v8/include/cppgc/platform.h
Michael Lippautz c9d7b23658 cppgc: Add basic heap growing strategy
Adds allocation-based heap growing strategy that triggers GC based on
some limit. The limit is computed based on previous live memory and a
constant growing factor.

For invoking GC, we support two modes: with and without conservative
stack scanning. Without conservative stack scanning, an invoker makes
sure that we schedule a GC without stack using the existing platform.

Bug: chromium:1056170
Change-Id: I1808aeb5806a6ddd5501b556d6b6b129a85b9cda
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2228887
Reviewed-by: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Reviewed-by: Anton Bikineev <bikineev@chromium.org>
Commit-Queue: Michael Lippautz <mlippautz@chromium.org>
Cr-Commit-Position: refs/heads/master@{#68235}
2020-06-08 17:55:53 +00:00

130 lines
4.4 KiB
C++

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_CPPGC_PLATFORM_H_
#define INCLUDE_CPPGC_PLATFORM_H_
#include "v8-platform.h" // NOLINT(build/include_directory)
#include "v8config.h" // NOLINT(build/include_directory)
namespace cppgc {
// TODO(v8:10346): Create separate includes for concepts that are not
// V8-specific.
using IdleTask = v8::IdleTask;
using JobHandle = v8::JobHandle;
using JobTask = v8::JobTask;
using PageAllocator = v8::PageAllocator;
using Task = v8::Task;
using TaskPriority = v8::TaskPriority;
using TaskRunner = v8::TaskRunner;
/**
* Platform interface used by Heap. Contains allocators and executors.
*/
class V8_EXPORT Platform {
public:
virtual ~Platform() = default;
/**
* Returns the allocator used by cppgc to allocate its heap and various
* support structures.
*/
virtual PageAllocator* GetPageAllocator() = 0;
/**
* Monotonically increasing time in seconds from an arbitrary fixed point in
* the past. This function is expected to return at least
* millisecond-precision values. For this reason,
* it is recommended that the fixed point be no further in the past than
* the epoch.
**/
virtual double MonotonicallyIncreasingTime() = 0;
/**
* Foreground task runner that should be used by a Heap.
*/
virtual std::shared_ptr<TaskRunner> GetForegroundTaskRunner() {
return nullptr;
}
/**
* Posts |job_task| to run in parallel. Returns a JobHandle associated with
* the Job, which can be joined or canceled.
* This avoids degenerate cases:
* - Calling CallOnWorkerThread() for each work item, causing significant
* overhead.
* - Fixed number of CallOnWorkerThread() calls that split the work and might
* run for a long time. This is problematic when many components post
* "num cores" tasks and all expect to use all the cores. In these cases,
* the scheduler lacks context to be fair to multiple same-priority requests
* and/or ability to request lower priority work to yield when high priority
* work comes in.
* A canonical implementation of |job_task| looks like:
* class MyJobTask : public JobTask {
* public:
* MyJobTask(...) : worker_queue_(...) {}
* // JobTask:
* void Run(JobDelegate* delegate) override {
* while (!delegate->ShouldYield()) {
* // Smallest unit of work.
* auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
* if (!work_item) return;
* ProcessWork(work_item);
* }
* }
*
* size_t GetMaxConcurrency() const override {
* return worker_queue_.GetSize(); // Thread safe.
* }
* };
* auto handle = PostJob(TaskPriority::kUserVisible,
* std::make_unique<MyJobTask>(...));
* handle->Join();
*
* PostJob() and methods of the returned JobHandle/JobDelegate, must never be
* called while holding a lock that could be acquired by JobTask::Run or
* JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
* because [1] JobTask::GetMaxConcurrency may be invoked while holding
* internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
* if that lock is *never* held while calling back into JobHandle from any
* thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
* JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
* (B=>JobHandle::foo=>B deadlock).
*
* A sufficient PostJob() implementation that uses the default Job provided in
* libplatform looks like:
* std::unique_ptr<JobHandle> PostJob(
* TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
* return std::make_unique<DefaultJobHandle>(
* std::make_shared<DefaultJobState>(
* this, std::move(job_task), kNumThreads));
* }
*/
virtual std::unique_ptr<JobHandle> PostJob(
TaskPriority priority, std::unique_ptr<JobTask> job_task) {
return nullptr;
}
};
/**
* Process-global initialization of the garbage collector. Must be called before
* creating a Heap.
*/
V8_EXPORT void InitializeProcess(PageAllocator*);
/**
* Must be called after destroying the last used heap.
*/
V8_EXPORT void ShutdownProcess();
namespace internal {
V8_EXPORT void Abort();
} // namespace internal
} // namespace cppgc
#endif // INCLUDE_CPPGC_PLATFORM_H_