5f4f57eb07
The bulk memory operations should not bounds check ahead of time, but instead should write as many bytes as possible until the first out-of-bounds access. Bug: v8:8890 Change-Id: Ia8179fe268fc65816c34a8f3461ed0a0d35600aa Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1497520 Commit-Queue: Ben Smith <binji@chromium.org> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Cr-Commit-Position: refs/heads/master@{#60040}
1079 lines
34 KiB
C++
1079 lines
34 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_UTILS_H_
|
|
#define V8_UTILS_H_
|
|
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <type_traits>
|
|
|
|
#include "include/v8.h"
|
|
#include "src/allocation.h"
|
|
#include "src/base/bits.h"
|
|
#include "src/base/compiler-specific.h"
|
|
#include "src/base/logging.h"
|
|
#include "src/base/macros.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/base/v8-fallthrough.h"
|
|
#include "src/globals.h"
|
|
#include "src/third_party/siphash/halfsiphash.h"
|
|
#include "src/vector.h"
|
|
|
|
#if defined(V8_OS_AIX)
|
|
#include <fenv.h> // NOLINT(build/c++11)
|
|
#endif
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// General helper functions
|
|
|
|
// Returns the value (0 .. 15) of a hexadecimal character c.
|
|
// If c is not a legal hexadecimal character, returns a value < 0.
|
|
inline int HexValue(uc32 c) {
|
|
c -= '0';
|
|
if (static_cast<unsigned>(c) <= 9) return c;
|
|
c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
|
|
if (static_cast<unsigned>(c) <= 5) return c + 10;
|
|
return -1;
|
|
}
|
|
|
|
inline char HexCharOfValue(int value) {
|
|
DCHECK(0 <= value && value <= 16);
|
|
if (value < 10) return value + '0';
|
|
return value - 10 + 'A';
|
|
}
|
|
|
|
inline int BoolToInt(bool b) { return b ? 1 : 0; }
|
|
|
|
// Checks if value is in range [lower_limit, higher_limit] using a single
|
|
// branch.
|
|
template <typename T, typename U>
|
|
inline constexpr bool IsInRange(T value, U lower_limit, U higher_limit) {
|
|
#if V8_CAN_HAVE_DCHECK_IN_CONSTEXPR
|
|
DCHECK(lower_limit <= higher_limit);
|
|
#endif
|
|
STATIC_ASSERT(sizeof(U) <= sizeof(T));
|
|
typedef typename std::make_unsigned<T>::type unsigned_T;
|
|
// Use static_cast to support enum classes.
|
|
return static_cast<unsigned_T>(static_cast<unsigned_T>(value) -
|
|
static_cast<unsigned_T>(lower_limit)) <=
|
|
static_cast<unsigned_T>(static_cast<unsigned_T>(higher_limit) -
|
|
static_cast<unsigned_T>(lower_limit));
|
|
}
|
|
|
|
// Checks if [index, index+length) is in range [0, max). Note that this check
|
|
// works even if {index+length} would wrap around.
|
|
inline constexpr bool IsInBounds(size_t index, size_t length, size_t max) {
|
|
return length <= max && index <= (max - length);
|
|
}
|
|
|
|
// Checks if [index, index+length) is in range [0, max). If not, {length} is
|
|
// clamped to its valid range. Note that this check works even if
|
|
// {index+length} would wrap around.
|
|
template <typename T>
|
|
inline bool ClampToBounds(T index, T* length, T max) {
|
|
if (index > max) {
|
|
*length = 0;
|
|
return false;
|
|
}
|
|
T avail = max - index;
|
|
bool oob = *length > avail;
|
|
if (oob) *length = avail;
|
|
return !oob;
|
|
}
|
|
|
|
// X must be a power of 2. Returns the number of trailing zeros.
|
|
template <typename T,
|
|
typename = typename std::enable_if<std::is_integral<T>::value>::type>
|
|
inline int WhichPowerOf2(T x) {
|
|
DCHECK(base::bits::IsPowerOfTwo(x));
|
|
int bits = 0;
|
|
#ifdef DEBUG
|
|
const T original_x = x;
|
|
#endif
|
|
constexpr int max_bits = sizeof(T) * 8;
|
|
static_assert(max_bits <= 64, "integral types are not bigger than 64 bits");
|
|
// Avoid shifting by more than the bit width of x to avoid compiler warnings.
|
|
#define CHECK_BIGGER(s) \
|
|
if (max_bits > s && x >= T{1} << (max_bits > s ? s : 0)) { \
|
|
bits += s; \
|
|
x >>= max_bits > s ? s : 0; \
|
|
}
|
|
CHECK_BIGGER(32)
|
|
CHECK_BIGGER(16)
|
|
CHECK_BIGGER(8)
|
|
CHECK_BIGGER(4)
|
|
#undef CHECK_BIGGER
|
|
switch (x) {
|
|
default: UNREACHABLE();
|
|
case 8:
|
|
bits++;
|
|
V8_FALLTHROUGH;
|
|
case 4:
|
|
bits++;
|
|
V8_FALLTHROUGH;
|
|
case 2:
|
|
bits++;
|
|
V8_FALLTHROUGH;
|
|
case 1: break;
|
|
}
|
|
DCHECK_EQ(T{1} << bits, original_x);
|
|
return bits;
|
|
}
|
|
|
|
inline int MostSignificantBit(uint32_t x) {
|
|
static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
|
|
int nibble = 0;
|
|
if (x & 0xffff0000) {
|
|
nibble += 16;
|
|
x >>= 16;
|
|
}
|
|
if (x & 0xff00) {
|
|
nibble += 8;
|
|
x >>= 8;
|
|
}
|
|
if (x & 0xf0) {
|
|
nibble += 4;
|
|
x >>= 4;
|
|
}
|
|
return nibble + msb4[x];
|
|
}
|
|
|
|
template <typename T>
|
|
static T ArithmeticShiftRight(T x, int shift) {
|
|
DCHECK_LE(0, shift);
|
|
if (x < 0) {
|
|
// Right shift of signed values is implementation defined. Simulate a
|
|
// true arithmetic right shift by adding leading sign bits.
|
|
using UnsignedT = typename std::make_unsigned<T>::type;
|
|
UnsignedT mask = ~(static_cast<UnsignedT>(~0) >> shift);
|
|
return (static_cast<UnsignedT>(x) >> shift) | mask;
|
|
} else {
|
|
return x >> shift;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
int Compare(const T& a, const T& b) {
|
|
if (a == b)
|
|
return 0;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
// Compare function to compare the object pointer value of two
|
|
// handlified objects. The handles are passed as pointers to the
|
|
// handles.
|
|
template<typename T> class Handle; // Forward declaration.
|
|
template <typename T>
|
|
int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
|
|
return Compare<T*>(*(*a), *(*b));
|
|
}
|
|
|
|
// Returns the maximum of the two parameters.
|
|
template <typename T>
|
|
constexpr T Max(T a, T b) {
|
|
return a < b ? b : a;
|
|
}
|
|
|
|
|
|
// Returns the minimum of the two parameters.
|
|
template <typename T>
|
|
constexpr T Min(T a, T b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
// Returns the maximum of the two parameters according to JavaScript semantics.
|
|
template <typename T>
|
|
T JSMax(T x, T y) {
|
|
if (std::isnan(x)) return x;
|
|
if (std::isnan(y)) return y;
|
|
if (std::signbit(x) < std::signbit(y)) return x;
|
|
return x > y ? x : y;
|
|
}
|
|
|
|
// Returns the maximum of the two parameters according to JavaScript semantics.
|
|
template <typename T>
|
|
T JSMin(T x, T y) {
|
|
if (std::isnan(x)) return x;
|
|
if (std::isnan(y)) return y;
|
|
if (std::signbit(x) < std::signbit(y)) return y;
|
|
return x > y ? y : x;
|
|
}
|
|
|
|
// Returns the absolute value of its argument.
|
|
template <typename T,
|
|
typename = typename std::enable_if<std::is_signed<T>::value>::type>
|
|
typename std::make_unsigned<T>::type Abs(T a) {
|
|
// This is a branch-free implementation of the absolute value function and is
|
|
// described in Warren's "Hacker's Delight", chapter 2. It avoids undefined
|
|
// behavior with the arithmetic negation operation on signed values as well.
|
|
typedef typename std::make_unsigned<T>::type unsignedT;
|
|
unsignedT x = static_cast<unsignedT>(a);
|
|
unsignedT y = static_cast<unsignedT>(a >> (sizeof(T) * 8 - 1));
|
|
return (x ^ y) - y;
|
|
}
|
|
|
|
// Returns the negative absolute value of its argument.
|
|
template <typename T,
|
|
typename = typename std::enable_if<std::is_signed<T>::value>::type>
|
|
T Nabs(T a) {
|
|
return a < 0 ? a : -a;
|
|
}
|
|
|
|
inline double Modulo(double x, double y) {
|
|
#if defined(V8_OS_WIN)
|
|
// Workaround MS fmod bugs. ECMA-262 says:
|
|
// dividend is finite and divisor is an infinity => result equals dividend
|
|
// dividend is a zero and divisor is nonzero finite => result equals dividend
|
|
if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) &&
|
|
!(x == 0 && (y != 0 && std::isfinite(y)))) {
|
|
double result = fmod(x, y);
|
|
// Workaround MS bug in VS CRT in some OS versions, https://crbug.com/915045
|
|
// fmod(-17, +/-1) should equal -0.0 but now returns 0.0.
|
|
if (x < 0 && result == 0) result = -0.0;
|
|
x = result;
|
|
}
|
|
return x;
|
|
#elif defined(V8_OS_AIX)
|
|
// AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE)
|
|
feclearexcept(FE_ALL_EXCEPT);
|
|
double result = std::fmod(x, y);
|
|
int exception = fetestexcept(FE_UNDERFLOW);
|
|
return (exception ? x : result);
|
|
#else
|
|
return std::fmod(x, y);
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
T SaturateAdd(T a, T b) {
|
|
if (std::is_signed<T>::value) {
|
|
if (a > 0 && b > 0) {
|
|
if (a > std::numeric_limits<T>::max() - b) {
|
|
return std::numeric_limits<T>::max();
|
|
}
|
|
} else if (a < 0 && b < 0) {
|
|
if (a < std::numeric_limits<T>::min() - b) {
|
|
return std::numeric_limits<T>::min();
|
|
}
|
|
}
|
|
} else {
|
|
CHECK(std::is_unsigned<T>::value);
|
|
if (a > std::numeric_limits<T>::max() - b) {
|
|
return std::numeric_limits<T>::max();
|
|
}
|
|
}
|
|
return a + b;
|
|
}
|
|
|
|
template <typename T>
|
|
T SaturateSub(T a, T b) {
|
|
if (std::is_signed<T>::value) {
|
|
if (a >= 0 && b < 0) {
|
|
if (a > std::numeric_limits<T>::max() + b) {
|
|
return std::numeric_limits<T>::max();
|
|
}
|
|
} else if (a < 0 && b > 0) {
|
|
if (a < std::numeric_limits<T>::min() + b) {
|
|
return std::numeric_limits<T>::min();
|
|
}
|
|
}
|
|
} else {
|
|
CHECK(std::is_unsigned<T>::value);
|
|
if (a < b) {
|
|
return static_cast<T>(0);
|
|
}
|
|
}
|
|
return a - b;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BitField is a help template for encoding and decode bitfield with
|
|
// unsigned content.
|
|
|
|
template<class T, int shift, int size, class U>
|
|
class BitFieldBase {
|
|
public:
|
|
typedef T FieldType;
|
|
|
|
// A type U mask of bit field. To use all bits of a type U of x bits
|
|
// in a bitfield without compiler warnings we have to compute 2^x
|
|
// without using a shift count of x in the computation.
|
|
static const U kOne = static_cast<U>(1U);
|
|
static const U kMask = ((kOne << shift) << size) - (kOne << shift);
|
|
static const U kShift = shift;
|
|
static const U kSize = size;
|
|
static const U kNext = kShift + kSize;
|
|
static const U kNumValues = kOne << size;
|
|
|
|
// Value for the field with all bits set.
|
|
static const T kMax = static_cast<T>(kNumValues - 1);
|
|
|
|
// Tells whether the provided value fits into the bit field.
|
|
static constexpr bool is_valid(T value) {
|
|
return (static_cast<U>(value) & ~static_cast<U>(kMax)) == 0;
|
|
}
|
|
|
|
// Returns a type U with the bit field value encoded.
|
|
static constexpr U encode(T value) {
|
|
#if V8_CAN_HAVE_DCHECK_IN_CONSTEXPR
|
|
DCHECK(is_valid(value));
|
|
#endif
|
|
return static_cast<U>(value) << shift;
|
|
}
|
|
|
|
// Returns a type U with the bit field value updated.
|
|
static constexpr U update(U previous, T value) {
|
|
return (previous & ~kMask) | encode(value);
|
|
}
|
|
|
|
// Extracts the bit field from the value.
|
|
static constexpr T decode(U value) {
|
|
return static_cast<T>((value & kMask) >> shift);
|
|
}
|
|
|
|
STATIC_ASSERT((kNext - 1) / 8 < sizeof(U));
|
|
};
|
|
|
|
template <class T, int shift, int size>
|
|
class BitField8 : public BitFieldBase<T, shift, size, uint8_t> {};
|
|
|
|
|
|
template <class T, int shift, int size>
|
|
class BitField16 : public BitFieldBase<T, shift, size, uint16_t> {};
|
|
|
|
|
|
template<class T, int shift, int size>
|
|
class BitField : public BitFieldBase<T, shift, size, uint32_t> { };
|
|
|
|
|
|
template<class T, int shift, int size>
|
|
class BitField64 : public BitFieldBase<T, shift, size, uint64_t> { };
|
|
|
|
// Helper macros for defining a contiguous sequence of bit fields. Example:
|
|
// (backslashes at the ends of respective lines of this multi-line macro
|
|
// definition are omitted here to please the compiler)
|
|
//
|
|
// #define MAP_BIT_FIELD1(V, _)
|
|
// V(IsAbcBit, bool, 1, _)
|
|
// V(IsBcdBit, bool, 1, _)
|
|
// V(CdeBits, int, 5, _)
|
|
// V(DefBits, MutableMode, 1, _)
|
|
//
|
|
// DEFINE_BIT_FIELDS(MAP_BIT_FIELD1)
|
|
// or
|
|
// DEFINE_BIT_FIELDS_64(MAP_BIT_FIELD1)
|
|
//
|
|
#define DEFINE_BIT_FIELD_RANGE_TYPE(Name, Type, Size, _) \
|
|
k##Name##Start, k##Name##End = k##Name##Start + Size - 1,
|
|
|
|
#define DEFINE_BIT_RANGES(LIST_MACRO) \
|
|
struct LIST_MACRO##_Ranges { \
|
|
enum { LIST_MACRO(DEFINE_BIT_FIELD_RANGE_TYPE, _) kBitsCount }; \
|
|
};
|
|
|
|
#define DEFINE_BIT_FIELD_TYPE(Name, Type, Size, RangesName) \
|
|
typedef BitField<Type, RangesName::k##Name##Start, Size> Name;
|
|
|
|
#define DEFINE_BIT_FIELD_64_TYPE(Name, Type, Size, RangesName) \
|
|
typedef BitField64<Type, RangesName::k##Name##Start, Size> Name;
|
|
|
|
#define DEFINE_BIT_FIELDS(LIST_MACRO) \
|
|
DEFINE_BIT_RANGES(LIST_MACRO) \
|
|
LIST_MACRO(DEFINE_BIT_FIELD_TYPE, LIST_MACRO##_Ranges)
|
|
|
|
#define DEFINE_BIT_FIELDS_64(LIST_MACRO) \
|
|
DEFINE_BIT_RANGES(LIST_MACRO) \
|
|
LIST_MACRO(DEFINE_BIT_FIELD_64_TYPE, LIST_MACRO##_Ranges)
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BitSetComputer is a help template for encoding and decoding information for
|
|
// a variable number of items in an array.
|
|
//
|
|
// To encode boolean data in a smi array you would use:
|
|
// typedef BitSetComputer<bool, 1, kSmiValueSize, uint32_t> BoolComputer;
|
|
//
|
|
template <class T, int kBitsPerItem, int kBitsPerWord, class U>
|
|
class BitSetComputer {
|
|
public:
|
|
static const int kItemsPerWord = kBitsPerWord / kBitsPerItem;
|
|
static const int kMask = (1 << kBitsPerItem) - 1;
|
|
|
|
// The number of array elements required to embed T information for each item.
|
|
static int word_count(int items) {
|
|
if (items == 0) return 0;
|
|
return (items - 1) / kItemsPerWord + 1;
|
|
}
|
|
|
|
// The array index to look at for item.
|
|
static int index(int base_index, int item) {
|
|
return base_index + item / kItemsPerWord;
|
|
}
|
|
|
|
// Extract T data for a given item from data.
|
|
static T decode(U data, int item) {
|
|
return static_cast<T>((data >> shift(item)) & kMask);
|
|
}
|
|
|
|
// Return the encoding for a store of value for item in previous.
|
|
static U encode(U previous, int item, T value) {
|
|
int shift_value = shift(item);
|
|
int set_bits = (static_cast<int>(value) << shift_value);
|
|
return (previous & ~(kMask << shift_value)) | set_bits;
|
|
}
|
|
|
|
static int shift(int item) { return (item % kItemsPerWord) * kBitsPerItem; }
|
|
};
|
|
|
|
// Helper macros for defining a contiguous sequence of field offset constants.
|
|
// Example: (backslashes at the ends of respective lines of this multi-line
|
|
// macro definition are omitted here to please the compiler)
|
|
//
|
|
// #define MAP_FIELDS(V)
|
|
// V(kField1Offset, kTaggedSize)
|
|
// V(kField2Offset, kIntSize)
|
|
// V(kField3Offset, kIntSize)
|
|
// V(kField4Offset, kSystemPointerSize)
|
|
// V(kSize, 0)
|
|
//
|
|
// DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, MAP_FIELDS)
|
|
//
|
|
#define DEFINE_ONE_FIELD_OFFSET(Name, Size) Name, Name##End = Name + (Size)-1,
|
|
|
|
#define DEFINE_FIELD_OFFSET_CONSTANTS(StartOffset, LIST_MACRO) \
|
|
enum { \
|
|
LIST_MACRO##_StartOffset = StartOffset - 1, \
|
|
LIST_MACRO(DEFINE_ONE_FIELD_OFFSET) \
|
|
};
|
|
|
|
// Size of the field defined by DEFINE_FIELD_OFFSET_CONSTANTS
|
|
#define FIELD_SIZE(Name) (Name##End + 1 - Name)
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Hash function.
|
|
|
|
static const uint64_t kZeroHashSeed = 0;
|
|
|
|
// Thomas Wang, Integer Hash Functions.
|
|
// http://www.concentric.net/~Ttwang/tech/inthash.htm`
|
|
inline uint32_t ComputeUnseededHash(uint32_t key) {
|
|
uint32_t hash = key;
|
|
hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
|
|
hash = hash ^ (hash >> 12);
|
|
hash = hash + (hash << 2);
|
|
hash = hash ^ (hash >> 4);
|
|
hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
|
|
hash = hash ^ (hash >> 16);
|
|
return hash & 0x3fffffff;
|
|
}
|
|
|
|
inline uint32_t ComputeLongHash(uint64_t key) {
|
|
uint64_t hash = key;
|
|
hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1;
|
|
hash = hash ^ (hash >> 31);
|
|
hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4);
|
|
hash = hash ^ (hash >> 11);
|
|
hash = hash + (hash << 6);
|
|
hash = hash ^ (hash >> 22);
|
|
return static_cast<uint32_t>(hash & 0x3fffffff);
|
|
}
|
|
|
|
inline uint32_t ComputeSeededHash(uint32_t key, uint64_t seed) {
|
|
#ifdef V8_USE_SIPHASH
|
|
return halfsiphash(key, seed);
|
|
#else
|
|
return ComputeLongHash(static_cast<uint64_t>(key) ^ seed);
|
|
#endif // V8_USE_SIPHASH
|
|
}
|
|
|
|
inline uint32_t ComputePointerHash(void* ptr) {
|
|
return ComputeUnseededHash(
|
|
static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)));
|
|
}
|
|
|
|
inline uint32_t ComputeAddressHash(Address address) {
|
|
return ComputeUnseededHash(static_cast<uint32_t>(address & 0xFFFFFFFFul));
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Miscellaneous
|
|
|
|
// Memory offset for lower and higher bits in a 64 bit integer.
|
|
#if defined(V8_TARGET_LITTLE_ENDIAN)
|
|
static const int kInt64LowerHalfMemoryOffset = 0;
|
|
static const int kInt64UpperHalfMemoryOffset = 4;
|
|
#elif defined(V8_TARGET_BIG_ENDIAN)
|
|
static const int kInt64LowerHalfMemoryOffset = 4;
|
|
static const int kInt64UpperHalfMemoryOffset = 0;
|
|
#endif // V8_TARGET_LITTLE_ENDIAN
|
|
|
|
// A static resource holds a static instance that can be reserved in
|
|
// a local scope using an instance of Access. Attempts to re-reserve
|
|
// the instance will cause an error.
|
|
template <typename T>
|
|
class StaticResource {
|
|
public:
|
|
StaticResource() : is_reserved_(false) {}
|
|
|
|
private:
|
|
template <typename S> friend class Access;
|
|
T instance_;
|
|
bool is_reserved_;
|
|
};
|
|
|
|
|
|
// Locally scoped access to a static resource.
|
|
template <typename T>
|
|
class Access {
|
|
public:
|
|
explicit Access(StaticResource<T>* resource)
|
|
: resource_(resource)
|
|
, instance_(&resource->instance_) {
|
|
DCHECK(!resource->is_reserved_);
|
|
resource->is_reserved_ = true;
|
|
}
|
|
|
|
~Access() {
|
|
resource_->is_reserved_ = false;
|
|
resource_ = nullptr;
|
|
instance_ = nullptr;
|
|
}
|
|
|
|
T* value() { return instance_; }
|
|
T* operator -> () { return instance_; }
|
|
|
|
private:
|
|
StaticResource<T>* resource_;
|
|
T* instance_;
|
|
};
|
|
|
|
// A pointer that can only be set once and doesn't allow NULL values.
|
|
template<typename T>
|
|
class SetOncePointer {
|
|
public:
|
|
SetOncePointer() = default;
|
|
|
|
bool is_set() const { return pointer_ != nullptr; }
|
|
|
|
T* get() const {
|
|
DCHECK_NOT_NULL(pointer_);
|
|
return pointer_;
|
|
}
|
|
|
|
void set(T* value) {
|
|
DCHECK(pointer_ == nullptr && value != nullptr);
|
|
pointer_ = value;
|
|
}
|
|
|
|
T* operator=(T* value) {
|
|
set(value);
|
|
return value;
|
|
}
|
|
|
|
bool operator==(std::nullptr_t) const { return pointer_ == nullptr; }
|
|
bool operator!=(std::nullptr_t) const { return pointer_ != nullptr; }
|
|
|
|
private:
|
|
T* pointer_ = nullptr;
|
|
};
|
|
|
|
// Compare 8bit/16bit chars to 8bit/16bit chars.
|
|
template <typename lchar, typename rchar>
|
|
inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
|
|
size_t chars) {
|
|
const lchar* limit = lhs + chars;
|
|
if (sizeof(*lhs) == sizeof(char) && sizeof(*rhs) == sizeof(char)) {
|
|
// memcmp compares byte-by-byte, yielding wrong results for two-byte
|
|
// strings on little-endian systems.
|
|
return memcmp(lhs, rhs, chars);
|
|
}
|
|
while (lhs < limit) {
|
|
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
|
|
if (r != 0) return r;
|
|
++lhs;
|
|
++rhs;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <typename lchar, typename rchar>
|
|
inline int CompareChars(const lchar* lhs, const rchar* rhs, size_t chars) {
|
|
DCHECK_LE(sizeof(lchar), 2);
|
|
DCHECK_LE(sizeof(rchar), 2);
|
|
if (sizeof(lchar) == 1) {
|
|
if (sizeof(rchar) == 1) {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
|
|
reinterpret_cast<const uint8_t*>(rhs),
|
|
chars);
|
|
} else {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
|
|
reinterpret_cast<const uint16_t*>(rhs),
|
|
chars);
|
|
}
|
|
} else {
|
|
if (sizeof(rchar) == 1) {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
|
|
reinterpret_cast<const uint8_t*>(rhs),
|
|
chars);
|
|
} else {
|
|
return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
|
|
reinterpret_cast<const uint16_t*>(rhs),
|
|
chars);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Calculate 10^exponent.
|
|
inline int TenToThe(int exponent) {
|
|
DCHECK_LE(exponent, 9);
|
|
DCHECK_GE(exponent, 1);
|
|
int answer = 10;
|
|
for (int i = 1; i < exponent; i++) answer *= 10;
|
|
return answer;
|
|
}
|
|
|
|
|
|
template<typename ElementType, int NumElements>
|
|
class EmbeddedContainer {
|
|
public:
|
|
EmbeddedContainer() : elems_() { }
|
|
|
|
int length() const { return NumElements; }
|
|
const ElementType& operator[](int i) const {
|
|
DCHECK(i < length());
|
|
return elems_[i];
|
|
}
|
|
ElementType& operator[](int i) {
|
|
DCHECK(i < length());
|
|
return elems_[i];
|
|
}
|
|
|
|
private:
|
|
ElementType elems_[NumElements];
|
|
};
|
|
|
|
|
|
template<typename ElementType>
|
|
class EmbeddedContainer<ElementType, 0> {
|
|
public:
|
|
int length() const { return 0; }
|
|
const ElementType& operator[](int i) const {
|
|
UNREACHABLE();
|
|
static ElementType t = 0;
|
|
return t;
|
|
}
|
|
ElementType& operator[](int i) {
|
|
UNREACHABLE();
|
|
static ElementType t = 0;
|
|
return t;
|
|
}
|
|
};
|
|
|
|
|
|
// Helper class for building result strings in a character buffer. The
|
|
// purpose of the class is to use safe operations that checks the
|
|
// buffer bounds on all operations in debug mode.
|
|
// This simple base class does not allow formatted output.
|
|
class SimpleStringBuilder {
|
|
public:
|
|
// Create a string builder with a buffer of the given size. The
|
|
// buffer is allocated through NewArray<char> and must be
|
|
// deallocated by the caller of Finalize().
|
|
explicit SimpleStringBuilder(int size);
|
|
|
|
SimpleStringBuilder(char* buffer, int size)
|
|
: buffer_(buffer, size), position_(0) { }
|
|
|
|
~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
|
|
|
|
int size() const { return buffer_.length(); }
|
|
|
|
// Get the current position in the builder.
|
|
int position() const {
|
|
DCHECK(!is_finalized());
|
|
return position_;
|
|
}
|
|
|
|
// Reset the position.
|
|
void Reset() { position_ = 0; }
|
|
|
|
// Add a single character to the builder. It is not allowed to add
|
|
// 0-characters; use the Finalize() method to terminate the string
|
|
// instead.
|
|
void AddCharacter(char c) {
|
|
DCHECK_NE(c, '\0');
|
|
DCHECK(!is_finalized() && position_ < buffer_.length());
|
|
buffer_[position_++] = c;
|
|
}
|
|
|
|
// Add an entire string to the builder. Uses strlen() internally to
|
|
// compute the length of the input string.
|
|
void AddString(const char* s);
|
|
|
|
// Add the first 'n' characters of the given 0-terminated string 's' to the
|
|
// builder. The input string must have enough characters.
|
|
void AddSubstring(const char* s, int n);
|
|
|
|
// Add character padding to the builder. If count is non-positive,
|
|
// nothing is added to the builder.
|
|
void AddPadding(char c, int count);
|
|
|
|
// Add the decimal representation of the value.
|
|
void AddDecimalInteger(int value);
|
|
|
|
// Finalize the string by 0-terminating it and returning the buffer.
|
|
char* Finalize();
|
|
|
|
protected:
|
|
Vector<char> buffer_;
|
|
int position_;
|
|
|
|
bool is_finalized() const { return position_ < 0; }
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
|
|
};
|
|
|
|
// Bit field extraction.
|
|
inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
|
|
return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
|
|
}
|
|
|
|
inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
|
|
return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
|
|
}
|
|
|
|
inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
|
|
return (x << (31 - msb)) >> (lsb + 31 - msb);
|
|
}
|
|
|
|
inline int signed_bitextract_64(int msb, int lsb, int x) {
|
|
// TODO(jbramley): This is broken for big bitfields.
|
|
return (x << (63 - msb)) >> (lsb + 63 - msb);
|
|
}
|
|
|
|
// Check number width.
|
|
inline bool is_intn(int64_t x, unsigned n) {
|
|
DCHECK((0 < n) && (n < 64));
|
|
int64_t limit = static_cast<int64_t>(1) << (n - 1);
|
|
return (-limit <= x) && (x < limit);
|
|
}
|
|
|
|
inline bool is_uintn(int64_t x, unsigned n) {
|
|
DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
|
|
return !(x >> n);
|
|
}
|
|
|
|
template <class T>
|
|
inline T truncate_to_intn(T x, unsigned n) {
|
|
DCHECK((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
|
|
return (x & ((static_cast<T>(1) << n) - 1));
|
|
}
|
|
|
|
#define INT_1_TO_63_LIST(V) \
|
|
V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
|
|
V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
|
|
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
|
|
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \
|
|
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
|
|
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
|
|
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
|
|
V(57) V(58) V(59) V(60) V(61) V(62) V(63)
|
|
|
|
#define DECLARE_IS_INT_N(N) \
|
|
inline bool is_int##N(int64_t x) { return is_intn(x, N); }
|
|
#define DECLARE_IS_UINT_N(N) \
|
|
template <class T> \
|
|
inline bool is_uint##N(T x) { return is_uintn(x, N); }
|
|
#define DECLARE_TRUNCATE_TO_INT_N(N) \
|
|
template <class T> \
|
|
inline T truncate_to_int##N(T x) { return truncate_to_intn(x, N); }
|
|
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
|
|
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
|
|
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
|
|
#undef DECLARE_IS_INT_N
|
|
#undef DECLARE_IS_UINT_N
|
|
#undef DECLARE_TRUNCATE_TO_INT_N
|
|
|
|
// clang-format off
|
|
#define INT_0_TO_127_LIST(V) \
|
|
V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9) \
|
|
V(10) V(11) V(12) V(13) V(14) V(15) V(16) V(17) V(18) V(19) \
|
|
V(20) V(21) V(22) V(23) V(24) V(25) V(26) V(27) V(28) V(29) \
|
|
V(30) V(31) V(32) V(33) V(34) V(35) V(36) V(37) V(38) V(39) \
|
|
V(40) V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) V(49) \
|
|
V(50) V(51) V(52) V(53) V(54) V(55) V(56) V(57) V(58) V(59) \
|
|
V(60) V(61) V(62) V(63) V(64) V(65) V(66) V(67) V(68) V(69) \
|
|
V(70) V(71) V(72) V(73) V(74) V(75) V(76) V(77) V(78) V(79) \
|
|
V(80) V(81) V(82) V(83) V(84) V(85) V(86) V(87) V(88) V(89) \
|
|
V(90) V(91) V(92) V(93) V(94) V(95) V(96) V(97) V(98) V(99) \
|
|
V(100) V(101) V(102) V(103) V(104) V(105) V(106) V(107) V(108) V(109) \
|
|
V(110) V(111) V(112) V(113) V(114) V(115) V(116) V(117) V(118) V(119) \
|
|
V(120) V(121) V(122) V(123) V(124) V(125) V(126) V(127)
|
|
// clang-format on
|
|
|
|
class FeedbackSlot {
|
|
public:
|
|
FeedbackSlot() : id_(kInvalidSlot) {}
|
|
explicit FeedbackSlot(int id) : id_(id) {}
|
|
|
|
int ToInt() const { return id_; }
|
|
|
|
static FeedbackSlot Invalid() { return FeedbackSlot(); }
|
|
bool IsInvalid() const { return id_ == kInvalidSlot; }
|
|
|
|
bool operator==(FeedbackSlot that) const { return this->id_ == that.id_; }
|
|
bool operator!=(FeedbackSlot that) const { return !(*this == that); }
|
|
|
|
friend size_t hash_value(FeedbackSlot slot) { return slot.ToInt(); }
|
|
friend std::ostream& operator<<(std::ostream& os, FeedbackSlot);
|
|
|
|
private:
|
|
static const int kInvalidSlot = -1;
|
|
|
|
int id_;
|
|
};
|
|
|
|
|
|
class BailoutId {
|
|
public:
|
|
explicit BailoutId(int id) : id_(id) { }
|
|
int ToInt() const { return id_; }
|
|
|
|
static BailoutId None() { return BailoutId(kNoneId); }
|
|
static BailoutId ScriptContext() { return BailoutId(kScriptContextId); }
|
|
static BailoutId FunctionContext() { return BailoutId(kFunctionContextId); }
|
|
static BailoutId FunctionEntry() { return BailoutId(kFunctionEntryId); }
|
|
static BailoutId Declarations() { return BailoutId(kDeclarationsId); }
|
|
static BailoutId FirstUsable() { return BailoutId(kFirstUsableId); }
|
|
static BailoutId StubEntry() { return BailoutId(kStubEntryId); }
|
|
|
|
// Special bailout id support for deopting into the {JSConstructStub} stub.
|
|
// The following hard-coded deoptimization points are supported by the stub:
|
|
// - {ConstructStubCreate} maps to {construct_stub_create_deopt_pc_offset}.
|
|
// - {ConstructStubInvoke} maps to {construct_stub_invoke_deopt_pc_offset}.
|
|
static BailoutId ConstructStubCreate() { return BailoutId(1); }
|
|
static BailoutId ConstructStubInvoke() { return BailoutId(2); }
|
|
bool IsValidForConstructStub() const {
|
|
return id_ == ConstructStubCreate().ToInt() ||
|
|
id_ == ConstructStubInvoke().ToInt();
|
|
}
|
|
|
|
bool IsNone() const { return id_ == kNoneId; }
|
|
bool operator==(const BailoutId& other) const { return id_ == other.id_; }
|
|
bool operator!=(const BailoutId& other) const { return id_ != other.id_; }
|
|
friend size_t hash_value(BailoutId);
|
|
V8_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream&, BailoutId);
|
|
|
|
private:
|
|
friend class Builtins;
|
|
|
|
static const int kNoneId = -1;
|
|
|
|
// Using 0 could disguise errors.
|
|
static const int kScriptContextId = 1;
|
|
static const int kFunctionContextId = 2;
|
|
static const int kFunctionEntryId = 3;
|
|
|
|
// This AST id identifies the point after the declarations have been visited.
|
|
// We need it to capture the environment effects of declarations that emit
|
|
// code (function declarations).
|
|
static const int kDeclarationsId = 4;
|
|
|
|
// Every FunctionState starts with this id.
|
|
static const int kFirstUsableId = 5;
|
|
|
|
// Every compiled stub starts with this id.
|
|
static const int kStubEntryId = 6;
|
|
|
|
// Builtin continuations bailout ids start here. If you need to add a
|
|
// non-builtin BailoutId, add it before this id so that this Id has the
|
|
// highest number.
|
|
static const int kFirstBuiltinContinuationId = 7;
|
|
|
|
int id_;
|
|
};
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// I/O support.
|
|
|
|
// Our version of printf().
|
|
V8_EXPORT_PRIVATE void PRINTF_FORMAT(1, 2) PrintF(const char* format, ...);
|
|
void PRINTF_FORMAT(2, 3) PrintF(FILE* out, const char* format, ...);
|
|
|
|
// Prepends the current process ID to the output.
|
|
void PRINTF_FORMAT(1, 2) PrintPID(const char* format, ...);
|
|
|
|
// Prepends the current process ID and given isolate pointer to the output.
|
|
void PRINTF_FORMAT(2, 3) PrintIsolate(void* isolate, const char* format, ...);
|
|
|
|
// Safe formatting print. Ensures that str is always null-terminated.
|
|
// Returns the number of chars written, or -1 if output was truncated.
|
|
int PRINTF_FORMAT(2, 3) SNPrintF(Vector<char> str, const char* format, ...);
|
|
V8_EXPORT_PRIVATE int PRINTF_FORMAT(2, 0)
|
|
VSNPrintF(Vector<char> str, const char* format, va_list args);
|
|
|
|
void StrNCpy(Vector<char> dest, const char* src, size_t n);
|
|
|
|
// Our version of fflush.
|
|
void Flush(FILE* out);
|
|
|
|
inline void Flush() {
|
|
Flush(stdout);
|
|
}
|
|
|
|
|
|
// Read a line of characters after printing the prompt to stdout. The resulting
|
|
// char* needs to be disposed off with DeleteArray by the caller.
|
|
char* ReadLine(const char* prompt);
|
|
|
|
|
|
// Append size chars from str to the file given by filename.
|
|
// The file is overwritten. Returns the number of chars written.
|
|
int AppendChars(const char* filename,
|
|
const char* str,
|
|
int size,
|
|
bool verbose = true);
|
|
|
|
|
|
// Write size chars from str to the file given by filename.
|
|
// The file is overwritten. Returns the number of chars written.
|
|
int WriteChars(const char* filename,
|
|
const char* str,
|
|
int size,
|
|
bool verbose = true);
|
|
|
|
|
|
// Write size bytes to the file given by filename.
|
|
// The file is overwritten. Returns the number of bytes written.
|
|
int WriteBytes(const char* filename,
|
|
const byte* bytes,
|
|
int size,
|
|
bool verbose = true);
|
|
|
|
|
|
// Write the C code
|
|
// const char* <varname> = "<str>";
|
|
// const int <varname>_len = <len>;
|
|
// to the file given by filename. Only the first len chars are written.
|
|
int WriteAsCFile(const char* filename, const char* varname,
|
|
const char* str, int size, bool verbose = true);
|
|
|
|
|
|
// Simple support to read a file into std::string.
|
|
// On return, *exits tells whether the file existed.
|
|
V8_EXPORT_PRIVATE std::string ReadFile(const char* filename, bool* exists,
|
|
bool verbose = true);
|
|
std::string ReadFile(FILE* file, bool* exists, bool verbose = true);
|
|
|
|
class StringBuilder : public SimpleStringBuilder {
|
|
public:
|
|
explicit StringBuilder(int size) : SimpleStringBuilder(size) { }
|
|
StringBuilder(char* buffer, int size) : SimpleStringBuilder(buffer, size) { }
|
|
|
|
// Add formatted contents to the builder just like printf().
|
|
void PRINTF_FORMAT(2, 3) AddFormatted(const char* format, ...);
|
|
|
|
// Add formatted contents like printf based on a va_list.
|
|
void PRINTF_FORMAT(2, 0) AddFormattedList(const char* format, va_list list);
|
|
|
|
private:
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
|
|
};
|
|
|
|
|
|
bool DoubleToBoolean(double d);
|
|
|
|
template <typename Char>
|
|
bool TryAddIndexChar(uint32_t* index, Char c);
|
|
|
|
template <typename Stream>
|
|
bool StringToArrayIndex(Stream* stream, uint32_t* index);
|
|
|
|
// Returns the current stack top. Works correctly with ASAN and SafeStack.
|
|
// GetCurrentStackPosition() should not be inlined, because it works on stack
|
|
// frames if it were inlined into a function with a huge stack frame it would
|
|
// return an address significantly above the actual current stack position.
|
|
V8_NOINLINE uintptr_t GetCurrentStackPosition();
|
|
|
|
static inline uint16_t ByteReverse16(uint16_t value) {
|
|
#if V8_HAS_BUILTIN_BSWAP16
|
|
return __builtin_bswap16(value);
|
|
#else
|
|
return value << 8 | (value >> 8 & 0x00FF);
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t ByteReverse32(uint32_t value) {
|
|
#if V8_HAS_BUILTIN_BSWAP32
|
|
return __builtin_bswap32(value);
|
|
#else
|
|
return value << 24 |
|
|
((value << 8) & 0x00FF0000) |
|
|
((value >> 8) & 0x0000FF00) |
|
|
((value >> 24) & 0x00000FF);
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t ByteReverse64(uint64_t value) {
|
|
#if V8_HAS_BUILTIN_BSWAP64
|
|
return __builtin_bswap64(value);
|
|
#else
|
|
size_t bits_of_v = sizeof(value) * kBitsPerByte;
|
|
return value << (bits_of_v - 8) |
|
|
((value << (bits_of_v - 24)) & 0x00FF000000000000) |
|
|
((value << (bits_of_v - 40)) & 0x0000FF0000000000) |
|
|
((value << (bits_of_v - 56)) & 0x000000FF00000000) |
|
|
((value >> (bits_of_v - 56)) & 0x00000000FF000000) |
|
|
((value >> (bits_of_v - 40)) & 0x0000000000FF0000) |
|
|
((value >> (bits_of_v - 24)) & 0x000000000000FF00) |
|
|
((value >> (bits_of_v - 8)) & 0x00000000000000FF);
|
|
#endif
|
|
}
|
|
|
|
template <typename V>
|
|
static inline V ByteReverse(V value) {
|
|
size_t size_of_v = sizeof(value);
|
|
switch (size_of_v) {
|
|
case 1:
|
|
return value;
|
|
case 2:
|
|
return static_cast<V>(ByteReverse16(static_cast<uint16_t>(value)));
|
|
case 4:
|
|
return static_cast<V>(ByteReverse32(static_cast<uint32_t>(value)));
|
|
case 8:
|
|
return static_cast<V>(ByteReverse64(static_cast<uint64_t>(value)));
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
V8_EXPORT_PRIVATE bool PassesFilter(Vector<const char> name,
|
|
Vector<const char> filter);
|
|
|
|
// Zap the specified area with a specific byte pattern. This currently defaults
|
|
// to int3 on x64 and ia32. On other architectures this will produce unspecified
|
|
// instruction sequences.
|
|
// TODO(jgruber): Better support for other architectures.
|
|
V8_INLINE void ZapCode(Address addr, size_t size_in_bytes) {
|
|
static constexpr int kZapByte = 0xCC;
|
|
std::memset(reinterpret_cast<void*>(addr), kZapByte, size_in_bytes);
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_UTILS_H_
|