeof(*it));
|
|
stack += sizeof(*it);
|
|
}
|
|
|
|
DCHECK(reinterpret_cast<uintptr_t>(stack) <= original_stack);
|
|
set_sp(entry_stack);
|
|
|
|
// Call the generated code.
|
|
set_pc(entry);
|
|
set_lr(kEndOfSimAddress);
|
|
CheckPCSComplianceAndRun();
|
|
|
|
set_sp(original_stack);
|
|
}
|
|
|
|
|
|
int64_t Simulator::CallInt64(byte* entry, CallArgument* args) {
|
|
CallVoid(entry, args);
|
|
return xreg(0);
|
|
}
|
|
|
|
|
|
double Simulator::CallDouble(byte* entry, CallArgument* args) {
|
|
CallVoid(entry, args);
|
|
return dreg(0);
|
|
}
|
|
|
|
|
|
int64_t Simulator::CallJS(byte* entry,
|
|
byte* function_entry,
|
|
JSFunction* func,
|
|
Object* revc,
|
|
int64_t argc,
|
|
Object*** argv) {
|
|
CallArgument args[] = {
|
|
CallArgument(function_entry),
|
|
CallArgument(func),
|
|
CallArgument(revc),
|
|
CallArgument(argc),
|
|
CallArgument(argv),
|
|
CallArgument::End()
|
|
};
|
|
return CallInt64(entry, args);
|
|
}
|
|
|
|
int64_t Simulator::CallRegExp(byte* entry,
|
|
String* input,
|
|
int64_t start_offset,
|
|
const byte* input_start,
|
|
const byte* input_end,
|
|
int* output,
|
|
int64_t output_size,
|
|
Address stack_base,
|
|
int64_t direct_call,
|
|
void* return_address,
|
|
Isolate* isolate) {
|
|
CallArgument args[] = {
|
|
CallArgument(input),
|
|
CallArgument(start_offset),
|
|
CallArgument(input_start),
|
|
CallArgument(input_end),
|
|
CallArgument(output),
|
|
CallArgument(output_size),
|
|
CallArgument(stack_base),
|
|
CallArgument(direct_call),
|
|
CallArgument(return_address),
|
|
CallArgument(isolate),
|
|
CallArgument::End()
|
|
};
|
|
return CallInt64(entry, args);
|
|
}
|
|
|
|
|
|
void Simulator::CheckPCSComplianceAndRun() {
|
|
#ifdef DEBUG
|
|
CHECK_EQ(kNumberOfCalleeSavedRegisters, kCalleeSaved.Count());
|
|
CHECK_EQ(kNumberOfCalleeSavedFPRegisters, kCalleeSavedFP.Count());
|
|
|
|
int64_t saved_registers[kNumberOfCalleeSavedRegisters];
|
|
uint64_t saved_fpregisters[kNumberOfCalleeSavedFPRegisters];
|
|
|
|
CPURegList register_list = kCalleeSaved;
|
|
CPURegList fpregister_list = kCalleeSavedFP;
|
|
|
|
for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
|
|
// x31 is not a caller saved register, so no need to specify if we want
|
|
// the stack or zero.
|
|
saved_registers[i] = xreg(register_list.PopLowestIndex().code());
|
|
}
|
|
for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
|
|
saved_fpregisters[i] =
|
|
dreg_bits(fpregister_list.PopLowestIndex().code());
|
|
}
|
|
int64_t original_stack = sp();
|
|
#endif
|
|
// Start the simulation!
|
|
Run();
|
|
#ifdef DEBUG
|
|
CHECK_EQ(original_stack, sp());
|
|
// Check that callee-saved registers have been preserved.
|
|
register_list = kCalleeSaved;
|
|
fpregister_list = kCalleeSavedFP;
|
|
for (int i = 0; i < kNumberOfCalleeSavedRegisters; i++) {
|
|
CHECK_EQ(saved_registers[i], xreg(register_list.PopLowestIndex().code()));
|
|
}
|
|
for (int i = 0; i < kNumberOfCalleeSavedFPRegisters; i++) {
|
|
DCHECK(saved_fpregisters[i] ==
|
|
dreg_bits(fpregister_list.PopLowestIndex().code()));
|
|
}
|
|
|
|
// Corrupt caller saved register minus the return regiters.
|
|
|
|
// In theory x0 to x7 can be used for return values, but V8 only uses x0, x1
|
|
// for now .
|
|
register_list = kCallerSaved;
|
|
register_list.Remove(x0);
|
|
register_list.Remove(x1);
|
|
|
|
// In theory d0 to d7 can be used for return values, but V8 only uses d0
|
|
// for now .
|
|
fpregister_list = kCallerSavedFP;
|
|
fpregister_list.Remove(d0);
|
|
|
|
CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue);
|
|
CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
// The least significant byte of the curruption value holds the corresponding
|
|
// register's code.
|
|
void Simulator::CorruptRegisters(CPURegList* list, uint64_t value) {
|
|
if (list->type() == CPURegister::kRegister) {
|
|
while (!list->IsEmpty()) {
|
|
unsigned code = list->PopLowestIndex().code();
|
|
set_xreg(code, value | code);
|
|
}
|
|
} else {
|
|
DCHECK(list->type() == CPURegister::kFPRegister);
|
|
while (!list->IsEmpty()) {
|
|
unsigned code = list->PopLowestIndex().code();
|
|
set_dreg_bits(code, value | code);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::CorruptAllCallerSavedCPURegisters() {
|
|
// Corrupt alters its parameter so copy them first.
|
|
CPURegList register_list = kCallerSaved;
|
|
CPURegList fpregister_list = kCallerSavedFP;
|
|
|
|
CorruptRegisters(®ister_list, kCallerSavedRegisterCorruptionValue);
|
|
CorruptRegisters(&fpregister_list, kCallerSavedFPRegisterCorruptionValue);
|
|
}
|
|
#endif
|
|
|
|
|
|
// Extending the stack by 2 * 64 bits is required for stack alignment purposes.
|
|
uintptr_t Simulator::PushAddress(uintptr_t address) {
|
|
DCHECK(sizeof(uintptr_t) < 2 * kXRegSize);
|
|
intptr_t new_sp = sp() - 2 * kXRegSize;
|
|
uintptr_t* alignment_slot =
|
|
reinterpret_cast<uintptr_t*>(new_sp + kXRegSize);
|
|
memcpy(alignment_slot, &kSlotsZapValue, kPointerSize);
|
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
|
|
memcpy(stack_slot, &address, kPointerSize);
|
|
set_sp(new_sp);
|
|
return new_sp;
|
|
}
|
|
|
|
|
|
uintptr_t Simulator::PopAddress() {
|
|
intptr_t current_sp = sp();
|
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
|
|
uintptr_t address = *stack_slot;
|
|
DCHECK(sizeof(uintptr_t) < 2 * kXRegSize);
|
|
set_sp(current_sp + 2 * kXRegSize);
|
|
return address;
|
|
}
|
|
|
|
|
|
// Returns the limit of the stack area to enable checking for stack overflows.
|
|
uintptr_t Simulator::StackLimit() const {
|
|
// Leave a safety margin of 1024 bytes to prevent overrunning the stack when
|
|
// pushing values.
|
|
return stack_limit_ + 1024;
|
|
}
|
|
|
|
|
|
Simulator::Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
|
|
Isolate* isolate, FILE* stream)
|
|
: decoder_(decoder),
|
|
last_debugger_input_(NULL),
|
|
log_parameters_(NO_PARAM),
|
|
isolate_(isolate) {
|
|
// Setup the decoder.
|
|
decoder_->AppendVisitor(this);
|
|
|
|
Init(stream);
|
|
|
|
if (FLAG_trace_sim) {
|
|
decoder_->InsertVisitorBefore(print_disasm_, this);
|
|
log_parameters_ = LOG_ALL;
|
|
}
|
|
|
|
if (FLAG_log_instruction_stats) {
|
|
instrument_ = new Instrument(FLAG_log_instruction_file,
|
|
FLAG_log_instruction_period);
|
|
decoder_->AppendVisitor(instrument_);
|
|
}
|
|
}
|
|
|
|
|
|
Simulator::Simulator()
|
|
: decoder_(NULL),
|
|
last_debugger_input_(NULL),
|
|
log_parameters_(NO_PARAM),
|
|
isolate_(NULL) {
|
|
Init(stdout);
|
|
CHECK(!FLAG_trace_sim && !FLAG_log_instruction_stats);
|
|
}
|
|
|
|
|
|
void Simulator::Init(FILE* stream) {
|
|
ResetState();
|
|
|
|
// Allocate and setup the simulator stack.
|
|
stack_size_ = (FLAG_sim_stack_size * KB) + (2 * stack_protection_size_);
|
|
stack_ = reinterpret_cast<uintptr_t>(new byte[stack_size_]);
|
|
stack_limit_ = stack_ + stack_protection_size_;
|
|
uintptr_t tos = stack_ + stack_size_ - stack_protection_size_;
|
|
// The stack pointer must be 16-byte aligned.
|
|
set_sp(tos & ~0xfUL);
|
|
|
|
stream_ = stream;
|
|
print_disasm_ = new PrintDisassembler(stream_);
|
|
|
|
// The debugger needs to disassemble code without the simulator executing an
|
|
// instruction, so we create a dedicated decoder.
|
|
disassembler_decoder_ = new Decoder<DispatchingDecoderVisitor>();
|
|
disassembler_decoder_->AppendVisitor(print_disasm_);
|
|
}
|
|
|
|
|
|
void Simulator::ResetState() {
|
|
// Reset the system registers.
|
|
nzcv_ = SimSystemRegister::DefaultValueFor(NZCV);
|
|
fpcr_ = SimSystemRegister::DefaultValueFor(FPCR);
|
|
|
|
// Reset registers to 0.
|
|
pc_ = NULL;
|
|
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
|
set_xreg(i, 0xbadbeef);
|
|
}
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
|
// Set FP registers to a value that is NaN in both 32-bit and 64-bit FP.
|
|
set_dreg_bits(i, 0x7ff000007f800001UL);
|
|
}
|
|
// Returning to address 0 exits the Simulator.
|
|
set_lr(kEndOfSimAddress);
|
|
|
|
// Reset debug helpers.
|
|
breakpoints_.empty();
|
|
break_on_next_ = false;
|
|
}
|
|
|
|
|
|
Simulator::~Simulator() {
|
|
delete[] reinterpret_cast<byte*>(stack_);
|
|
if (FLAG_log_instruction_stats) {
|
|
delete instrument_;
|
|
}
|
|
delete disassembler_decoder_;
|
|
delete print_disasm_;
|
|
DeleteArray(last_debugger_input_);
|
|
delete decoder_;
|
|
}
|
|
|
|
|
|
void Simulator::Run() {
|
|
pc_modified_ = false;
|
|
while (pc_ != kEndOfSimAddress) {
|
|
ExecuteInstruction();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::RunFrom(Instruction* start) {
|
|
set_pc(start);
|
|
Run();
|
|
}
|
|
|
|
|
|
// When the generated code calls an external reference we need to catch that in
|
|
// the simulator. The external reference will be a function compiled for the
|
|
// host architecture. We need to call that function instead of trying to
|
|
// execute it with the simulator. We do that by redirecting the external
|
|
// reference to a svc (Supervisor Call) instruction that is handled by
|
|
// the simulator. We write the original destination of the jump just at a known
|
|
// offset from the svc instruction so the simulator knows what to call.
|
|
class Redirection {
|
|
public:
|
|
Redirection(void* external_function, ExternalReference::Type type)
|
|
: external_function_(external_function),
|
|
type_(type),
|
|
next_(NULL) {
|
|
redirect_call_.SetInstructionBits(
|
|
HLT | Assembler::ImmException(kImmExceptionIsRedirectedCall));
|
|
Isolate* isolate = Isolate::Current();
|
|
next_ = isolate->simulator_redirection();
|
|
// TODO(all): Simulator flush I cache
|
|
isolate->set_simulator_redirection(this);
|
|
}
|
|
|
|
void* address_of_redirect_call() {
|
|
return reinterpret_cast<void*>(&redirect_call_);
|
|
}
|
|
|
|
template <typename T>
|
|
T external_function() { return reinterpret_cast<T>(external_function_); }
|
|
|
|
ExternalReference::Type type() { return type_; }
|
|
|
|
static Redirection* Get(void* external_function,
|
|
ExternalReference::Type type) {
|
|
Isolate* isolate = Isolate::Current();
|
|
Redirection* current = isolate->simulator_redirection();
|
|
for (; current != NULL; current = current->next_) {
|
|
if (current->external_function_ == external_function) {
|
|
DCHECK_EQ(current->type(), type);
|
|
return current;
|
|
}
|
|
}
|
|
return new Redirection(external_function, type);
|
|
}
|
|
|
|
static Redirection* FromHltInstruction(Instruction* redirect_call) {
|
|
char* addr_of_hlt = reinterpret_cast<char*>(redirect_call);
|
|
char* addr_of_redirection =
|
|
addr_of_hlt - OFFSET_OF(Redirection, redirect_call_);
|
|
return reinterpret_cast<Redirection*>(addr_of_redirection);
|
|
}
|
|
|
|
static void* ReverseRedirection(int64_t reg) {
|
|
Redirection* redirection =
|
|
FromHltInstruction(reinterpret_cast<Instruction*>(reg));
|
|
return redirection->external_function<void*>();
|
|
}
|
|
|
|
private:
|
|
void* external_function_;
|
|
Instruction redirect_call_;
|
|
ExternalReference::Type type_;
|
|
Redirection* next_;
|
|
};
|
|
|
|
|
|
// Calls into the V8 runtime are based on this very simple interface.
|
|
// Note: To be able to return two values from some calls the code in runtime.cc
|
|
// uses the ObjectPair structure.
|
|
// The simulator assumes all runtime calls return two 64-bits values. If they
|
|
// don't, register x1 is clobbered. This is fine because x1 is caller-saved.
|
|
struct ObjectPair {
|
|
int64_t res0;
|
|
int64_t res1;
|
|
};
|
|
|
|
|
|
typedef ObjectPair (*SimulatorRuntimeCall)(int64_t arg0,
|
|
int64_t arg1,
|
|
int64_t arg2,
|
|
int64_t arg3,
|
|
int64_t arg4,
|
|
int64_t arg5,
|
|
int64_t arg6,
|
|
int64_t arg7);
|
|
|
|
typedef int64_t (*SimulatorRuntimeCompareCall)(double arg1, double arg2);
|
|
typedef double (*SimulatorRuntimeFPFPCall)(double arg1, double arg2);
|
|
typedef double (*SimulatorRuntimeFPCall)(double arg1);
|
|
typedef double (*SimulatorRuntimeFPIntCall)(double arg1, int32_t arg2);
|
|
|
|
// This signature supports direct call in to API function native callback
|
|
// (refer to InvocationCallback in v8.h).
|
|
typedef void (*SimulatorRuntimeDirectApiCall)(int64_t arg0);
|
|
typedef void (*SimulatorRuntimeProfilingApiCall)(int64_t arg0, void* arg1);
|
|
|
|
// This signature supports direct call to accessor getter callback.
|
|
typedef void (*SimulatorRuntimeDirectGetterCall)(int64_t arg0, int64_t arg1);
|
|
typedef void (*SimulatorRuntimeProfilingGetterCall)(int64_t arg0, int64_t arg1,
|
|
void* arg2);
|
|
|
|
void Simulator::DoRuntimeCall(Instruction* instr) {
|
|
Redirection* redirection = Redirection::FromHltInstruction(instr);
|
|
|
|
// The called C code might itself call simulated code, so any
|
|
// caller-saved registers (including lr) could still be clobbered by a
|
|
// redirected call.
|
|
Instruction* return_address = lr();
|
|
|
|
int64_t external = redirection->external_function<int64_t>();
|
|
|
|
TraceSim("Call to host function at %p\n",
|
|
redirection->external_function<void*>());
|
|
|
|
// SP must be 16-byte-aligned at the call interface.
|
|
bool stack_alignment_exception = ((sp() & 0xf) != 0);
|
|
if (stack_alignment_exception) {
|
|
TraceSim(" with unaligned stack 0x%016" PRIx64 ".\n", sp());
|
|
FATAL("ALIGNMENT EXCEPTION");
|
|
}
|
|
|
|
switch (redirection->type()) {
|
|
default:
|
|
TraceSim("Type: Unknown.\n");
|
|
UNREACHABLE();
|
|
break;
|
|
|
|
case ExternalReference::BUILTIN_CALL: {
|
|
// Object* f(v8::internal::Arguments).
|
|
TraceSim("Type: BUILTIN_CALL\n");
|
|
SimulatorRuntimeCall target =
|
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
|
|
// We don't know how many arguments are being passed, but we can
|
|
// pass 8 without touching the stack. They will be ignored by the
|
|
// host function if they aren't used.
|
|
TraceSim("Arguments: "
|
|
"0x%016" PRIx64 ", 0x%016" PRIx64 ", "
|
|
"0x%016" PRIx64 ", 0x%016" PRIx64 ", "
|
|
"0x%016" PRIx64 ", 0x%016" PRIx64 ", "
|
|
"0x%016" PRIx64 ", 0x%016" PRIx64,
|
|
xreg(0), xreg(1), xreg(2), xreg(3),
|
|
xreg(4), xreg(5), xreg(6), xreg(7));
|
|
ObjectPair result = target(xreg(0), xreg(1), xreg(2), xreg(3),
|
|
xreg(4), xreg(5), xreg(6), xreg(7));
|
|
TraceSim("Returned: {0x%" PRIx64 ", 0x%" PRIx64 "}\n",
|
|
result.res0, result.res1);
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
set_xreg(0, result.res0);
|
|
set_xreg(1, result.res1);
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::DIRECT_API_CALL: {
|
|
// void f(v8::FunctionCallbackInfo&)
|
|
TraceSim("Type: DIRECT_API_CALL\n");
|
|
SimulatorRuntimeDirectApiCall target =
|
|
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
|
|
TraceSim("Arguments: 0x%016" PRIx64 "\n", xreg(0));
|
|
target(xreg(0));
|
|
TraceSim("No return value.");
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::BUILTIN_COMPARE_CALL: {
|
|
// int f(double, double)
|
|
TraceSim("Type: BUILTIN_COMPARE_CALL\n");
|
|
SimulatorRuntimeCompareCall target =
|
|
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
|
|
TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
|
|
int64_t result = target(dreg(0), dreg(1));
|
|
TraceSim("Returned: %" PRId64 "\n", result);
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
set_xreg(0, result);
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::BUILTIN_FP_CALL: {
|
|
// double f(double)
|
|
TraceSim("Type: BUILTIN_FP_CALL\n");
|
|
SimulatorRuntimeFPCall target =
|
|
reinterpret_cast<SimulatorRuntimeFPCall>(external);
|
|
TraceSim("Argument: %f\n", dreg(0));
|
|
double result = target(dreg(0));
|
|
TraceSim("Returned: %f\n", result);
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
set_dreg(0, result);
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::BUILTIN_FP_FP_CALL: {
|
|
// double f(double, double)
|
|
TraceSim("Type: BUILTIN_FP_FP_CALL\n");
|
|
SimulatorRuntimeFPFPCall target =
|
|
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
|
|
TraceSim("Arguments: %f, %f\n", dreg(0), dreg(1));
|
|
double result = target(dreg(0), dreg(1));
|
|
TraceSim("Returned: %f\n", result);
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
set_dreg(0, result);
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::BUILTIN_FP_INT_CALL: {
|
|
// double f(double, int)
|
|
TraceSim("Type: BUILTIN_FP_INT_CALL\n");
|
|
SimulatorRuntimeFPIntCall target =
|
|
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
|
|
TraceSim("Arguments: %f, %d\n", dreg(0), wreg(0));
|
|
double result = target(dreg(0), wreg(0));
|
|
TraceSim("Returned: %f\n", result);
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
set_dreg(0, result);
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::DIRECT_GETTER_CALL: {
|
|
// void f(Local<String> property, PropertyCallbackInfo& info)
|
|
TraceSim("Type: DIRECT_GETTER_CALL\n");
|
|
SimulatorRuntimeDirectGetterCall target =
|
|
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
|
|
TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 "\n",
|
|
xreg(0), xreg(1));
|
|
target(xreg(0), xreg(1));
|
|
TraceSim("No return value.");
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::PROFILING_API_CALL: {
|
|
// void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
|
|
TraceSim("Type: PROFILING_API_CALL\n");
|
|
SimulatorRuntimeProfilingApiCall target =
|
|
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
|
|
void* arg1 = Redirection::ReverseRedirection(xreg(1));
|
|
TraceSim("Arguments: 0x%016" PRIx64 ", %p\n", xreg(0), arg1);
|
|
target(xreg(0), arg1);
|
|
TraceSim("No return value.");
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case ExternalReference::PROFILING_GETTER_CALL: {
|
|
// void f(Local<String> property, PropertyCallbackInfo& info,
|
|
// AccessorNameGetterCallback callback)
|
|
TraceSim("Type: PROFILING_GETTER_CALL\n");
|
|
SimulatorRuntimeProfilingGetterCall target =
|
|
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
|
|
external);
|
|
void* arg2 = Redirection::ReverseRedirection(xreg(2));
|
|
TraceSim("Arguments: 0x%016" PRIx64 ", 0x%016" PRIx64 ", %p\n",
|
|
xreg(0), xreg(1), arg2);
|
|
target(xreg(0), xreg(1), arg2);
|
|
TraceSim("No return value.");
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
set_lr(return_address);
|
|
set_pc(return_address);
|
|
}
|
|
|
|
|
|
void* Simulator::RedirectExternalReference(void* external_function,
|
|
ExternalReference::Type type) {
|
|
Redirection* redirection = Redirection::Get(external_function, type);
|
|
return redirection->address_of_redirect_call();
|
|
}
|
|
|
|
|
|
const char* Simulator::xreg_names[] = {
|
|
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
|
|
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
|
|
"ip0", "ip1", "x18", "x19", "x20", "x21", "x22", "x23",
|
|
"x24", "x25", "x26", "cp", "jssp", "fp", "lr", "xzr", "csp"};
|
|
|
|
const char* Simulator::wreg_names[] = {
|
|
"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7",
|
|
"w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15",
|
|
"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23",
|
|
"w24", "w25", "w26", "wcp", "wjssp", "wfp", "wlr", "wzr", "wcsp"};
|
|
|
|
const char* Simulator::sreg_names[] = {
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
|
|
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
|
|
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"};
|
|
|
|
const char* Simulator::dreg_names[] = {
|
|
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
|
|
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
|
|
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
|
|
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
|
|
|
|
const char* Simulator::vreg_names[] = {
|
|
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
|
|
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
|
|
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
|
|
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"};
|
|
|
|
|
|
const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) {
|
|
STATIC_ASSERT(arraysize(Simulator::wreg_names) == (kNumberOfRegisters + 1));
|
|
DCHECK(code < kNumberOfRegisters);
|
|
// The modulo operator has no effect here, but it silences a broken GCC
|
|
// warning about out-of-bounds array accesses.
|
|
code %= kNumberOfRegisters;
|
|
|
|
// If the code represents the stack pointer, index the name after zr.
|
|
if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
|
|
code = kZeroRegCode + 1;
|
|
}
|
|
return wreg_names[code];
|
|
}
|
|
|
|
|
|
const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) {
|
|
STATIC_ASSERT(arraysize(Simulator::xreg_names) == (kNumberOfRegisters + 1));
|
|
DCHECK(code < kNumberOfRegisters);
|
|
code %= kNumberOfRegisters;
|
|
|
|
// If the code represents the stack pointer, index the name after zr.
|
|
if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) {
|
|
code = kZeroRegCode + 1;
|
|
}
|
|
return xreg_names[code];
|
|
}
|
|
|
|
|
|
const char* Simulator::SRegNameForCode(unsigned code) {
|
|
STATIC_ASSERT(arraysize(Simulator::sreg_names) == kNumberOfFPRegisters);
|
|
DCHECK(code < kNumberOfFPRegisters);
|
|
return sreg_names[code % kNumberOfFPRegisters];
|
|
}
|
|
|
|
|
|
const char* Simulator::DRegNameForCode(unsigned code) {
|
|
STATIC_ASSERT(arraysize(Simulator::dreg_names) == kNumberOfFPRegisters);
|
|
DCHECK(code < kNumberOfFPRegisters);
|
|
return dreg_names[code % kNumberOfFPRegisters];
|
|
}
|
|
|
|
|
|
const char* Simulator::VRegNameForCode(unsigned code) {
|
|
STATIC_ASSERT(arraysize(Simulator::vreg_names) == kNumberOfFPRegisters);
|
|
DCHECK(code < kNumberOfFPRegisters);
|
|
return vreg_names[code % kNumberOfFPRegisters];
|
|
}
|
|
|
|
|
|
int Simulator::CodeFromName(const char* name) {
|
|
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
|
if ((strcmp(xreg_names[i], name) == 0) ||
|
|
(strcmp(wreg_names[i], name) == 0)) {
|
|
return i;
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
|
if ((strcmp(vreg_names[i], name) == 0) ||
|
|
(strcmp(dreg_names[i], name) == 0) ||
|
|
(strcmp(sreg_names[i], name) == 0)) {
|
|
return i;
|
|
}
|
|
}
|
|
if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) {
|
|
return kSPRegInternalCode;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
// Helpers ---------------------------------------------------------------------
|
|
template <typename T>
|
|
T Simulator::AddWithCarry(bool set_flags,
|
|
T src1,
|
|
T src2,
|
|
T carry_in) {
|
|
typedef typename make_unsigned<T>::type unsignedT;
|
|
DCHECK((carry_in == 0) || (carry_in == 1));
|
|
|
|
T signed_sum = src1 + src2 + carry_in;
|
|
T result = signed_sum;
|
|
|
|
bool N, Z, C, V;
|
|
|
|
// Compute the C flag
|
|
unsignedT u1 = static_cast<unsignedT>(src1);
|
|
unsignedT u2 = static_cast<unsignedT>(src2);
|
|
unsignedT urest = std::numeric_limits<unsignedT>::max() - u1;
|
|
C = (u2 > urest) || (carry_in && (((u2 + 1) > urest) || (u2 > (urest - 1))));
|
|
|
|
// Overflow iff the sign bit is the same for the two inputs and different
|
|
// for the result.
|
|
V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0);
|
|
|
|
N = CalcNFlag(result);
|
|
Z = CalcZFlag(result);
|
|
|
|
if (set_flags) {
|
|
nzcv().SetN(N);
|
|
nzcv().SetZ(Z);
|
|
nzcv().SetC(C);
|
|
nzcv().SetV(V);
|
|
LogSystemRegister(NZCV);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void Simulator::AddSubWithCarry(Instruction* instr) {
|
|
T op2 = reg<T>(instr->Rm());
|
|
T new_val;
|
|
|
|
if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) {
|
|
op2 = ~op2;
|
|
}
|
|
|
|
new_val = AddWithCarry<T>(instr->FlagsUpdate(),
|
|
reg<T>(instr->Rn()),
|
|
op2,
|
|
nzcv().C());
|
|
|
|
set_reg<T>(instr->Rd(), new_val);
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::ShiftOperand(T value, Shift shift_type, unsigned amount) {
|
|
typedef typename make_unsigned<T>::type unsignedT;
|
|
|
|
if (amount == 0) {
|
|
return value;
|
|
}
|
|
|
|
switch (shift_type) {
|
|
case LSL:
|
|
return value << amount;
|
|
case LSR:
|
|
return static_cast<unsignedT>(value) >> amount;
|
|
case ASR:
|
|
return value >> amount;
|
|
case ROR:
|
|
return (static_cast<unsignedT>(value) >> amount) |
|
|
((value & ((1L << amount) - 1L)) <<
|
|
(sizeof(unsignedT) * 8 - amount));
|
|
default:
|
|
UNIMPLEMENTED();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::ExtendValue(T value, Extend extend_type, unsigned left_shift) {
|
|
const unsigned kSignExtendBShift = (sizeof(T) - 1) * 8;
|
|
const unsigned kSignExtendHShift = (sizeof(T) - 2) * 8;
|
|
const unsigned kSignExtendWShift = (sizeof(T) - 4) * 8;
|
|
|
|
switch (extend_type) {
|
|
case UXTB:
|
|
value &= kByteMask;
|
|
break;
|
|
case UXTH:
|
|
value &= kHalfWordMask;
|
|
break;
|
|
case UXTW:
|
|
value &= kWordMask;
|
|
break;
|
|
case SXTB:
|
|
value = (value << kSignExtendBShift) >> kSignExtendBShift;
|
|
break;
|
|
case SXTH:
|
|
value = (value << kSignExtendHShift) >> kSignExtendHShift;
|
|
break;
|
|
case SXTW:
|
|
value = (value << kSignExtendWShift) >> kSignExtendWShift;
|
|
break;
|
|
case UXTX:
|
|
case SXTX:
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return value << left_shift;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void Simulator::Extract(Instruction* instr) {
|
|
unsigned lsb = instr->ImmS();
|
|
T op2 = reg<T>(instr->Rm());
|
|
T result = op2;
|
|
|
|
if (lsb) {
|
|
T op1 = reg<T>(instr->Rn());
|
|
result = op2 >> lsb | (op1 << ((sizeof(T) * 8) - lsb));
|
|
}
|
|
set_reg<T>(instr->Rd(), result);
|
|
}
|
|
|
|
|
|
template<> double Simulator::FPDefaultNaN<double>() const {
|
|
return kFP64DefaultNaN;
|
|
}
|
|
|
|
|
|
template<> float Simulator::FPDefaultNaN<float>() const {
|
|
return kFP32DefaultNaN;
|
|
}
|
|
|
|
|
|
void Simulator::FPCompare(double val0, double val1) {
|
|
AssertSupportedFPCR();
|
|
|
|
// TODO(jbramley): This assumes that the C++ implementation handles
|
|
// comparisons in the way that we expect (as per AssertSupportedFPCR()).
|
|
if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) {
|
|
nzcv().SetRawValue(FPUnorderedFlag);
|
|
} else if (val0 < val1) {
|
|
nzcv().SetRawValue(FPLessThanFlag);
|
|
} else if (val0 > val1) {
|
|
nzcv().SetRawValue(FPGreaterThanFlag);
|
|
} else if (val0 == val1) {
|
|
nzcv().SetRawValue(FPEqualFlag);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
LogSystemRegister(NZCV);
|
|
}
|
|
|
|
|
|
void Simulator::SetBreakpoint(Instruction* location) {
|
|
for (unsigned i = 0; i < breakpoints_.size(); i++) {
|
|
if (breakpoints_.at(i).location == location) {
|
|
PrintF(stream_,
|
|
"Existing breakpoint at %p was %s\n",
|
|
reinterpret_cast<void*>(location),
|
|
breakpoints_.at(i).enabled ? "disabled" : "enabled");
|
|
breakpoints_.at(i).enabled = !breakpoints_.at(i).enabled;
|
|
return;
|
|
}
|
|
}
|
|
Breakpoint new_breakpoint = {location, true};
|
|
breakpoints_.push_back(new_breakpoint);
|
|
PrintF(stream_,
|
|
"Set a breakpoint at %p\n", reinterpret_cast<void*>(location));
|
|
}
|
|
|
|
|
|
void Simulator::ListBreakpoints() {
|
|
PrintF(stream_, "Breakpoints:\n");
|
|
for (unsigned i = 0; i < breakpoints_.size(); i++) {
|
|
PrintF(stream_, "%p : %s\n",
|
|
reinterpret_cast<void*>(breakpoints_.at(i).location),
|
|
breakpoints_.at(i).enabled ? "enabled" : "disabled");
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::CheckBreakpoints() {
|
|
bool hit_a_breakpoint = false;
|
|
for (unsigned i = 0; i < breakpoints_.size(); i++) {
|
|
if ((breakpoints_.at(i).location == pc_) &&
|
|
breakpoints_.at(i).enabled) {
|
|
hit_a_breakpoint = true;
|
|
// Disable this breakpoint.
|
|
breakpoints_.at(i).enabled = false;
|
|
}
|
|
}
|
|
if (hit_a_breakpoint) {
|
|
PrintF(stream_, "Hit and disabled a breakpoint at %p.\n",
|
|
reinterpret_cast<void*>(pc_));
|
|
Debug();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::CheckBreakNext() {
|
|
// If the current instruction is a BL, insert a breakpoint just after it.
|
|
if (break_on_next_ && pc_->IsBranchAndLinkToRegister()) {
|
|
SetBreakpoint(pc_->following());
|
|
break_on_next_ = false;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::PrintInstructionsAt(Instruction* start, uint64_t count) {
|
|
Instruction* end = start->InstructionAtOffset(count * kInstructionSize);
|
|
for (Instruction* pc = start; pc < end; pc = pc->following()) {
|
|
disassembler_decoder_->Decode(pc);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::PrintSystemRegisters() {
|
|
PrintSystemRegister(NZCV);
|
|
PrintSystemRegister(FPCR);
|
|
}
|
|
|
|
|
|
void Simulator::PrintRegisters() {
|
|
for (unsigned i = 0; i < kNumberOfRegisters; i++) {
|
|
PrintRegister(i);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::PrintFPRegisters() {
|
|
for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
|
|
PrintFPRegister(i);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::PrintRegister(unsigned code, Reg31Mode r31mode) {
|
|
// Don't print writes into xzr.
|
|
if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) {
|
|
return;
|
|
}
|
|
|
|
// The template is "# x<code>:value".
|
|
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s\n",
|
|
clr_reg_name, XRegNameForCode(code, r31mode),
|
|
clr_reg_value, reg<uint64_t>(code, r31mode), clr_normal);
|
|
}
|
|
|
|
|
|
void Simulator::PrintFPRegister(unsigned code, PrintFPRegisterSizes sizes) {
|
|
// The template is "# v<code>:bits (d<code>:value, ...)".
|
|
|
|
DCHECK(sizes != 0);
|
|
DCHECK((sizes & kPrintAllFPRegValues) == sizes);
|
|
|
|
// Print the raw bits.
|
|
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (",
|
|
clr_fpreg_name, VRegNameForCode(code),
|
|
clr_fpreg_value, fpreg<uint64_t>(code), clr_normal);
|
|
|
|
// Print all requested value interpretations.
|
|
bool need_separator = false;
|
|
if (sizes & kPrintDRegValue) {
|
|
fprintf(stream_, "%s%s%s: %s%g%s",
|
|
need_separator ? ", " : "",
|
|
clr_fpreg_name, DRegNameForCode(code),
|
|
clr_fpreg_value, fpreg<double>(code), clr_normal);
|
|
need_separator = true;
|
|
}
|
|
|
|
if (sizes & kPrintSRegValue) {
|
|
fprintf(stream_, "%s%s%s: %s%g%s",
|
|
need_separator ? ", " : "",
|
|
clr_fpreg_name, SRegNameForCode(code),
|
|
clr_fpreg_value, fpreg<float>(code), clr_normal);
|
|
need_separator = true;
|
|
}
|
|
|
|
// End the value list.
|
|
fprintf(stream_, ")\n");
|
|
}
|
|
|
|
|
|
void Simulator::PrintSystemRegister(SystemRegister id) {
|
|
switch (id) {
|
|
case NZCV:
|
|
fprintf(stream_, "# %sNZCV: %sN:%d Z:%d C:%d V:%d%s\n",
|
|
clr_flag_name, clr_flag_value,
|
|
nzcv().N(), nzcv().Z(), nzcv().C(), nzcv().V(),
|
|
clr_normal);
|
|
break;
|
|
case FPCR: {
|
|
static const char * rmode[] = {
|
|
"0b00 (Round to Nearest)",
|
|
"0b01 (Round towards Plus Infinity)",
|
|
"0b10 (Round towards Minus Infinity)",
|
|
"0b11 (Round towards Zero)"
|
|
};
|
|
DCHECK(fpcr().RMode() < arraysize(rmode));
|
|
fprintf(stream_,
|
|
"# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n",
|
|
clr_flag_name, clr_flag_value,
|
|
fpcr().AHP(), fpcr().DN(), fpcr().FZ(), rmode[fpcr().RMode()],
|
|
clr_normal);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::PrintRead(uintptr_t address,
|
|
size_t size,
|
|
unsigned reg_code) {
|
|
USE(size); // Size is unused here.
|
|
|
|
// The template is "# x<code>:value <- address".
|
|
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s",
|
|
clr_reg_name, XRegNameForCode(reg_code),
|
|
clr_reg_value, reg<uint64_t>(reg_code), clr_normal);
|
|
|
|
fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n",
|
|
clr_memory_address, address, clr_normal);
|
|
}
|
|
|
|
|
|
void Simulator::PrintReadFP(uintptr_t address,
|
|
size_t size,
|
|
unsigned reg_code) {
|
|
// The template is "# reg:bits (reg:value) <- address".
|
|
switch (size) {
|
|
case kSRegSize:
|
|
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (%s%s: %s%gf%s)",
|
|
clr_fpreg_name, VRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<uint64_t>(reg_code), clr_normal,
|
|
clr_fpreg_name, SRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<float>(reg_code), clr_normal);
|
|
break;
|
|
case kDRegSize:
|
|
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (%s%s: %s%g%s)",
|
|
clr_fpreg_name, VRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<uint64_t>(reg_code), clr_normal,
|
|
clr_fpreg_name, DRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<double>(reg_code), clr_normal);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
fprintf(stream_, " <- %s0x%016" PRIxPTR "%s\n",
|
|
clr_memory_address, address, clr_normal);
|
|
}
|
|
|
|
|
|
void Simulator::PrintWrite(uintptr_t address,
|
|
size_t size,
|
|
unsigned reg_code) {
|
|
// The template is "# reg:value -> address". To keep the trace tidy and
|
|
// readable, the value is aligned with the values in the register trace.
|
|
switch (size) {
|
|
case kByteSizeInBytes:
|
|
fprintf(stream_, "# %s%5s<7:0>: %s0x%02" PRIx8 "%s",
|
|
clr_reg_name, WRegNameForCode(reg_code),
|
|
clr_reg_value, reg<uint8_t>(reg_code), clr_normal);
|
|
break;
|
|
case kHalfWordSizeInBytes:
|
|
fprintf(stream_, "# %s%5s<15:0>: %s0x%04" PRIx16 "%s",
|
|
clr_reg_name, WRegNameForCode(reg_code),
|
|
clr_reg_value, reg<uint16_t>(reg_code), clr_normal);
|
|
break;
|
|
case kWRegSize:
|
|
fprintf(stream_, "# %s%5s: %s0x%08" PRIx32 "%s",
|
|
clr_reg_name, WRegNameForCode(reg_code),
|
|
clr_reg_value, reg<uint32_t>(reg_code), clr_normal);
|
|
break;
|
|
case kXRegSize:
|
|
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s",
|
|
clr_reg_name, XRegNameForCode(reg_code),
|
|
clr_reg_value, reg<uint64_t>(reg_code), clr_normal);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n",
|
|
clr_memory_address, address, clr_normal);
|
|
}
|
|
|
|
|
|
void Simulator::PrintWriteFP(uintptr_t address,
|
|
size_t size,
|
|
unsigned reg_code) {
|
|
// The template is "# reg:bits (reg:value) -> address". To keep the trace tidy
|
|
// and readable, the value is aligned with the values in the register trace.
|
|
switch (size) {
|
|
case kSRegSize:
|
|
fprintf(stream_, "# %s%5s<31:0>: %s0x%08" PRIx32 "%s (%s%s: %s%gf%s)",
|
|
clr_fpreg_name, VRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<uint32_t>(reg_code), clr_normal,
|
|
clr_fpreg_name, SRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<float>(reg_code), clr_normal);
|
|
break;
|
|
case kDRegSize:
|
|
fprintf(stream_, "# %s%5s: %s0x%016" PRIx64 "%s (%s%s: %s%g%s)",
|
|
clr_fpreg_name, VRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<uint64_t>(reg_code), clr_normal,
|
|
clr_fpreg_name, DRegNameForCode(reg_code),
|
|
clr_fpreg_value, fpreg<double>(reg_code), clr_normal);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
fprintf(stream_, " -> %s0x%016" PRIxPTR "%s\n",
|
|
clr_memory_address, address, clr_normal);
|
|
}
|
|
|
|
|
|
// Visitors---------------------------------------------------------------------
|
|
|
|
void Simulator::VisitUnimplemented(Instruction* instr) {
|
|
fprintf(stream_, "Unimplemented instruction at %p: 0x%08" PRIx32 "\n",
|
|
reinterpret_cast<void*>(instr), instr->InstructionBits());
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
|
|
void Simulator::VisitUnallocated(Instruction* instr) {
|
|
fprintf(stream_, "Unallocated instruction at %p: 0x%08" PRIx32 "\n",
|
|
reinterpret_cast<void*>(instr), instr->InstructionBits());
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
|
|
void Simulator::VisitPCRelAddressing(Instruction* instr) {
|
|
switch (instr->Mask(PCRelAddressingMask)) {
|
|
case ADR:
|
|
set_reg(instr->Rd(), instr->ImmPCOffsetTarget());
|
|
break;
|
|
case ADRP: // Not implemented in the assembler.
|
|
UNIMPLEMENTED();
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitUnconditionalBranch(Instruction* instr) {
|
|
switch (instr->Mask(UnconditionalBranchMask)) {
|
|
case BL:
|
|
set_lr(instr->following());
|
|
// Fall through.
|
|
case B:
|
|
set_pc(instr->ImmPCOffsetTarget());
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitConditionalBranch(Instruction* instr) {
|
|
DCHECK(instr->Mask(ConditionalBranchMask) == B_cond);
|
|
if (ConditionPassed(static_cast<Condition>(instr->ConditionBranch()))) {
|
|
set_pc(instr->ImmPCOffsetTarget());
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitUnconditionalBranchToRegister(Instruction* instr) {
|
|
Instruction* target = reg<Instruction*>(instr->Rn());
|
|
switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
|
|
case BLR: {
|
|
set_lr(instr->following());
|
|
if (instr->Rn() == 31) {
|
|
// BLR XZR is used as a guard for the constant pool. We should never hit
|
|
// this, but if we do trap to allow debugging.
|
|
Debug();
|
|
}
|
|
// Fall through.
|
|
}
|
|
case BR:
|
|
case RET: set_pc(target); break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitTestBranch(Instruction* instr) {
|
|
unsigned bit_pos = (instr->ImmTestBranchBit5() << 5) |
|
|
instr->ImmTestBranchBit40();
|
|
bool take_branch = ((xreg(instr->Rt()) & (1UL << bit_pos)) == 0);
|
|
switch (instr->Mask(TestBranchMask)) {
|
|
case TBZ: break;
|
|
case TBNZ: take_branch = !take_branch; break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
if (take_branch) {
|
|
set_pc(instr->ImmPCOffsetTarget());
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitCompareBranch(Instruction* instr) {
|
|
unsigned rt = instr->Rt();
|
|
bool take_branch = false;
|
|
switch (instr->Mask(CompareBranchMask)) {
|
|
case CBZ_w: take_branch = (wreg(rt) == 0); break;
|
|
case CBZ_x: take_branch = (xreg(rt) == 0); break;
|
|
case CBNZ_w: take_branch = (wreg(rt) != 0); break;
|
|
case CBNZ_x: take_branch = (xreg(rt) != 0); break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
if (take_branch) {
|
|
set_pc(instr->ImmPCOffsetTarget());
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void Simulator::AddSubHelper(Instruction* instr, T op2) {
|
|
bool set_flags = instr->FlagsUpdate();
|
|
T new_val = 0;
|
|
Instr operation = instr->Mask(AddSubOpMask);
|
|
|
|
switch (operation) {
|
|
case ADD:
|
|
case ADDS: {
|
|
new_val = AddWithCarry<T>(set_flags,
|
|
reg<T>(instr->Rn(), instr->RnMode()),
|
|
op2);
|
|
break;
|
|
}
|
|
case SUB:
|
|
case SUBS: {
|
|
new_val = AddWithCarry<T>(set_flags,
|
|
reg<T>(instr->Rn(), instr->RnMode()),
|
|
~op2,
|
|
1);
|
|
break;
|
|
}
|
|
default: UNREACHABLE();
|
|
}
|
|
|
|
set_reg<T>(instr->Rd(), new_val, instr->RdMode());
|
|
}
|
|
|
|
|
|
void Simulator::VisitAddSubShifted(Instruction* instr) {
|
|
Shift shift_type = static_cast<Shift>(instr->ShiftDP());
|
|
unsigned shift_amount = instr->ImmDPShift();
|
|
|
|
if (instr->SixtyFourBits()) {
|
|
int64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount);
|
|
AddSubHelper(instr, op2);
|
|
} else {
|
|
int32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount);
|
|
AddSubHelper(instr, op2);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitAddSubImmediate(Instruction* instr) {
|
|
int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0);
|
|
if (instr->SixtyFourBits()) {
|
|
AddSubHelper<int64_t>(instr, op2);
|
|
} else {
|
|
AddSubHelper<int32_t>(instr, op2);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitAddSubExtended(Instruction* instr) {
|
|
Extend ext = static_cast<Extend>(instr->ExtendMode());
|
|
unsigned left_shift = instr->ImmExtendShift();
|
|
if (instr->SixtyFourBits()) {
|
|
int64_t op2 = ExtendValue(xreg(instr->Rm()), ext, left_shift);
|
|
AddSubHelper(instr, op2);
|
|
} else {
|
|
int32_t op2 = ExtendValue(wreg(instr->Rm()), ext, left_shift);
|
|
AddSubHelper(instr, op2);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitAddSubWithCarry(Instruction* instr) {
|
|
if (instr->SixtyFourBits()) {
|
|
AddSubWithCarry<int64_t>(instr);
|
|
} else {
|
|
AddSubWithCarry<int32_t>(instr);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitLogicalShifted(Instruction* instr) {
|
|
Shift shift_type = static_cast<Shift>(instr->ShiftDP());
|
|
unsigned shift_amount = instr->ImmDPShift();
|
|
|
|
if (instr->SixtyFourBits()) {
|
|
int64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount);
|
|
op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2;
|
|
LogicalHelper<int64_t>(instr, op2);
|
|
} else {
|
|
int32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount);
|
|
op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2;
|
|
LogicalHelper<int32_t>(instr, op2);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitLogicalImmediate(Instruction* instr) {
|
|
if (instr->SixtyFourBits()) {
|
|
LogicalHelper<int64_t>(instr, instr->ImmLogical());
|
|
} else {
|
|
LogicalHelper<int32_t>(instr, instr->ImmLogical());
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void Simulator::LogicalHelper(Instruction* instr, T op2) {
|
|
T op1 = reg<T>(instr->Rn());
|
|
T result = 0;
|
|
bool update_flags = false;
|
|
|
|
// Switch on the logical operation, stripping out the NOT bit, as it has a
|
|
// different meaning for logical immediate instructions.
|
|
switch (instr->Mask(LogicalOpMask & ~NOT)) {
|
|
case ANDS: update_flags = true; // Fall through.
|
|
case AND: result = op1 & op2; break;
|
|
case ORR: result = op1 | op2; break;
|
|
case EOR: result = op1 ^ op2; break;
|
|
default:
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
if (update_flags) {
|
|
nzcv().SetN(CalcNFlag(result));
|
|
nzcv().SetZ(CalcZFlag(result));
|
|
nzcv().SetC(0);
|
|
nzcv().SetV(0);
|
|
LogSystemRegister(NZCV);
|
|
}
|
|
|
|
set_reg<T>(instr->Rd(), result, instr->RdMode());
|
|
}
|
|
|
|
|
|
void Simulator::VisitConditionalCompareRegister(Instruction* instr) {
|
|
if (instr->SixtyFourBits()) {
|
|
ConditionalCompareHelper(instr, xreg(instr->Rm()));
|
|
} else {
|
|
ConditionalCompareHelper(instr, wreg(instr->Rm()));
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitConditionalCompareImmediate(Instruction* instr) {
|
|
if (instr->SixtyFourBits()) {
|
|
ConditionalCompareHelper<int64_t>(instr, instr->ImmCondCmp());
|
|
} else {
|
|
ConditionalCompareHelper<int32_t>(instr, instr->ImmCondCmp());
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void Simulator::ConditionalCompareHelper(Instruction* instr, T op2) {
|
|
T op1 = reg<T>(instr->Rn());
|
|
|
|
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
|
|
// If the condition passes, set the status flags to the result of comparing
|
|
// the operands.
|
|
if (instr->Mask(ConditionalCompareMask) == CCMP) {
|
|
AddWithCarry<T>(true, op1, ~op2, 1);
|
|
} else {
|
|
DCHECK(instr->Mask(ConditionalCompareMask) == CCMN);
|
|
AddWithCarry<T>(true, op1, op2, 0);
|
|
}
|
|
} else {
|
|
// If the condition fails, set the status flags to the nzcv immediate.
|
|
nzcv().SetFlags(instr->Nzcv());
|
|
LogSystemRegister(NZCV);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) {
|
|
int offset = instr->ImmLSUnsigned() << instr->SizeLS();
|
|
LoadStoreHelper(instr, offset, Offset);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStoreUnscaledOffset(Instruction* instr) {
|
|
LoadStoreHelper(instr, instr->ImmLS(), Offset);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStorePreIndex(Instruction* instr) {
|
|
LoadStoreHelper(instr, instr->ImmLS(), PreIndex);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStorePostIndex(Instruction* instr) {
|
|
LoadStoreHelper(instr, instr->ImmLS(), PostIndex);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) {
|
|
Extend ext = static_cast<Extend>(instr->ExtendMode());
|
|
DCHECK((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
|
|
unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();
|
|
|
|
int64_t offset = ExtendValue(xreg(instr->Rm()), ext, shift_amount);
|
|
LoadStoreHelper(instr, offset, Offset);
|
|
}
|
|
|
|
|
|
void Simulator::LoadStoreHelper(Instruction* instr,
|
|
int64_t offset,
|
|
AddrMode addrmode) {
|
|
unsigned srcdst = instr->Rt();
|
|
unsigned addr_reg = instr->Rn();
|
|
uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode);
|
|
uintptr_t stack = 0;
|
|
|
|
// Handle the writeback for stores before the store. On a CPU the writeback
|
|
// and the store are atomic, but when running on the simulator it is possible
|
|
// to be interrupted in between. The simulator is not thread safe and V8 does
|
|
// not require it to be to run JavaScript therefore the profiler may sample
|
|
// the "simulated" CPU in the middle of load/store with writeback. The code
|
|
// below ensures that push operations are safe even when interrupted: the
|
|
// stack pointer will be decremented before adding an element to the stack.
|
|
if (instr->IsStore()) {
|
|
LoadStoreWriteBack(addr_reg, offset, addrmode);
|
|
|
|
// For store the address post writeback is used to check access below the
|
|
// stack.
|
|
stack = sp();
|
|
}
|
|
|
|
LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreOpMask));
|
|
switch (op) {
|
|
// Use _no_log variants to suppress the register trace (LOG_REGS,
|
|
// LOG_FP_REGS). We will print a more detailed log.
|
|
case LDRB_w: set_wreg_no_log(srcdst, MemoryRead<uint8_t>(address)); break;
|
|
case LDRH_w: set_wreg_no_log(srcdst, MemoryRead<uint16_t>(address)); break;
|
|
case LDR_w: set_wreg_no_log(srcdst, MemoryRead<uint32_t>(address)); break;
|
|
case LDR_x: set_xreg_no_log(srcdst, MemoryRead<uint64_t>(address)); break;
|
|
case LDRSB_w: set_wreg_no_log(srcdst, MemoryRead<int8_t>(address)); break;
|
|
case LDRSH_w: set_wreg_no_log(srcdst, MemoryRead<int16_t>(address)); break;
|
|
case LDRSB_x: set_xreg_no_log(srcdst, MemoryRead<int8_t>(address)); break;
|
|
case LDRSH_x: set_xreg_no_log(srcdst, MemoryRead<int16_t>(address)); break;
|
|
case LDRSW_x: set_xreg_no_log(srcdst, MemoryRead<int32_t>(address)); break;
|
|
case LDR_s: set_sreg_no_log(srcdst, MemoryRead<float>(address)); break;
|
|
case LDR_d: set_dreg_no_log(srcdst, MemoryRead<double>(address)); break;
|
|
|
|
case STRB_w: MemoryWrite<uint8_t>(address, wreg(srcdst)); break;
|
|
case STRH_w: MemoryWrite<uint16_t>(address, wreg(srcdst)); break;
|
|
case STR_w: MemoryWrite<uint32_t>(address, wreg(srcdst)); break;
|
|
case STR_x: MemoryWrite<uint64_t>(address, xreg(srcdst)); break;
|
|
case STR_s: MemoryWrite<float>(address, sreg(srcdst)); break;
|
|
case STR_d: MemoryWrite<double>(address, dreg(srcdst)); break;
|
|
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
|
|
// Print a detailed trace (including the memory address) instead of the basic
|
|
// register:value trace generated by set_*reg().
|
|
size_t access_size = 1 << instr->SizeLS();
|
|
if (instr->IsLoad()) {
|
|
if ((op == LDR_s) || (op == LDR_d)) {
|
|
LogReadFP(address, access_size, srcdst);
|
|
} else {
|
|
LogRead(address, access_size, srcdst);
|
|
}
|
|
} else {
|
|
if ((op == STR_s) || (op == STR_d)) {
|
|
LogWriteFP(address, access_size, srcdst);
|
|
} else {
|
|
LogWrite(address, access_size, srcdst);
|
|
}
|
|
}
|
|
|
|
// Handle the writeback for loads after the load to ensure safe pop
|
|
// operation even when interrupted in the middle of it. The stack pointer
|
|
// is only updated after the load so pop(fp) will never break the invariant
|
|
// sp <= fp expected while walking the stack in the sampler.
|
|
if (instr->IsLoad()) {
|
|
// For loads the address pre writeback is used to check access below the
|
|
// stack.
|
|
stack = sp();
|
|
|
|
LoadStoreWriteBack(addr_reg, offset, addrmode);
|
|
}
|
|
|
|
// Accesses below the stack pointer (but above the platform stack limit) are
|
|
// not allowed in the ABI.
|
|
CheckMemoryAccess(address, stack);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStorePairOffset(Instruction* instr) {
|
|
LoadStorePairHelper(instr, Offset);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStorePairPreIndex(Instruction* instr) {
|
|
LoadStorePairHelper(instr, PreIndex);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStorePairPostIndex(Instruction* instr) {
|
|
LoadStorePairHelper(instr, PostIndex);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadStorePairNonTemporal(Instruction* instr) {
|
|
LoadStorePairHelper(instr, Offset);
|
|
}
|
|
|
|
|
|
void Simulator::LoadStorePairHelper(Instruction* instr,
|
|
AddrMode addrmode) {
|
|
unsigned rt = instr->Rt();
|
|
unsigned rt2 = instr->Rt2();
|
|
unsigned addr_reg = instr->Rn();
|
|
size_t access_size = 1 << instr->SizeLSPair();
|
|
int64_t offset = instr->ImmLSPair() * access_size;
|
|
uintptr_t address = LoadStoreAddress(addr_reg, offset, addrmode);
|
|
uintptr_t address2 = address + access_size;
|
|
uintptr_t stack = 0;
|
|
|
|
// Handle the writeback for stores before the store. On a CPU the writeback
|
|
// and the store are atomic, but when running on the simulator it is possible
|
|
// to be interrupted in between. The simulator is not thread safe and V8 does
|
|
// not require it to be to run JavaScript therefore the profiler may sample
|
|
// the "simulated" CPU in the middle of load/store with writeback. The code
|
|
// below ensures that push operations are safe even when interrupted: the
|
|
// stack pointer will be decremented before adding an element to the stack.
|
|
if (instr->IsStore()) {
|
|
LoadStoreWriteBack(addr_reg, offset, addrmode);
|
|
|
|
// For store the address post writeback is used to check access below the
|
|
// stack.
|
|
stack = sp();
|
|
}
|
|
|
|
LoadStorePairOp op =
|
|
static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask));
|
|
|
|
// 'rt' and 'rt2' can only be aliased for stores.
|
|
DCHECK(((op & LoadStorePairLBit) == 0) || (rt != rt2));
|
|
|
|
switch (op) {
|
|
// Use _no_log variants to suppress the register trace (LOG_REGS,
|
|
// LOG_FP_REGS). We will print a more detailed log.
|
|
case LDP_w: {
|
|
DCHECK(access_size == kWRegSize);
|
|
set_wreg_no_log(rt, MemoryRead<uint32_t>(address));
|
|
set_wreg_no_log(rt2, MemoryRead<uint32_t>(address2));
|
|
break;
|
|
}
|
|
case LDP_s: {
|
|
DCHECK(access_size == kSRegSize);
|
|
set_sreg_no_log(rt, MemoryRead<float>(address));
|
|
set_sreg_no_log(rt2, MemoryRead<float>(address2));
|
|
break;
|
|
}
|
|
case LDP_x: {
|
|
DCHECK(access_size == kXRegSize);
|
|
set_xreg_no_log(rt, MemoryRead<uint64_t>(address));
|
|
set_xreg_no_log(rt2, MemoryRead<uint64_t>(address2));
|
|
break;
|
|
}
|
|
case LDP_d: {
|
|
DCHECK(access_size == kDRegSize);
|
|
set_dreg_no_log(rt, MemoryRead<double>(address));
|
|
set_dreg_no_log(rt2, MemoryRead<double>(address2));
|
|
break;
|
|
}
|
|
case LDPSW_x: {
|
|
DCHECK(access_size == kWRegSize);
|
|
set_xreg_no_log(rt, MemoryRead<int32_t>(address));
|
|
set_xreg_no_log(rt2, MemoryRead<int32_t>(address2));
|
|
break;
|
|
}
|
|
case STP_w: {
|
|
DCHECK(access_size == kWRegSize);
|
|
MemoryWrite<uint32_t>(address, wreg(rt));
|
|
MemoryWrite<uint32_t>(address2, wreg(rt2));
|
|
break;
|
|
}
|
|
case STP_s: {
|
|
DCHECK(access_size == kSRegSize);
|
|
MemoryWrite<float>(address, sreg(rt));
|
|
MemoryWrite<float>(address2, sreg(rt2));
|
|
break;
|
|
}
|
|
case STP_x: {
|
|
DCHECK(access_size == kXRegSize);
|
|
MemoryWrite<uint64_t>(address, xreg(rt));
|
|
MemoryWrite<uint64_t>(address2, xreg(rt2));
|
|
break;
|
|
}
|
|
case STP_d: {
|
|
DCHECK(access_size == kDRegSize);
|
|
MemoryWrite<double>(address, dreg(rt));
|
|
MemoryWrite<double>(address2, dreg(rt2));
|
|
break;
|
|
}
|
|
default: UNREACHABLE();
|
|
}
|
|
|
|
// Print a detailed trace (including the memory address) instead of the basic
|
|
// register:value trace generated by set_*reg().
|
|
if (instr->IsLoad()) {
|
|
if ((op == LDP_s) || (op == LDP_d)) {
|
|
LogReadFP(address, access_size, rt);
|
|
LogReadFP(address2, access_size, rt2);
|
|
} else {
|
|
LogRead(address, access_size, rt);
|
|
LogRead(address2, access_size, rt2);
|
|
}
|
|
} else {
|
|
if ((op == STP_s) || (op == STP_d)) {
|
|
LogWriteFP(address, access_size, rt);
|
|
LogWriteFP(address2, access_size, rt2);
|
|
} else {
|
|
LogWrite(address, access_size, rt);
|
|
LogWrite(address2, access_size, rt2);
|
|
}
|
|
}
|
|
|
|
// Handle the writeback for loads after the load to ensure safe pop
|
|
// operation even when interrupted in the middle of it. The stack pointer
|
|
// is only updated after the load so pop(fp) will never break the invariant
|
|
// sp <= fp expected while walking the stack in the sampler.
|
|
if (instr->IsLoad()) {
|
|
// For loads the address pre writeback is used to check access below the
|
|
// stack.
|
|
stack = sp();
|
|
|
|
LoadStoreWriteBack(addr_reg, offset, addrmode);
|
|
}
|
|
|
|
// Accesses below the stack pointer (but above the platform stack limit) are
|
|
// not allowed in the ABI.
|
|
CheckMemoryAccess(address, stack);
|
|
}
|
|
|
|
|
|
void Simulator::VisitLoadLiteral(Instruction* instr) {
|
|
uintptr_t address = instr->LiteralAddress();
|
|
unsigned rt = instr->Rt();
|
|
|
|
switch (instr->Mask(LoadLiteralMask)) {
|
|
// Use _no_log variants to suppress the register trace (LOG_REGS,
|
|
// LOG_FP_REGS), then print a more detailed log.
|
|
case LDR_w_lit:
|
|
set_wreg_no_log(rt, MemoryRead<uint32_t>(address));
|
|
LogRead(address, kWRegSize, rt);
|
|
break;
|
|
case LDR_x_lit:
|
|
set_xreg_no_log(rt, MemoryRead<uint64_t>(address));
|
|
LogRead(address, kXRegSize, rt);
|
|
break;
|
|
case LDR_s_lit:
|
|
set_sreg_no_log(rt, MemoryRead<float>(address));
|
|
LogReadFP(address, kSRegSize, rt);
|
|
break;
|
|
case LDR_d_lit:
|
|
set_dreg_no_log(rt, MemoryRead<double>(address));
|
|
LogReadFP(address, kDRegSize, rt);
|
|
break;
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
uintptr_t Simulator::LoadStoreAddress(unsigned addr_reg, int64_t offset,
|
|
AddrMode addrmode) {
|
|
const unsigned kSPRegCode = kSPRegInternalCode & kRegCodeMask;
|
|
uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
|
|
if ((addr_reg == kSPRegCode) && ((address % 16) != 0)) {
|
|
// When the base register is SP the stack pointer is required to be
|
|
// quadword aligned prior to the address calculation and write-backs.
|
|
// Misalignment will cause a stack alignment fault.
|
|
FATAL("ALIGNMENT EXCEPTION");
|
|
}
|
|
|
|
if ((addrmode == Offset) || (addrmode == PreIndex)) {
|
|
address += offset;
|
|
}
|
|
|
|
return address;
|
|
}
|
|
|
|
|
|
void Simulator::LoadStoreWriteBack(unsigned addr_reg,
|
|
int64_t offset,
|
|
AddrMode addrmode) {
|
|
if ((addrmode == PreIndex) || (addrmode == PostIndex)) {
|
|
DCHECK(offset != 0);
|
|
uint64_t address = xreg(addr_reg, Reg31IsStackPointer);
|
|
set_reg(addr_reg, address + offset, Reg31IsStackPointer);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::CheckMemoryAccess(uintptr_t address, uintptr_t stack) {
|
|
if ((address >= stack_limit_) && (address < stack)) {
|
|
fprintf(stream_, "ACCESS BELOW STACK POINTER:\n");
|
|
fprintf(stream_, " sp is here: 0x%016" PRIx64 "\n",
|
|
static_cast<uint64_t>(stack));
|
|
fprintf(stream_, " access was here: 0x%016" PRIx64 "\n",
|
|
static_cast<uint64_t>(address));
|
|
fprintf(stream_, " stack limit is here: 0x%016" PRIx64 "\n",
|
|
static_cast<uint64_t>(stack_limit_));
|
|
fprintf(stream_, "\n");
|
|
FATAL("ACCESS BELOW STACK POINTER");
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitMoveWideImmediate(Instruction* instr) {
|
|
MoveWideImmediateOp mov_op =
|
|
static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask));
|
|
int64_t new_xn_val = 0;
|
|
|
|
bool is_64_bits = instr->SixtyFourBits() == 1;
|
|
// Shift is limited for W operations.
|
|
DCHECK(is_64_bits || (instr->ShiftMoveWide() < 2));
|
|
|
|
// Get the shifted immediate.
|
|
int64_t shift = instr->ShiftMoveWide() * 16;
|
|
int64_t shifted_imm16 = instr->ImmMoveWide() << shift;
|
|
|
|
// Compute the new value.
|
|
switch (mov_op) {
|
|
case MOVN_w:
|
|
case MOVN_x: {
|
|
new_xn_val = ~shifted_imm16;
|
|
if (!is_64_bits) new_xn_val &= kWRegMask;
|
|
break;
|
|
}
|
|
case MOVK_w:
|
|
case MOVK_x: {
|
|
unsigned reg_code = instr->Rd();
|
|
int64_t prev_xn_val = is_64_bits ? xreg(reg_code)
|
|
: wreg(reg_code);
|
|
new_xn_val = (prev_xn_val & ~(0xffffL << shift)) | shifted_imm16;
|
|
break;
|
|
}
|
|
case MOVZ_w:
|
|
case MOVZ_x: {
|
|
new_xn_val = shifted_imm16;
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Update the destination register.
|
|
set_xreg(instr->Rd(), new_xn_val);
|
|
}
|
|
|
|
|
|
void Simulator::VisitConditionalSelect(Instruction* instr) {
|
|
if (ConditionFailed(static_cast<Condition>(instr->Condition()))) {
|
|
uint64_t new_val = xreg(instr->Rm());
|
|
switch (instr->Mask(ConditionalSelectMask)) {
|
|
case CSEL_w: set_wreg(instr->Rd(), new_val); break;
|
|
case CSEL_x: set_xreg(instr->Rd(), new_val); break;
|
|
case CSINC_w: set_wreg(instr->Rd(), new_val + 1); break;
|
|
case CSINC_x: set_xreg(instr->Rd(), new_val + 1); break;
|
|
case CSINV_w: set_wreg(instr->Rd(), ~new_val); break;
|
|
case CSINV_x: set_xreg(instr->Rd(), ~new_val); break;
|
|
case CSNEG_w: set_wreg(instr->Rd(), -new_val); break;
|
|
case CSNEG_x: set_xreg(instr->Rd(), -new_val); break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
} else {
|
|
if (instr->SixtyFourBits()) {
|
|
set_xreg(instr->Rd(), xreg(instr->Rn()));
|
|
} else {
|
|
set_wreg(instr->Rd(), wreg(instr->Rn()));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitDataProcessing1Source(Instruction* instr) {
|
|
unsigned dst = instr->Rd();
|
|
unsigned src = instr->Rn();
|
|
|
|
switch (instr->Mask(DataProcessing1SourceMask)) {
|
|
case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSizeInBits)); break;
|
|
case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSizeInBits)); break;
|
|
case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break;
|
|
case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break;
|
|
case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break;
|
|
case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break;
|
|
case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break;
|
|
case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSizeInBits));
|
|
break;
|
|
case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSizeInBits));
|
|
break;
|
|
case CLS_w: {
|
|
set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSizeInBits));
|
|
break;
|
|
}
|
|
case CLS_x: {
|
|
set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSizeInBits));
|
|
break;
|
|
}
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) {
|
|
DCHECK((num_bits == kWRegSizeInBits) || (num_bits == kXRegSizeInBits));
|
|
uint64_t result = 0;
|
|
for (unsigned i = 0; i < num_bits; i++) {
|
|
result = (result << 1) | (value & 1);
|
|
value >>= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
uint64_t Simulator::ReverseBytes(uint64_t value, ReverseByteMode mode) {
|
|
// Split the 64-bit value into an 8-bit array, where b[0] is the least
|
|
// significant byte, and b[7] is the most significant.
|
|
uint8_t bytes[8];
|
|
uint64_t mask = 0xff00000000000000UL;
|
|
for (int i = 7; i >= 0; i--) {
|
|
bytes[i] = (value & mask) >> (i * 8);
|
|
mask >>= 8;
|
|
}
|
|
|
|
// Permutation tables for REV instructions.
|
|
// permute_table[Reverse16] is used by REV16_x, REV16_w
|
|
// permute_table[Reverse32] is used by REV32_x, REV_w
|
|
// permute_table[Reverse64] is used by REV_x
|
|
DCHECK((Reverse16 == 0) && (Reverse32 == 1) && (Reverse64 == 2));
|
|
static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
|
|
{4, 5, 6, 7, 0, 1, 2, 3},
|
|
{0, 1, 2, 3, 4, 5, 6, 7} };
|
|
uint64_t result = 0;
|
|
for (int i = 0; i < 8; i++) {
|
|
result <<= 8;
|
|
result |= bytes[permute_table[mode][i]];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void Simulator::DataProcessing2Source(Instruction* instr) {
|
|
Shift shift_op = NO_SHIFT;
|
|
T result = 0;
|
|
switch (instr->Mask(DataProcessing2SourceMask)) {
|
|
case SDIV_w:
|
|
case SDIV_x: {
|
|
T rn = reg<T>(instr->Rn());
|
|
T rm = reg<T>(instr->Rm());
|
|
if ((rn == std::numeric_limits<T>::min()) && (rm == -1)) {
|
|
result = std::numeric_limits<T>::min();
|
|
} else if (rm == 0) {
|
|
// Division by zero can be trapped, but not on A-class processors.
|
|
result = 0;
|
|
} else {
|
|
result = rn / rm;
|
|
}
|
|
break;
|
|
}
|
|
case UDIV_w:
|
|
case UDIV_x: {
|
|
typedef typename make_unsigned<T>::type unsignedT;
|
|
unsignedT rn = static_cast<unsignedT>(reg<T>(instr->Rn()));
|
|
unsignedT rm = static_cast<unsignedT>(reg<T>(instr->Rm()));
|
|
if (rm == 0) {
|
|
// Division by zero can be trapped, but not on A-class processors.
|
|
result = 0;
|
|
} else {
|
|
result = rn / rm;
|
|
}
|
|
break;
|
|
}
|
|
case LSLV_w:
|
|
case LSLV_x: shift_op = LSL; break;
|
|
case LSRV_w:
|
|
case LSRV_x: shift_op = LSR; break;
|
|
case ASRV_w:
|
|
case ASRV_x: shift_op = ASR; break;
|
|
case RORV_w:
|
|
case RORV_x: shift_op = ROR; break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
|
|
if (shift_op != NO_SHIFT) {
|
|
// Shift distance encoded in the least-significant five/six bits of the
|
|
// register.
|
|
unsigned shift = wreg(instr->Rm());
|
|
if (sizeof(T) == kWRegSize) {
|
|
shift &= kShiftAmountWRegMask;
|
|
} else {
|
|
shift &= kShiftAmountXRegMask;
|
|
}
|
|
result = ShiftOperand(reg<T>(instr->Rn()), shift_op, shift);
|
|
}
|
|
set_reg<T>(instr->Rd(), result);
|
|
}
|
|
|
|
|
|
void Simulator::VisitDataProcessing2Source(Instruction* instr) {
|
|
if (instr->SixtyFourBits()) {
|
|
DataProcessing2Source<int64_t>(instr);
|
|
} else {
|
|
DataProcessing2Source<int32_t>(instr);
|
|
}
|
|
}
|
|
|
|
|
|
// The algorithm used is described in section 8.2 of
|
|
// Hacker's Delight, by Henry S. Warren, Jr.
|
|
// It assumes that a right shift on a signed integer is an arithmetic shift.
|
|
static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
|
|
uint64_t u0, v0, w0;
|
|
int64_t u1, v1, w1, w2, t;
|
|
|
|
u0 = u & 0xffffffffL;
|
|
u1 = u >> 32;
|
|
v0 = v & 0xffffffffL;
|
|
v1 = v >> 32;
|
|
|
|
w0 = u0 * v0;
|
|
t = u1 * v0 + (w0 >> 32);
|
|
w1 = t & 0xffffffffL;
|
|
w2 = t >> 32;
|
|
w1 = u0 * v1 + w1;
|
|
|
|
return u1 * v1 + w2 + (w1 >> 32);
|
|
}
|
|
|
|
|
|
void Simulator::VisitDataProcessing3Source(Instruction* instr) {
|
|
int64_t result = 0;
|
|
// Extract and sign- or zero-extend 32-bit arguments for widening operations.
|
|
uint64_t rn_u32 = reg<uint32_t>(instr->Rn());
|
|
uint64_t rm_u32 = reg<uint32_t>(instr->Rm());
|
|
int64_t rn_s32 = reg<int32_t>(instr->Rn());
|
|
int64_t rm_s32 = reg<int32_t>(instr->Rm());
|
|
switch (instr->Mask(DataProcessing3SourceMask)) {
|
|
case MADD_w:
|
|
case MADD_x:
|
|
result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm()));
|
|
break;
|
|
case MSUB_w:
|
|
case MSUB_x:
|
|
result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm()));
|
|
break;
|
|
case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break;
|
|
case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break;
|
|
case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break;
|
|
case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break;
|
|
case SMULH_x:
|
|
DCHECK(instr->Ra() == kZeroRegCode);
|
|
result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm()));
|
|
break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
|
|
if (instr->SixtyFourBits()) {
|
|
set_xreg(instr->Rd(), result);
|
|
} else {
|
|
set_wreg(instr->Rd(), result);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void Simulator::BitfieldHelper(Instruction* instr) {
|
|
typedef typename make_unsigned<T>::type unsignedT;
|
|
T reg_size = sizeof(T) * 8;
|
|
T R = instr->ImmR();
|
|
T S = instr->ImmS();
|
|
T diff = S - R;
|
|
T mask;
|
|
if (diff >= 0) {
|
|
mask = diff < reg_size - 1 ? (static_cast<T>(1) << (diff + 1)) - 1
|
|
: static_cast<T>(-1);
|
|
} else {
|
|
mask = ((1L << (S + 1)) - 1);
|
|
mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R));
|
|
diff += reg_size;
|
|
}
|
|
|
|
// inzero indicates if the extracted bitfield is inserted into the
|
|
// destination register value or in zero.
|
|
// If extend is true, extend the sign of the extracted bitfield.
|
|
bool inzero = false;
|
|
bool extend = false;
|
|
switch (instr->Mask(BitfieldMask)) {
|
|
case BFM_x:
|
|
case BFM_w:
|
|
break;
|
|
case SBFM_x:
|
|
case SBFM_w:
|
|
inzero = true;
|
|
extend = true;
|
|
break;
|
|
case UBFM_x:
|
|
case UBFM_w:
|
|
inzero = true;
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
T dst = inzero ? 0 : reg<T>(instr->Rd());
|
|
T src = reg<T>(instr->Rn());
|
|
// Rotate source bitfield into place.
|
|
T result = (static_cast<unsignedT>(src) >> R) | (src << (reg_size - R));
|
|
// Determine the sign extension.
|
|
T topbits_preshift = (static_cast<T>(1) << (reg_size - diff - 1)) - 1;
|
|
T signbits = (extend && ((src >> S) & 1) ? topbits_preshift : 0)
|
|
<< (diff + 1);
|
|
|
|
// Merge sign extension, dest/zero and bitfield.
|
|
result = signbits | (result & mask) | (dst & ~mask);
|
|
|
|
set_reg<T>(instr->Rd(), result);
|
|
}
|
|
|
|
|
|
void Simulator::VisitBitfield(Instruction* instr) {
|
|
if (instr->SixtyFourBits()) {
|
|
BitfieldHelper<int64_t>(instr);
|
|
} else {
|
|
BitfieldHelper<int32_t>(instr);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitExtract(Instruction* instr) {
|
|
if (instr->SixtyFourBits()) {
|
|
Extract<uint64_t>(instr);
|
|
} else {
|
|
Extract<uint32_t>(instr);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPImmediate(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
unsigned dest = instr->Rd();
|
|
switch (instr->Mask(FPImmediateMask)) {
|
|
case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break;
|
|
case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break;
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPIntegerConvert(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
unsigned dst = instr->Rd();
|
|
unsigned src = instr->Rn();
|
|
|
|
FPRounding round = fpcr().RMode();
|
|
|
|
switch (instr->Mask(FPIntegerConvertMask)) {
|
|
case FCVTAS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieAway)); break;
|
|
case FCVTAS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieAway)); break;
|
|
case FCVTAS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieAway)); break;
|
|
case FCVTAS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieAway)); break;
|
|
case FCVTAU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieAway)); break;
|
|
case FCVTAU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieAway)); break;
|
|
case FCVTAU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieAway)); break;
|
|
case FCVTAU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieAway)); break;
|
|
case FCVTMS_ws:
|
|
set_wreg(dst, FPToInt32(sreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTMS_xs:
|
|
set_xreg(dst, FPToInt64(sreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTMS_wd:
|
|
set_wreg(dst, FPToInt32(dreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTMS_xd:
|
|
set_xreg(dst, FPToInt64(dreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTMU_ws:
|
|
set_wreg(dst, FPToUInt32(sreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTMU_xs:
|
|
set_xreg(dst, FPToUInt64(sreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTMU_wd:
|
|
set_wreg(dst, FPToUInt32(dreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTMU_xd:
|
|
set_xreg(dst, FPToUInt64(dreg(src), FPNegativeInfinity));
|
|
break;
|
|
case FCVTNS_ws: set_wreg(dst, FPToInt32(sreg(src), FPTieEven)); break;
|
|
case FCVTNS_xs: set_xreg(dst, FPToInt64(sreg(src), FPTieEven)); break;
|
|
case FCVTNS_wd: set_wreg(dst, FPToInt32(dreg(src), FPTieEven)); break;
|
|
case FCVTNS_xd: set_xreg(dst, FPToInt64(dreg(src), FPTieEven)); break;
|
|
case FCVTNU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPTieEven)); break;
|
|
case FCVTNU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPTieEven)); break;
|
|
case FCVTNU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPTieEven)); break;
|
|
case FCVTNU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPTieEven)); break;
|
|
case FCVTZS_ws: set_wreg(dst, FPToInt32(sreg(src), FPZero)); break;
|
|
case FCVTZS_xs: set_xreg(dst, FPToInt64(sreg(src), FPZero)); break;
|
|
case FCVTZS_wd: set_wreg(dst, FPToInt32(dreg(src), FPZero)); break;
|
|
case FCVTZS_xd: set_xreg(dst, FPToInt64(dreg(src), FPZero)); break;
|
|
case FCVTZU_ws: set_wreg(dst, FPToUInt32(sreg(src), FPZero)); break;
|
|
case FCVTZU_xs: set_xreg(dst, FPToUInt64(sreg(src), FPZero)); break;
|
|
case FCVTZU_wd: set_wreg(dst, FPToUInt32(dreg(src), FPZero)); break;
|
|
case FCVTZU_xd: set_xreg(dst, FPToUInt64(dreg(src), FPZero)); break;
|
|
case FMOV_ws: set_wreg(dst, sreg_bits(src)); break;
|
|
case FMOV_xd: set_xreg(dst, dreg_bits(src)); break;
|
|
case FMOV_sw: set_sreg_bits(dst, wreg(src)); break;
|
|
case FMOV_dx: set_dreg_bits(dst, xreg(src)); break;
|
|
|
|
// A 32-bit input can be handled in the same way as a 64-bit input, since
|
|
// the sign- or zero-extension will not affect the conversion.
|
|
case SCVTF_dx: set_dreg(dst, FixedToDouble(xreg(src), 0, round)); break;
|
|
case SCVTF_dw: set_dreg(dst, FixedToDouble(wreg(src), 0, round)); break;
|
|
case UCVTF_dx: set_dreg(dst, UFixedToDouble(xreg(src), 0, round)); break;
|
|
case UCVTF_dw: {
|
|
set_dreg(dst, UFixedToDouble(reg<uint32_t>(src), 0, round));
|
|
break;
|
|
}
|
|
case SCVTF_sx: set_sreg(dst, FixedToFloat(xreg(src), 0, round)); break;
|
|
case SCVTF_sw: set_sreg(dst, FixedToFloat(wreg(src), 0, round)); break;
|
|
case UCVTF_sx: set_sreg(dst, UFixedToFloat(xreg(src), 0, round)); break;
|
|
case UCVTF_sw: {
|
|
set_sreg(dst, UFixedToFloat(reg<uint32_t>(src), 0, round));
|
|
break;
|
|
}
|
|
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPFixedPointConvert(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
unsigned dst = instr->Rd();
|
|
unsigned src = instr->Rn();
|
|
int fbits = 64 - instr->FPScale();
|
|
|
|
FPRounding round = fpcr().RMode();
|
|
|
|
switch (instr->Mask(FPFixedPointConvertMask)) {
|
|
// A 32-bit input can be handled in the same way as a 64-bit input, since
|
|
// the sign- or zero-extension will not affect the conversion.
|
|
case SCVTF_dx_fixed:
|
|
set_dreg(dst, FixedToDouble(xreg(src), fbits, round));
|
|
break;
|
|
case SCVTF_dw_fixed:
|
|
set_dreg(dst, FixedToDouble(wreg(src), fbits, round));
|
|
break;
|
|
case UCVTF_dx_fixed:
|
|
set_dreg(dst, UFixedToDouble(xreg(src), fbits, round));
|
|
break;
|
|
case UCVTF_dw_fixed: {
|
|
set_dreg(dst,
|
|
UFixedToDouble(reg<uint32_t>(src), fbits, round));
|
|
break;
|
|
}
|
|
case SCVTF_sx_fixed:
|
|
set_sreg(dst, FixedToFloat(xreg(src), fbits, round));
|
|
break;
|
|
case SCVTF_sw_fixed:
|
|
set_sreg(dst, FixedToFloat(wreg(src), fbits, round));
|
|
break;
|
|
case UCVTF_sx_fixed:
|
|
set_sreg(dst, UFixedToFloat(xreg(src), fbits, round));
|
|
break;
|
|
case UCVTF_sw_fixed: {
|
|
set_sreg(dst,
|
|
UFixedToFloat(reg<uint32_t>(src), fbits, round));
|
|
break;
|
|
}
|
|
default: UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
int32_t Simulator::FPToInt32(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kWMaxInt) {
|
|
return kWMaxInt;
|
|
} else if (value < kWMinInt) {
|
|
return kWMinInt;
|
|
}
|
|
return std::isnan(value) ? 0 : static_cast<int32_t>(value);
|
|
}
|
|
|
|
|
|
int64_t Simulator::FPToInt64(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kXMaxInt) {
|
|
return kXMaxInt;
|
|
} else if (value < kXMinInt) {
|
|
return kXMinInt;
|
|
}
|
|
return std::isnan(value) ? 0 : static_cast<int64_t>(value);
|
|
}
|
|
|
|
|
|
uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kWMaxUInt) {
|
|
return kWMaxUInt;
|
|
} else if (value < 0.0) {
|
|
return 0;
|
|
}
|
|
return std::isnan(value) ? 0 : static_cast<uint32_t>(value);
|
|
}
|
|
|
|
|
|
uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kXMaxUInt) {
|
|
return kXMaxUInt;
|
|
} else if (value < 0.0) {
|
|
return 0;
|
|
}
|
|
return std::isnan(value) ? 0 : static_cast<uint64_t>(value);
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPCompare(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
|
|
: kSRegSizeInBits;
|
|
double fn_val = fpreg(reg_size, instr->Rn());
|
|
|
|
switch (instr->Mask(FPCompareMask)) {
|
|
case FCMP_s:
|
|
case FCMP_d: FPCompare(fn_val, fpreg(reg_size, instr->Rm())); break;
|
|
case FCMP_s_zero:
|
|
case FCMP_d_zero: FPCompare(fn_val, 0.0); break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPConditionalCompare(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
switch (instr->Mask(FPConditionalCompareMask)) {
|
|
case FCCMP_s:
|
|
case FCCMP_d: {
|
|
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
|
|
// If the condition passes, set the status flags to the result of
|
|
// comparing the operands.
|
|
unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
|
|
: kSRegSizeInBits;
|
|
FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm()));
|
|
} else {
|
|
// If the condition fails, set the status flags to the nzcv immediate.
|
|
nzcv().SetFlags(instr->Nzcv());
|
|
LogSystemRegister(NZCV);
|
|
}
|
|
break;
|
|
}
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPConditionalSelect(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
Instr selected;
|
|
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
|
|
selected = instr->Rn();
|
|
} else {
|
|
selected = instr->Rm();
|
|
}
|
|
|
|
switch (instr->Mask(FPConditionalSelectMask)) {
|
|
case FCSEL_s: set_sreg(instr->Rd(), sreg(selected)); break;
|
|
case FCSEL_d: set_dreg(instr->Rd(), dreg(selected)); break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
unsigned fd = instr->Rd();
|
|
unsigned fn = instr->Rn();
|
|
|
|
switch (instr->Mask(FPDataProcessing1SourceMask)) {
|
|
case FMOV_s: set_sreg(fd, sreg(fn)); break;
|
|
case FMOV_d: set_dreg(fd, dreg(fn)); break;
|
|
case FABS_s: set_sreg(fd, std::fabs(sreg(fn))); break;
|
|
case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break;
|
|
case FNEG_s: set_sreg(fd, -sreg(fn)); break;
|
|
case FNEG_d: set_dreg(fd, -dreg(fn)); break;
|
|
case FSQRT_s: set_sreg(fd, FPSqrt(sreg(fn))); break;
|
|
case FSQRT_d: set_dreg(fd, FPSqrt(dreg(fn))); break;
|
|
case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break;
|
|
case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break;
|
|
case FRINTM_s:
|
|
set_sreg(fd, FPRoundInt(sreg(fn), FPNegativeInfinity)); break;
|
|
case FRINTM_d:
|
|
set_dreg(fd, FPRoundInt(dreg(fn), FPNegativeInfinity)); break;
|
|
case FRINTP_s:
|
|
set_sreg(fd, FPRoundInt(sreg(fn), FPPositiveInfinity));
|
|
break;
|
|
case FRINTP_d:
|
|
set_dreg(fd, FPRoundInt(dreg(fn), FPPositiveInfinity));
|
|
break;
|
|
case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break;
|
|
case FRINTN_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieEven)); break;
|
|
case FRINTZ_s: set_sreg(fd, FPRoundInt(sreg(fn), FPZero)); break;
|
|
case FRINTZ_d: set_dreg(fd, FPRoundInt(dreg(fn), FPZero)); break;
|
|
case FCVT_ds: set_dreg(fd, FPToDouble(sreg(fn))); break;
|
|
case FCVT_sd: set_sreg(fd, FPToFloat(dreg(fn), FPTieEven)); break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
// Assemble the specified IEEE-754 components into the target type and apply
|
|
// appropriate rounding.
|
|
// sign: 0 = positive, 1 = negative
|
|
// exponent: Unbiased IEEE-754 exponent.
|
|
// mantissa: The mantissa of the input. The top bit (which is not encoded for
|
|
// normal IEEE-754 values) must not be omitted. This bit has the
|
|
// value 'pow(2, exponent)'.
|
|
//
|
|
// The input value is assumed to be a normalized value. That is, the input may
|
|
// not be infinity or NaN. If the source value is subnormal, it must be
|
|
// normalized before calling this function such that the highest set bit in the
|
|
// mantissa has the value 'pow(2, exponent)'.
|
|
//
|
|
// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
|
|
// calling a templated FPRound.
|
|
template <class T, int ebits, int mbits>
|
|
static T FPRound(int64_t sign, int64_t exponent, uint64_t mantissa,
|
|
FPRounding round_mode) {
|
|
DCHECK((sign == 0) || (sign == 1));
|
|
|
|
// Only the FPTieEven rounding mode is implemented.
|
|
DCHECK(round_mode == FPTieEven);
|
|
USE(round_mode);
|
|
|
|
// Rounding can promote subnormals to normals, and normals to infinities. For
|
|
// example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
|
|
// encodable as a float, but rounding based on the low-order mantissa bits
|
|
// could make it overflow. With ties-to-even rounding, this value would become
|
|
// an infinity.
|
|
|
|
// ---- Rounding Method ----
|
|
//
|
|
// The exponent is irrelevant in the rounding operation, so we treat the
|
|
// lowest-order bit that will fit into the result ('onebit') as having
|
|
// the value '1'. Similarly, the highest-order bit that won't fit into
|
|
// the result ('halfbit') has the value '0.5'. The 'point' sits between
|
|
// 'onebit' and 'halfbit':
|
|
//
|
|
// These bits fit into the result.
|
|
// |---------------------|
|
|
// mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|
// ||
|
|
// / |
|
|
// / halfbit
|
|
// onebit
|
|
//
|
|
// For subnormal outputs, the range of representable bits is smaller and
|
|
// the position of onebit and halfbit depends on the exponent of the
|
|
// input, but the method is otherwise similar.
|
|
//
|
|
// onebit(frac)
|
|
// |
|
|
// | halfbit(frac) halfbit(adjusted)
|
|
// | / /
|
|
// | | |
|
|
// 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
|
|
// 0b00.0... -> 0b00.0... -> 0b00
|
|
// 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
|
|
// 0b00.1... -> 0b00.1... -> 0b01
|
|
// 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
|
|
// 0b01.0... -> 0b01.0... -> 0b01
|
|
// 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
|
|
// 0b01.1... -> 0b01.1... -> 0b10
|
|
// 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
|
|
// 0b10.0... -> 0b10.0... -> 0b10
|
|
// 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
|
|
// 0b10.1... -> 0b10.1... -> 0b11
|
|
// 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
|
|
// ... / | / |
|
|
// / | / |
|
|
// / |
|
|
// adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
|
|
//
|
|
// mantissa = (mantissa >> shift) + halfbit(adjusted);
|
|
|
|
static const int mantissa_offset = 0;
|
|
static const int exponent_offset = mantissa_offset + mbits;
|
|
static const int sign_offset = exponent_offset + ebits;
|
|
STATIC_ASSERT(sign_offset == (sizeof(T) * kByteSize - 1));
|
|
|
|
// Bail out early for zero inputs.
|
|
if (mantissa == 0) {
|
|
return sign << sign_offset;
|
|
}
|
|
|
|
// If all bits in the exponent are set, the value is infinite or NaN.
|
|
// This is true for all binary IEEE-754 formats.
|
|
static const int infinite_exponent = (1 << ebits) - 1;
|
|
static const int max_normal_exponent = infinite_exponent - 1;
|
|
|
|
// Apply the exponent bias to encode it for the result. Doing this early makes
|
|
// it easy to detect values that will be infinite or subnormal.
|
|
exponent += max_normal_exponent >> 1;
|
|
|
|
if (exponent > max_normal_exponent) {
|
|
// Overflow: The input is too large for the result type to represent. The
|
|
// FPTieEven rounding mode handles overflows using infinities.
|
|
exponent = infinite_exponent;
|
|
mantissa = 0;
|
|
return (sign << sign_offset) |
|
|
(exponent << exponent_offset) |
|
|
(mantissa << mantissa_offset);
|
|
}
|
|
|
|
// Calculate the shift required to move the top mantissa bit to the proper
|
|
// place in the destination type.
|
|
const int highest_significant_bit = 63 - CountLeadingZeros(mantissa, 64);
|
|
int shift = highest_significant_bit - mbits;
|
|
|
|
if (exponent <= 0) {
|
|
// The output will be subnormal (before rounding).
|
|
|
|
// For subnormal outputs, the shift must be adjusted by the exponent. The +1
|
|
// is necessary because the exponent of a subnormal value (encoded as 0) is
|
|
// the same as the exponent of the smallest normal value (encoded as 1).
|
|
shift += -exponent + 1;
|
|
|
|
// Handle inputs that would produce a zero output.
|
|
//
|
|
// Shifts higher than highest_significant_bit+1 will always produce a zero
|
|
// result. A shift of exactly highest_significant_bit+1 might produce a
|
|
// non-zero result after rounding.
|
|
if (shift > (highest_significant_bit + 1)) {
|
|
// The result will always be +/-0.0.
|
|
return sign << sign_offset;
|
|
}
|
|
|
|
// Properly encode the exponent for a subnormal output.
|
|
exponent = 0;
|
|
} else {
|
|
// Clear the topmost mantissa bit, since this is not encoded in IEEE-754
|
|
// normal values.
|
|
mantissa &= ~(1UL << highest_significant_bit);
|
|
}
|
|
|
|
if (shift > 0) {
|
|
// We have to shift the mantissa to the right. Some precision is lost, so we
|
|
// need to apply rounding.
|
|
uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
|
|
uint64_t halfbit_mantissa = (mantissa >> (shift-1)) & 1;
|
|
uint64_t adjusted = mantissa - (halfbit_mantissa & ~onebit_mantissa);
|
|
T halfbit_adjusted = (adjusted >> (shift-1)) & 1;
|
|
|
|
T result = (sign << sign_offset) |
|
|
(exponent << exponent_offset) |
|
|
((mantissa >> shift) << mantissa_offset);
|
|
|
|
// A very large mantissa can overflow during rounding. If this happens, the
|
|
// exponent should be incremented and the mantissa set to 1.0 (encoded as
|
|
// 0). Applying halfbit_adjusted after assembling the float has the nice
|
|
// side-effect that this case is handled for free.
|
|
//
|
|
// This also handles cases where a very large finite value overflows to
|
|
// infinity, or where a very large subnormal value overflows to become
|
|
// normal.
|
|
return result + halfbit_adjusted;
|
|
} else {
|
|
// We have to shift the mantissa to the left (or not at all). The input
|
|
// mantissa is exactly representable in the output mantissa, so apply no
|
|
// rounding correction.
|
|
return (sign << sign_offset) |
|
|
(exponent << exponent_offset) |
|
|
((mantissa << -shift) << mantissa_offset);
|
|
}
|
|
}
|
|
|
|
|
|
// See FPRound for a description of this function.
|
|
static inline double FPRoundToDouble(int64_t sign, int64_t exponent,
|
|
uint64_t mantissa, FPRounding round_mode) {
|
|
int64_t bits =
|
|
FPRound<int64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
|
|
exponent,
|
|
mantissa,
|
|
round_mode);
|
|
return rawbits_to_double(bits);
|
|
}
|
|
|
|
|
|
// See FPRound for a description of this function.
|
|
static inline float FPRoundToFloat(int64_t sign, int64_t exponent,
|
|
uint64_t mantissa, FPRounding round_mode) {
|
|
int32_t bits =
|
|
FPRound<int32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
|
|
exponent,
|
|
mantissa,
|
|
round_mode);
|
|
return rawbits_to_float(bits);
|
|
}
|
|
|
|
|
|
double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) {
|
|
if (src >= 0) {
|
|
return UFixedToDouble(src, fbits, round);
|
|
} else {
|
|
// This works for all negative values, including INT64_MIN.
|
|
return -UFixedToDouble(-src, fbits, round);
|
|
}
|
|
}
|
|
|
|
|
|
double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) {
|
|
// An input of 0 is a special case because the result is effectively
|
|
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
|
|
if (src == 0) {
|
|
return 0.0;
|
|
}
|
|
|
|
// Calculate the exponent. The highest significant bit will have the value
|
|
// 2^exponent.
|
|
const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
|
|
const int64_t exponent = highest_significant_bit - fbits;
|
|
|
|
return FPRoundToDouble(0, exponent, src, round);
|
|
}
|
|
|
|
|
|
float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) {
|
|
if (src >= 0) {
|
|
return UFixedToFloat(src, fbits, round);
|
|
} else {
|
|
// This works for all negative values, including INT64_MIN.
|
|
return -UFixedToFloat(-src, fbits, round);
|
|
}
|
|
}
|
|
|
|
|
|
float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
|
|
// An input of 0 is a special case because the result is effectively
|
|
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
|
|
if (src == 0) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// Calculate the exponent. The highest significant bit will have the value
|
|
// 2^exponent.
|
|
const int highest_significant_bit = 63 - CountLeadingZeros(src, 64);
|
|
const int32_t exponent = highest_significant_bit - fbits;
|
|
|
|
return FPRoundToFloat(0, exponent, src, round);
|
|
}
|
|
|
|
|
|
double Simulator::FPRoundInt(double value, FPRounding round_mode) {
|
|
if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
|
|
(value == kFP64NegativeInfinity)) {
|
|
return value;
|
|
} else if (std::isnan(value)) {
|
|
return FPProcessNaN(value);
|
|
}
|
|
|
|
double int_result = floor(value);
|
|
double error = value - int_result;
|
|
switch (round_mode) {
|
|
case FPTieAway: {
|
|
// Take care of correctly handling the range ]-0.5, -0.0], which must
|
|
// yield -0.0.
|
|
if ((-0.5 < value) && (value < 0.0)) {
|
|
int_result = -0.0;
|
|
|
|
} else if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) {
|
|
// If the error is greater than 0.5, or is equal to 0.5 and the integer
|
|
// result is positive, round up.
|
|
int_result++;
|
|
}
|
|
break;
|
|
}
|
|
case FPTieEven: {
|
|
// Take care of correctly handling the range [-0.5, -0.0], which must
|
|
// yield -0.0.
|
|
if ((-0.5 <= value) && (value < 0.0)) {
|
|
int_result = -0.0;
|
|
|
|
// If the error is greater than 0.5, or is equal to 0.5 and the integer
|
|
// result is odd, round up.
|
|
} else if ((error > 0.5) ||
|
|
((error == 0.5) && (fmod(int_result, 2) != 0))) {
|
|
int_result++;
|
|
}
|
|
break;
|
|
}
|
|
case FPZero: {
|
|
// If value > 0 then we take floor(value)
|
|
// otherwise, ceil(value)
|
|
if (value < 0) {
|
|
int_result = ceil(value);
|
|
}
|
|
break;
|
|
}
|
|
case FPNegativeInfinity: {
|
|
// We always use floor(value).
|
|
break;
|
|
}
|
|
case FPPositiveInfinity: {
|
|
int_result = ceil(value);
|
|
break;
|
|
}
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
return int_result;
|
|
}
|
|
|
|
|
|
double Simulator::FPToDouble(float value) {
|
|
switch (std::fpclassify(value)) {
|
|
case FP_NAN: {
|
|
if (fpcr().DN()) return kFP64DefaultNaN;
|
|
|
|
// Convert NaNs as the processor would:
|
|
// - The sign is propagated.
|
|
// - The payload (mantissa) is transferred entirely, except that the top
|
|
// bit is forced to '1', making the result a quiet NaN. The unused
|
|
// (low-order) payload bits are set to 0.
|
|
uint32_t raw = float_to_rawbits(value);
|
|
|
|
uint64_t sign = raw >> 31;
|
|
uint64_t exponent = (1 << 11) - 1;
|
|
uint64_t payload = unsigned_bitextract_64(21, 0, raw);
|
|
payload <<= (52 - 23); // The unused low-order bits should be 0.
|
|
payload |= (1L << 51); // Force a quiet NaN.
|
|
|
|
return rawbits_to_double((sign << 63) | (exponent << 52) | payload);
|
|
}
|
|
|
|
case FP_ZERO:
|
|
case FP_NORMAL:
|
|
case FP_SUBNORMAL:
|
|
case FP_INFINITE: {
|
|
// All other inputs are preserved in a standard cast, because every value
|
|
// representable using an IEEE-754 float is also representable using an
|
|
// IEEE-754 double.
|
|
return static_cast<double>(value);
|
|
}
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return static_cast<double>(value);
|
|
}
|
|
|
|
|
|
float Simulator::FPToFloat(double value, FPRounding round_mode) {
|
|
// Only the FPTieEven rounding mode is implemented.
|
|
DCHECK(round_mode == FPTieEven);
|
|
USE(round_mode);
|
|
|
|
switch (std::fpclassify(value)) {
|
|
case FP_NAN: {
|
|
if (fpcr().DN()) return kFP32DefaultNaN;
|
|
|
|
// Convert NaNs as the processor would:
|
|
// - The sign is propagated.
|
|
// - The payload (mantissa) is transferred as much as possible, except
|
|
// that the top bit is forced to '1', making the result a quiet NaN.
|
|
uint64_t raw = double_to_rawbits(value);
|
|
|
|
uint32_t sign = raw >> 63;
|
|
uint32_t exponent = (1 << 8) - 1;
|
|
uint32_t payload = unsigned_bitextract_64(50, 52 - 23, raw);
|
|
payload |= (1 << 22); // Force a quiet NaN.
|
|
|
|
return rawbits_to_float((sign << 31) | (exponent << 23) | payload);
|
|
}
|
|
|
|
case FP_ZERO:
|
|
case FP_INFINITE: {
|
|
// In a C++ cast, any value representable in the target type will be
|
|
// unchanged. This is always the case for +/-0.0 and infinities.
|
|
return static_cast<float>(value);
|
|
}
|
|
|
|
case FP_NORMAL:
|
|
case FP_SUBNORMAL: {
|
|
// Convert double-to-float as the processor would, assuming that FPCR.FZ
|
|
// (flush-to-zero) is not set.
|
|
uint64_t raw = double_to_rawbits(value);
|
|
// Extract the IEEE-754 double components.
|
|
uint32_t sign = raw >> 63;
|
|
// Extract the exponent and remove the IEEE-754 encoding bias.
|
|
int32_t exponent = unsigned_bitextract_64(62, 52, raw) - 1023;
|
|
// Extract the mantissa and add the implicit '1' bit.
|
|
uint64_t mantissa = unsigned_bitextract_64(51, 0, raw);
|
|
if (std::fpclassify(value) == FP_NORMAL) {
|
|
mantissa |= (1UL << 52);
|
|
}
|
|
return FPRoundToFloat(sign, exponent, mantissa, round_mode);
|
|
}
|
|
}
|
|
|
|
UNREACHABLE();
|
|
return value;
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
unsigned fd = instr->Rd();
|
|
unsigned fn = instr->Rn();
|
|
unsigned fm = instr->Rm();
|
|
|
|
// Fmaxnm and Fminnm have special NaN handling.
|
|
switch (instr->Mask(FPDataProcessing2SourceMask)) {
|
|
case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); return;
|
|
case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); return;
|
|
case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); return;
|
|
case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); return;
|
|
default:
|
|
break; // Fall through.
|
|
}
|
|
|
|
if (FPProcessNaNs(instr)) return;
|
|
|
|
switch (instr->Mask(FPDataProcessing2SourceMask)) {
|
|
case FADD_s: set_sreg(fd, FPAdd(sreg(fn), sreg(fm))); break;
|
|
case FADD_d: set_dreg(fd, FPAdd(dreg(fn), dreg(fm))); break;
|
|
case FSUB_s: set_sreg(fd, FPSub(sreg(fn), sreg(fm))); break;
|
|
case FSUB_d: set_dreg(fd, FPSub(dreg(fn), dreg(fm))); break;
|
|
case FMUL_s: set_sreg(fd, FPMul(sreg(fn), sreg(fm))); break;
|
|
case FMUL_d: set_dreg(fd, FPMul(dreg(fn), dreg(fm))); break;
|
|
case FDIV_s: set_sreg(fd, FPDiv(sreg(fn), sreg(fm))); break;
|
|
case FDIV_d: set_dreg(fd, FPDiv(dreg(fn), dreg(fm))); break;
|
|
case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break;
|
|
case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break;
|
|
case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break;
|
|
case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break;
|
|
case FMAXNM_s:
|
|
case FMAXNM_d:
|
|
case FMINNM_s:
|
|
case FMINNM_d:
|
|
// These were handled before the standard FPProcessNaNs() stage.
|
|
UNREACHABLE();
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
|
|
AssertSupportedFPCR();
|
|
|
|
unsigned fd = instr->Rd();
|
|
unsigned fn = instr->Rn();
|
|
unsigned fm = instr->Rm();
|
|
unsigned fa = instr->Ra();
|
|
|
|
switch (instr->Mask(FPDataProcessing3SourceMask)) {
|
|
// fd = fa +/- (fn * fm)
|
|
case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break;
|
|
case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break;
|
|
case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break;
|
|
case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break;
|
|
// Negated variants of the above.
|
|
case FNMADD_s:
|
|
set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm)));
|
|
break;
|
|
case FNMSUB_s:
|
|
set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm)));
|
|
break;
|
|
case FNMADD_d:
|
|
set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm)));
|
|
break;
|
|
case FNMSUB_d:
|
|
set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm)));
|
|
break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPAdd(T op1, T op2) {
|
|
// NaNs should be handled elsewhere.
|
|
DCHECK(!std::isnan(op1) && !std::isnan(op2));
|
|
|
|
if (std::isinf(op1) && std::isinf(op2) && (op1 != op2)) {
|
|
// inf + -inf returns the default NaN.
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 + op2;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPDiv(T op1, T op2) {
|
|
// NaNs should be handled elsewhere.
|
|
DCHECK(!std::isnan(op1) && !std::isnan(op2));
|
|
|
|
if ((std::isinf(op1) && std::isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) {
|
|
// inf / inf and 0.0 / 0.0 return the default NaN.
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 / op2;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMax(T a, T b) {
|
|
// NaNs should be handled elsewhere.
|
|
DCHECK(!std::isnan(a) && !std::isnan(b));
|
|
|
|
if ((a == 0.0) && (b == 0.0) &&
|
|
(copysign(1.0, a) != copysign(1.0, b))) {
|
|
// a and b are zero, and the sign differs: return +0.0.
|
|
return 0.0;
|
|
} else {
|
|
return (a > b) ? a : b;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMaxNM(T a, T b) {
|
|
if (IsQuietNaN(a) && !IsQuietNaN(b)) {
|
|
a = kFP64NegativeInfinity;
|
|
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
|
|
b = kFP64NegativeInfinity;
|
|
}
|
|
|
|
T result = FPProcessNaNs(a, b);
|
|
return std::isnan(result) ? result : FPMax(a, b);
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::FPMin(T a, T b) {
|
|
// NaNs should be handled elsewhere.
|
|
DCHECK(!std::isnan(a) && !std::isnan(b));
|
|
|
|
if ((a == 0.0) && (b == 0.0) &&
|
|
(copysign(1.0, a) != copysign(1.0, b))) {
|
|
// a and b are zero, and the sign differs: return -0.0.
|
|
return -0.0;
|
|
} else {
|
|
return (a < b) ? a : b;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMinNM(T a, T b) {
|
|
if (IsQuietNaN(a) && !IsQuietNaN(b)) {
|
|
a = kFP64PositiveInfinity;
|
|
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
|
|
b = kFP64PositiveInfinity;
|
|
}
|
|
|
|
T result = FPProcessNaNs(a, b);
|
|
return std::isnan(result) ? result : FPMin(a, b);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMul(T op1, T op2) {
|
|
// NaNs should be handled elsewhere.
|
|
DCHECK(!std::isnan(op1) && !std::isnan(op2));
|
|
|
|
if ((std::isinf(op1) && (op2 == 0.0)) || (std::isinf(op2) && (op1 == 0.0))) {
|
|
// inf * 0.0 returns the default NaN.
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 * op2;
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
T Simulator::FPMulAdd(T a, T op1, T op2) {
|
|
T result = FPProcessNaNs3(a, op1, op2);
|
|
|
|
T sign_a = copysign(1.0, a);
|
|
T sign_prod = copysign(1.0, op1) * copysign(1.0, op2);
|
|
bool isinf_prod = std::isinf(op1) || std::isinf(op2);
|
|
bool operation_generates_nan =
|
|
(std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0
|
|
(std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf
|
|
(std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf
|
|
|
|
if (std::isnan(result)) {
|
|
// Generated NaNs override quiet NaNs propagated from a.
|
|
if (operation_generates_nan && IsQuietNaN(a)) {
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// If the operation would produce a NaN, return the default NaN.
|
|
if (operation_generates_nan) {
|
|
return FPDefaultNaN<T>();
|
|
}
|
|
|
|
// Work around broken fma implementations for exact zero results: The sign of
|
|
// exact 0.0 results is positive unless both a and op1 * op2 are negative.
|
|
if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) {
|
|
return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0;
|
|
}
|
|
|
|
result = FusedMultiplyAdd(op1, op2, a);
|
|
DCHECK(!std::isnan(result));
|
|
|
|
// Work around broken fma implementations for rounded zero results: If a is
|
|
// 0.0, the sign of the result is the sign of op1 * op2 before rounding.
|
|
if ((a == 0.0) && (result == 0.0)) {
|
|
return copysign(0.0, sign_prod);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPSqrt(T op) {
|
|
if (std::isnan(op)) {
|
|
return FPProcessNaN(op);
|
|
} else if (op < 0.0) {
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
return fast_sqrt(op);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPSub(T op1, T op2) {
|
|
// NaNs should be handled elsewhere.
|
|
DCHECK(!std::isnan(op1) && !std::isnan(op2));
|
|
|
|
if (std::isinf(op1) && std::isinf(op2) && (op1 == op2)) {
|
|
// inf - inf returns the default NaN.
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 - op2;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPProcessNaN(T op) {
|
|
DCHECK(std::isnan(op));
|
|
return fpcr().DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPProcessNaNs(T op1, T op2) {
|
|
if (IsSignallingNaN(op1)) {
|
|
return FPProcessNaN(op1);
|
|
} else if (IsSignallingNaN(op2)) {
|
|
return FPProcessNaN(op2);
|
|
} else if (std::isnan(op1)) {
|
|
DCHECK(IsQuietNaN(op1));
|
|
return FPProcessNaN(op1);
|
|
} else if (std::isnan(op2)) {
|
|
DCHECK(IsQuietNaN(op2));
|
|
return FPProcessNaN(op2);
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPProcessNaNs3(T op1, T op2, T op3) {
|
|
if (IsSignallingNaN(op1)) {
|
|
return FPProcessNaN(op1);
|
|
} else if (IsSignallingNaN(op2)) {
|
|
return FPProcessNaN(op2);
|
|
} else if (IsSignallingNaN(op3)) {
|
|
return FPProcessNaN(op3);
|
|
} else if (std::isnan(op1)) {
|
|
DCHECK(IsQuietNaN(op1));
|
|
return FPProcessNaN(op1);
|
|
} else if (std::isnan(op2)) {
|
|
DCHECK(IsQuietNaN(op2));
|
|
return FPProcessNaN(op2);
|
|
} else if (std::isnan(op3)) {
|
|
DCHECK(IsQuietNaN(op3));
|
|
return FPProcessNaN(op3);
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
bool Simulator::FPProcessNaNs(Instruction* instr) {
|
|
unsigned fd = instr->Rd();
|
|
unsigned fn = instr->Rn();
|
|
unsigned fm = instr->Rm();
|
|
bool done = false;
|
|
|
|
if (instr->Mask(FP64) == FP64) {
|
|
double result = FPProcessNaNs(dreg(fn), dreg(fm));
|
|
if (std::isnan(result)) {
|
|
set_dreg(fd, result);
|
|
done = true;
|
|
}
|
|
} else {
|
|
float result = FPProcessNaNs(sreg(fn), sreg(fm));
|
|
if (std::isnan(result)) {
|
|
set_sreg(fd, result);
|
|
done = true;
|
|
}
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
|
|
void Simulator::VisitSystem(Instruction* instr) {
|
|
// Some system instructions hijack their Op and Cp fields to represent a
|
|
// range of immediates instead of indicating a different instruction. This
|
|
// makes the decoding tricky.
|
|
if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
|
|
switch (instr->Mask(SystemSysRegMask)) {
|
|
case MRS: {
|
|
switch (instr->ImmSystemRegister()) {
|
|
case NZCV: set_xreg(instr->Rt(), nzcv().RawValue()); break;
|
|
case FPCR: set_xreg(instr->Rt(), fpcr().RawValue()); break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
break;
|
|
}
|
|
case MSR: {
|
|
switch (instr->ImmSystemRegister()) {
|
|
case NZCV:
|
|
nzcv().SetRawValue(xreg(instr->Rt()));
|
|
LogSystemRegister(NZCV);
|
|
break;
|
|
case FPCR:
|
|
fpcr().SetRawValue(xreg(instr->Rt()));
|
|
LogSystemRegister(FPCR);
|
|
break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
} else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
|
|
DCHECK(instr->Mask(SystemHintMask) == HINT);
|
|
switch (instr->ImmHint()) {
|
|
case NOP: break;
|
|
default: UNIMPLEMENTED();
|
|
}
|
|
} else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
|
|
__sync_synchronize();
|
|
} else {
|
|
UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
bool Simulator::GetValue(const char* desc, int64_t* value) {
|
|
int regnum = CodeFromName(desc);
|
|
if (regnum >= 0) {
|
|
unsigned code = regnum;
|
|
if (code == kZeroRegCode) {
|
|
// Catch the zero register and return 0.
|
|
*value = 0;
|
|
return true;
|
|
} else if (code == kSPRegInternalCode) {
|
|
// Translate the stack pointer code to 31, for Reg31IsStackPointer.
|
|
code = 31;
|
|
}
|
|
if (desc[0] == 'w') {
|
|
*value = wreg(code, Reg31IsStackPointer);
|
|
} else {
|
|
*value = xreg(code, Reg31IsStackPointer);
|
|
}
|
|
return true;
|
|
} else if (strncmp(desc, "0x", 2) == 0) {
|
|
return SScanF(desc + 2, "%" SCNx64,
|
|
reinterpret_cast<uint64_t*>(value)) == 1;
|
|
} else {
|
|
return SScanF(desc, "%" SCNu64,
|
|
reinterpret_cast<uint64_t*>(value)) == 1;
|
|
}
|
|
}
|
|
|
|
|
|
bool Simulator::PrintValue(const char* desc) {
|
|
if (strcmp(desc, "csp") == 0) {
|
|
DCHECK(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
|
|
PrintF(stream_, "%s csp:%s 0x%016" PRIx64 "%s\n",
|
|
clr_reg_name, clr_reg_value, xreg(31, Reg31IsStackPointer), clr_normal);
|
|
return true;
|
|
} else if (strcmp(desc, "wcsp") == 0) {
|
|
DCHECK(CodeFromName(desc) == static_cast<int>(kSPRegInternalCode));
|
|
PrintF(stream_, "%s wcsp:%s 0x%08" PRIx32 "%s\n",
|
|
clr_reg_name, clr_reg_value, wreg(31, Reg31IsStackPointer), clr_normal);
|
|
return true;
|
|
}
|
|
|
|
int i = CodeFromName(desc);
|
|
STATIC_ASSERT(kNumberOfRegisters == kNumberOfFPRegisters);
|
|
if (i < 0 || static_cast<unsigned>(i) >= kNumberOfFPRegisters) return false;
|
|
|
|
if (desc[0] == 'v') {
|
|
PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s (%s%s:%s %g%s %s:%s %g%s)\n",
|
|
clr_fpreg_name, VRegNameForCode(i),
|
|
clr_fpreg_value, double_to_rawbits(dreg(i)),
|
|
clr_normal,
|
|
clr_fpreg_name, DRegNameForCode(i),
|
|
clr_fpreg_value, dreg(i),
|
|
clr_fpreg_name, SRegNameForCode(i),
|
|
clr_fpreg_value, sreg(i),
|
|
clr_normal);
|
|
return true;
|
|
} else if (desc[0] == 'd') {
|
|
PrintF(stream_, "%s %s:%s %g%s\n",
|
|
clr_fpreg_name, DRegNameForCode(i),
|
|
clr_fpreg_value, dreg(i),
|
|
clr_normal);
|
|
return true;
|
|
} else if (desc[0] == 's') {
|
|
PrintF(stream_, "%s %s:%s %g%s\n",
|
|
clr_fpreg_name, SRegNameForCode(i),
|
|
clr_fpreg_value, sreg(i),
|
|
clr_normal);
|
|
return true;
|
|
} else if (desc[0] == 'w') {
|
|
PrintF(stream_, "%s %s:%s 0x%08" PRIx32 "%s\n",
|
|
clr_reg_name, WRegNameForCode(i), clr_reg_value, wreg(i), clr_normal);
|
|
return true;
|
|
} else {
|
|
// X register names have a wide variety of starting characters, but anything
|
|
// else will be an X register.
|
|
PrintF(stream_, "%s %s:%s 0x%016" PRIx64 "%s\n",
|
|
clr_reg_name, XRegNameForCode(i), clr_reg_value, xreg(i), clr_normal);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::Debug() {
|
|
#define COMMAND_SIZE 63
|
|
#define ARG_SIZE 255
|
|
|
|
#define STR(a) #a
|
|
#define XSTR(a) STR(a)
|
|
|
|
char cmd[COMMAND_SIZE + 1];
|
|
char arg1[ARG_SIZE + 1];
|
|
char arg2[ARG_SIZE + 1];
|
|
char* argv[3] = { cmd, arg1, arg2 };
|
|
|
|
// Make sure to have a proper terminating character if reaching the limit.
|
|
cmd[COMMAND_SIZE] = 0;
|
|
arg1[ARG_SIZE] = 0;
|
|
arg2[ARG_SIZE] = 0;
|
|
|
|
bool done = false;
|
|
bool cleared_log_disasm_bit = false;
|
|
|
|
while (!done) {
|
|
// Disassemble the next instruction to execute before doing anything else.
|
|
PrintInstructionsAt(pc_, 1);
|
|
// Read the command line.
|
|
char* line = ReadLine("sim> ");
|
|
if (line == NULL) {
|
|
break;
|
|
} else {
|
|
// Repeat last command by default.
|
|
char* last_input = last_debugger_input();
|
|
if (strcmp(line, "\n") == 0 && (last_input != NULL)) {
|
|
DeleteArray(line);
|
|
line = last_input;
|
|
} else {
|
|
// Update the latest command ran
|
|
set_last_debugger_input(line);
|
|
}
|
|
|
|
// Use sscanf to parse the individual parts of the command line. At the
|
|
// moment no command expects more than two parameters.
|
|
int argc = SScanF(line,
|
|
"%" XSTR(COMMAND_SIZE) "s "
|
|
"%" XSTR(ARG_SIZE) "s "
|
|
"%" XSTR(ARG_SIZE) "s",
|
|
cmd, arg1, arg2);
|
|
|
|
// stepi / si ------------------------------------------------------------
|
|
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
|
// We are about to execute instructions, after which by default we
|
|
// should increment the pc_. If it was set when reaching this debug
|
|
// instruction, it has not been cleared because this instruction has not
|
|
// completed yet. So clear it manually.
|
|
pc_modified_ = false;
|
|
|
|
if (argc == 1) {
|
|
ExecuteInstruction();
|
|
} else {
|
|
int64_t number_of_instructions_to_execute = 1;
|
|
GetValue(arg1, &number_of_instructions_to_execute);
|
|
|
|
set_log_parameters(log_parameters() | LOG_DISASM);
|
|
while (number_of_instructions_to_execute-- > 0) {
|
|
ExecuteInstruction();
|
|
}
|
|
set_log_parameters(log_parameters() & ~LOG_DISASM);
|
|
PrintF("\n");
|
|
}
|
|
|
|
// If it was necessary, the pc has already been updated or incremented
|
|
// when executing the instruction. So we do not want it to be updated
|
|
// again. It will be cleared when exiting.
|
|
pc_modified_ = true;
|
|
|
|
// next / n --------------------------------------------------------------
|
|
} else if ((strcmp(cmd, "next") == 0) || (strcmp(cmd, "n") == 0)) {
|
|
// Tell the simulator to break after the next executed BL.
|
|
break_on_next_ = true;
|
|
// Continue.
|
|
done = true;
|
|
|
|
// continue / cont / c ---------------------------------------------------
|
|
} else if ((strcmp(cmd, "continue") == 0) ||
|
|
(strcmp(cmd, "cont") == 0) ||
|
|
(strcmp(cmd, "c") == 0)) {
|
|
// Leave the debugger shell.
|
|
done = true;
|
|
|
|
// disassemble / disasm / di ---------------------------------------------
|
|
} else if (strcmp(cmd, "disassemble") == 0 ||
|
|
strcmp(cmd, "disasm") == 0 ||
|
|
strcmp(cmd, "di") == 0) {
|
|
int64_t n_of_instrs_to_disasm = 10; // default value.
|
|
int64_t address = reinterpret_cast<int64_t>(pc_); // default value.
|
|
if (argc >= 2) { // disasm <n of instrs>
|
|
GetValue(arg1, &n_of_instrs_to_disasm);
|
|
}
|
|
if (argc >= 3) { // disasm <n of instrs> <address>
|
|
GetValue(arg2, &address);
|
|
}
|
|
|
|
// Disassemble.
|
|
PrintInstructionsAt(reinterpret_cast<Instruction*>(address),
|
|
n_of_instrs_to_disasm);
|
|
PrintF("\n");
|
|
|
|
// print / p -------------------------------------------------------------
|
|
} else if ((strcmp(cmd, "print") == 0) || (strcmp(cmd, "p") == 0)) {
|
|
if (argc == 2) {
|
|
if (strcmp(arg1, "all") == 0) {
|
|
PrintRegisters();
|
|
PrintFPRegisters();
|
|
} else {
|
|
if (!PrintValue(arg1)) {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
}
|
|
}
|
|
} else {
|
|
PrintF(
|
|
"print <register>\n"
|
|
" Print the content of a register. (alias 'p')\n"
|
|
" 'print all' will print all registers.\n"
|
|
" Use 'printobject' to get more details about the value.\n");
|
|
}
|
|
|
|
// printobject / po ------------------------------------------------------
|
|
} else if ((strcmp(cmd, "printobject") == 0) ||
|
|
(strcmp(cmd, "po") == 0)) {
|
|
if (argc == 2) {
|
|
int64_t value;
|
|
OFStream os(stdout);
|
|
if (GetValue(arg1, &value)) {
|
|
Object* obj = reinterpret_cast<Object*>(value);
|
|
os << arg1 << ": \n";
|
|
#ifdef DEBUG
|
|
obj->Print(os);
|
|
os << "\n";
|
|
#else
|
|
os << Brief(obj) << "\n";
|
|
#endif
|
|
} else {
|
|
os << arg1 << " unrecognized\n";
|
|
}
|
|
} else {
|
|
PrintF("printobject <value>\n"
|
|
"printobject <register>\n"
|
|
" Print details about the value. (alias 'po')\n");
|
|
}
|
|
|
|
// stack / mem ----------------------------------------------------------
|
|
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
|
|
int64_t* cur = NULL;
|
|
int64_t* end = NULL;
|
|
int next_arg = 1;
|
|
|
|
if (strcmp(cmd, "stack") == 0) {
|
|
cur = reinterpret_cast<int64_t*>(jssp());
|
|
|
|
} else { // "mem"
|
|
int64_t value;
|
|
if (!GetValue(arg1, &value)) {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
continue;
|
|
}
|
|
cur = reinterpret_cast<int64_t*>(value);
|
|
next_arg++;
|
|
}
|
|
|
|
int64_t words = 0;
|
|
if (argc == next_arg) {
|
|
words = 10;
|
|
} else if (argc == next_arg + 1) {
|
|
if (!GetValue(argv[next_arg], &words)) {
|
|
PrintF("%s unrecognized\n", argv[next_arg]);
|
|
PrintF("Printing 10 double words by default");
|
|
words = 10;
|
|
}
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
end = cur + words;
|
|
|
|
while (cur < end) {
|
|
PrintF(" 0x%016" PRIx64 ": 0x%016" PRIx64 " %10" PRId64,
|
|
reinterpret_cast<uint64_t>(cur), *cur, *cur);
|
|
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
|
|
int64_t value = *cur;
|
|
Heap* current_heap = v8::internal::Isolate::Current()->heap();
|
|
if (((value & 1) == 0) || current_heap->Contains(obj)) {
|
|
PrintF(" (");
|
|
if ((value & kSmiTagMask) == 0) {
|
|
STATIC_ASSERT(kSmiValueSize == 32);
|
|
int32_t untagged = (value >> kSmiShift) & 0xffffffff;
|
|
PrintF("smi %" PRId32, untagged);
|
|
} else {
|
|
obj->ShortPrint();
|
|
}
|
|
PrintF(")");
|
|
}
|
|
PrintF("\n");
|
|
cur++;
|
|
}
|
|
|
|
// trace / t -------------------------------------------------------------
|
|
} else if (strcmp(cmd, "trace") == 0 || strcmp(cmd, "t") == 0) {
|
|
if ((log_parameters() & (LOG_DISASM | LOG_REGS)) !=
|
|
(LOG_DISASM | LOG_REGS)) {
|
|
PrintF("Enabling disassembly and registers tracing\n");
|
|
set_log_parameters(log_parameters() | LOG_DISASM | LOG_REGS);
|
|
} else {
|
|
PrintF("Disabling disassembly and registers tracing\n");
|
|
set_log_parameters(log_parameters() & ~(LOG_DISASM | LOG_REGS));
|
|
}
|
|
|
|
// break / b -------------------------------------------------------------
|
|
} else if (strcmp(cmd, "break") == 0 || strcmp(cmd, "b") == 0) {
|
|
if (argc == 2) {
|
|
int64_t value;
|
|
if (GetValue(arg1, &value)) {
|
|
SetBreakpoint(reinterpret_cast<Instruction*>(value));
|
|
} else {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
}
|
|
} else {
|
|
ListBreakpoints();
|
|
PrintF("Use `break <address>` to set or disable a breakpoint\n");
|
|
}
|
|
|
|
// gdb -------------------------------------------------------------------
|
|
} else if (strcmp(cmd, "gdb") == 0) {
|
|
PrintF("Relinquishing control to gdb.\n");
|
|
base::OS::DebugBreak();
|
|
PrintF("Regaining control from gdb.\n");
|
|
|
|
// sysregs ---------------------------------------------------------------
|
|
} else if (strcmp(cmd, "sysregs") == 0) {
|
|
PrintSystemRegisters();
|
|
|
|
// help / h --------------------------------------------------------------
|
|
} else if (strcmp(cmd, "help") == 0 || strcmp(cmd, "h") == 0) {
|
|
PrintF(
|
|
"stepi / si\n"
|
|
" stepi <n>\n"
|
|
" Step <n> instructions.\n"
|
|
"next / n\n"
|
|
" Continue execution until a BL instruction is reached.\n"
|
|
" At this point a breakpoint is set just after this BL.\n"
|
|
" Then execution is resumed. It will probably later hit the\n"
|
|
" breakpoint just set.\n"
|
|
"continue / cont / c\n"
|
|
" Continue execution from here.\n"
|
|
"disassemble / disasm / di\n"
|
|
" disassemble <n> <address>\n"
|
|
" Disassemble <n> instructions from current <address>.\n"
|
|
" By default <n> is 20 and <address> is the current pc.\n"
|
|
"print / p\n"
|
|
" print <register>\n"
|
|
" Print the content of a register.\n"
|
|
" 'print all' will print all registers.\n"
|
|
" Use 'printobject' to get more details about the value.\n"
|
|
"printobject / po\n"
|
|
" printobject <value>\n"
|
|
" printobject <register>\n"
|
|
" Print details about the value.\n"
|
|
"stack\n"
|
|
" stack [<words>]\n"
|
|
" Dump stack content, default dump 10 words\n"
|
|
"mem\n"
|
|
" mem <address> [<words>]\n"
|
|
" Dump memory content, default dump 10 words\n"
|
|
"trace / t\n"
|
|
" Toggle disassembly and register tracing\n"
|
|
"break / b\n"
|
|
" break : list all breakpoints\n"
|
|
" break <address> : set / enable / disable a breakpoint.\n"
|
|
"gdb\n"
|
|
" Enter gdb.\n"
|
|
"sysregs\n"
|
|
" Print all system registers (including NZCV).\n");
|
|
} else {
|
|
PrintF("Unknown command: %s\n", cmd);
|
|
PrintF("Use 'help' for more information.\n");
|
|
}
|
|
}
|
|
if (cleared_log_disasm_bit == true) {
|
|
set_log_parameters(log_parameters_ | LOG_DISASM);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::VisitException(Instruction* instr) {
|
|
switch (instr->Mask(ExceptionMask)) {
|
|
case HLT: {
|
|
if (instr->ImmException() == kImmExceptionIsDebug) {
|
|
// Read the arguments encoded inline in the instruction stream.
|
|
uint32_t code;
|
|
uint32_t parameters;
|
|
|
|
memcpy(&code,
|
|
pc_->InstructionAtOffset(kDebugCodeOffset),
|
|
sizeof(code));
|
|
memcpy(¶meters,
|
|
pc_->InstructionAtOffset(kDebugParamsOffset),
|
|
sizeof(parameters));
|
|
char const *message =
|
|
reinterpret_cast<char const*>(
|
|
pc_->InstructionAtOffset(kDebugMessageOffset));
|
|
|
|
// Always print something when we hit a debug point that breaks.
|
|
// We are going to break, so printing something is not an issue in
|
|
// terms of speed.
|
|
if (FLAG_trace_sim_messages || FLAG_trace_sim || (parameters & BREAK)) {
|
|
if (message != NULL) {
|
|
PrintF(stream_,
|
|
"# %sDebugger hit %d: %s%s%s\n",
|
|
clr_debug_number,
|
|
code,
|
|
clr_debug_message,
|
|
message,
|
|
clr_normal);
|
|
} else {
|
|
PrintF(stream_,
|
|
"# %sDebugger hit %d.%s\n",
|
|
clr_debug_number,
|
|
code,
|
|
clr_normal);
|
|
}
|
|
}
|
|
|
|
// Other options.
|
|
switch (parameters & kDebuggerTracingDirectivesMask) {
|
|
case TRACE_ENABLE:
|
|
set_log_parameters(log_parameters() | parameters);
|
|
if (parameters & LOG_SYS_REGS) { PrintSystemRegisters(); }
|
|
if (parameters & LOG_REGS) { PrintRegisters(); }
|
|
if (parameters & LOG_FP_REGS) { PrintFPRegisters(); }
|
|
break;
|
|
case TRACE_DISABLE:
|
|
set_log_parameters(log_parameters() & ~parameters);
|
|
break;
|
|
case TRACE_OVERRIDE:
|
|
set_log_parameters(parameters);
|
|
break;
|
|
default:
|
|
// We don't support a one-shot LOG_DISASM.
|
|
DCHECK((parameters & LOG_DISASM) == 0);
|
|
// Don't print information that is already being traced.
|
|
parameters &= ~log_parameters();
|
|
// Print the requested information.
|
|
if (parameters & LOG_SYS_REGS) PrintSystemRegisters();
|
|
if (parameters & LOG_REGS) PrintRegisters();
|
|
if (parameters & LOG_FP_REGS) PrintFPRegisters();
|
|
}
|
|
|
|
// The stop parameters are inlined in the code. Skip them:
|
|
// - Skip to the end of the message string.
|
|
size_t size = kDebugMessageOffset + strlen(message) + 1;
|
|
pc_ = pc_->InstructionAtOffset(RoundUp(size, kInstructionSize));
|
|
// - Verify that the unreachable marker is present.
|
|
DCHECK(pc_->Mask(ExceptionMask) == HLT);
|
|
DCHECK(pc_->ImmException() == kImmExceptionIsUnreachable);
|
|
// - Skip past the unreachable marker.
|
|
set_pc(pc_->following());
|
|
|
|
// Check if the debugger should break.
|
|
if (parameters & BREAK) Debug();
|
|
|
|
} else if (instr->ImmException() == kImmExceptionIsRedirectedCall) {
|
|
DoRuntimeCall(instr);
|
|
} else if (instr->ImmException() == kImmExceptionIsPrintf) {
|
|
DoPrintf(instr);
|
|
|
|
} else if (instr->ImmException() == kImmExceptionIsUnreachable) {
|
|
fprintf(stream_, "Hit UNREACHABLE marker at PC=%p.\n",
|
|
reinterpret_cast<void*>(pc_));
|
|
abort();
|
|
|
|
} else {
|
|
base::OS::DebugBreak();
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
UNIMPLEMENTED();
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::DoPrintf(Instruction* instr) {
|
|
DCHECK((instr->Mask(ExceptionMask) == HLT) &&
|
|
(instr->ImmException() == kImmExceptionIsPrintf));
|
|
|
|
// Read the arguments encoded inline in the instruction stream.
|
|
uint32_t arg_count;
|
|
uint32_t arg_pattern_list;
|
|
STATIC_ASSERT(sizeof(*instr) == 1);
|
|
memcpy(&arg_count,
|
|
instr + kPrintfArgCountOffset,
|
|
sizeof(arg_count));
|
|
memcpy(&arg_pattern_list,
|
|
instr + kPrintfArgPatternListOffset,
|
|
sizeof(arg_pattern_list));
|
|
|
|
DCHECK(arg_count <= kPrintfMaxArgCount);
|
|
DCHECK((arg_pattern_list >> (kPrintfArgPatternBits * arg_count)) == 0);
|
|
|
|
// We need to call the host printf function with a set of arguments defined by
|
|
// arg_pattern_list. Because we don't know the types and sizes of the
|
|
// arguments, this is very difficult to do in a robust and portable way. To
|
|
// work around the problem, we pick apart the format string, and print one
|
|
// format placeholder at a time.
|
|
|
|
// Allocate space for the format string. We take a copy, so we can modify it.
|
|
// Leave enough space for one extra character per expected argument (plus the
|
|
// '\0' termination).
|
|
const char * format_base = reg<const char *>(0);
|
|
DCHECK(format_base != NULL);
|
|
size_t length = strlen(format_base) + 1;
|
|
char * const format = new char[length + arg_count];
|
|
|
|
// A list of chunks, each with exactly one format placeholder.
|
|
const char * chunks[kPrintfMaxArgCount];
|
|
|
|
// Copy the format string and search for format placeholders.
|
|
uint32_t placeholder_count = 0;
|
|
char * format_scratch = format;
|
|
for (size_t i = 0; i < length; i++) {
|
|
if (format_base[i] != '%') {
|
|
*format_scratch++ = format_base[i];
|
|
} else {
|
|
if (format_base[i + 1] == '%') {
|
|
// Ignore explicit "%%" sequences.
|
|
*format_scratch++ = format_base[i];
|
|
|
|
if (placeholder_count == 0) {
|
|
// The first chunk is passed to printf using "%s", so we need to
|
|
// unescape "%%" sequences in this chunk. (Just skip the next '%'.)
|
|
i++;
|
|
} else {
|
|
// Otherwise, pass through "%%" unchanged.
|
|
*format_scratch++ = format_base[++i];
|
|
}
|
|
} else {
|
|
CHECK(placeholder_count < arg_count);
|
|
// Insert '\0' before placeholders, and store their locations.
|
|
*format_scratch++ = '\0';
|
|
chunks[placeholder_count++] = format_scratch;
|
|
*format_scratch++ = format_base[i];
|
|
}
|
|
}
|
|
}
|
|
DCHECK(format_scratch <= (format + length + arg_count));
|
|
CHECK(placeholder_count == arg_count);
|
|
|
|
// Finally, call printf with each chunk, passing the appropriate register
|
|
// argument. Normally, printf returns the number of bytes transmitted, so we
|
|
// can emulate a single printf call by adding the result from each chunk. If
|
|
// any call returns a negative (error) value, though, just return that value.
|
|
|
|
fprintf(stream_, "%s", clr_printf);
|
|
|
|
// Because '\0' is inserted before each placeholder, the first string in
|
|
// 'format' contains no format placeholders and should be printed literally.
|
|
int result = fprintf(stream_, "%s", format);
|
|
int pcs_r = 1; // Start at x1. x0 holds the format string.
|
|
int pcs_f = 0; // Start at d0.
|
|
if (result >= 0) {
|
|
for (uint32_t i = 0; i < placeholder_count; i++) {
|
|
int part_result = -1;
|
|
|
|
uint32_t arg_pattern = arg_pattern_list >> (i * kPrintfArgPatternBits);
|
|
arg_pattern &= (1 << kPrintfArgPatternBits) - 1;
|
|
switch (arg_pattern) {
|
|
case kPrintfArgW:
|
|
part_result = fprintf(stream_, chunks[i], wreg(pcs_r++));
|
|
break;
|
|
case kPrintfArgX:
|
|
part_result = fprintf(stream_, chunks[i], xreg(pcs_r++));
|
|
break;
|
|
case kPrintfArgD:
|
|
part_result = fprintf(stream_, chunks[i], dreg(pcs_f++));
|
|
break;
|
|
default: UNREACHABLE();
|
|
}
|
|
|
|
if (part_result < 0) {
|
|
// Handle error values.
|
|
result = part_result;
|
|
break;
|
|
}
|
|
|
|
result += part_result;
|
|
}
|
|
}
|
|
|
|
fprintf(stream_, "%s", clr_normal);
|
|
|
|
#ifdef DEBUG
|
|
CorruptAllCallerSavedCPURegisters();
|
|
#endif
|
|
|
|
// Printf returns its result in x0 (just like the C library's printf).
|
|
set_xreg(0, result);
|
|
|
|
// The printf parameters are inlined in the code, so skip them.
|
|
set_pc(instr->InstructionAtOffset(kPrintfLength));
|
|
|
|
// Set LR as if we'd just called a native printf function.
|
|
set_lr(pc());
|
|
|
|
delete[] format;
|
|
}
|
|
|
|
|
|
#endif // USE_SIMULATOR
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_ARM64
|