v8/test/unittests/compiler/scheduler-unittest.cc
bmeurer 59a02ebdbe [turbofan] Ensure that NTLs are always properly connected to the end.
Up until now we used a special Terminate node to artifically connect non
terminating loops to the End node, but this was kind of adhoc and didn't
work for the CFG. So without all kinds of weird hacks, the end block in
the CFG will not be connected to NTLs, which makes it impossible to
compute post dominance / control dependence in the current setting.

So instead of Terminate, we add a special Branch to NTLs, whose
condition is the special Always node, which corresponds to True, except
that it cannot be folded away. This way we don't need any special
machinery in the scheduler, since it's just a regular Branch.

R=titzer@chromium.org

Review URL: https://codereview.chromium.org/875263004

Cr-Commit-Position: refs/heads/master@{#26294}
2015-01-27 14:02:28 +00:00

1972 lines
61 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/access-builder.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/opcodes.h"
#include "src/compiler/operator.h"
#include "src/compiler/schedule.h"
#include "src/compiler/scheduler.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/verifier.h"
#include "test/unittests/compiler/compiler-test-utils.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
class SchedulerTest : public TestWithZone {
public:
SchedulerTest()
: graph_(zone()), common_(zone()), simplified_(zone()), js_(zone()) {}
static Schedule* ComputeAndVerifySchedule(int expected, Graph* graph) {
if (FLAG_trace_turbo) {
OFStream os(stdout);
os << AsDOT(*graph);
}
Schedule* schedule = Scheduler::ComputeSchedule(graph->zone(), graph);
if (FLAG_trace_turbo_scheduler) {
OFStream os(stdout);
os << *schedule << std::endl;
}
ScheduleVerifier::Run(schedule);
CHECK_EQ(expected, GetScheduledNodeCount(schedule));
return schedule;
}
static int GetScheduledNodeCount(const Schedule* schedule) {
size_t node_count = 0;
for (auto block : *schedule->rpo_order()) {
node_count += block->NodeCount();
if (block->control() != BasicBlock::kNone) ++node_count;
}
return static_cast<int>(node_count);
}
Graph* graph() { return &graph_; }
CommonOperatorBuilder* common() { return &common_; }
SimplifiedOperatorBuilder* simplified() { return &simplified_; }
JSOperatorBuilder* js() { return &js_; }
private:
Graph graph_;
CommonOperatorBuilder common_;
SimplifiedOperatorBuilder simplified_;
JSOperatorBuilder js_;
};
class SchedulerRPOTest : public SchedulerTest {
public:
SchedulerRPOTest() {}
// TODO(titzer): pull RPO tests out to their own file.
static void CheckRPONumbers(BasicBlockVector* order, size_t expected,
bool loops_allowed) {
CHECK(expected == order->size());
for (int i = 0; i < static_cast<int>(order->size()); i++) {
CHECK(order->at(i)->rpo_number() == i);
if (!loops_allowed) {
CHECK_EQ(NULL, order->at(i)->loop_end());
CHECK_EQ(NULL, order->at(i)->loop_header());
}
}
}
static void CheckLoop(BasicBlockVector* order, BasicBlock** blocks,
int body_size) {
BasicBlock* header = blocks[0];
BasicBlock* end = header->loop_end();
CHECK_NE(NULL, end);
CHECK_GT(end->rpo_number(), 0);
CHECK_EQ(body_size, end->rpo_number() - header->rpo_number());
for (int i = 0; i < body_size; i++) {
CHECK_GE(blocks[i]->rpo_number(), header->rpo_number());
CHECK_LT(blocks[i]->rpo_number(), end->rpo_number());
CHECK(header->LoopContains(blocks[i]));
CHECK(header->IsLoopHeader() || blocks[i]->loop_header() == header);
}
if (header->rpo_number() > 0) {
CHECK_NE(order->at(header->rpo_number() - 1)->loop_header(), header);
}
if (end->rpo_number() < static_cast<int>(order->size())) {
CHECK_NE(order->at(end->rpo_number())->loop_header(), header);
}
}
struct TestLoop {
int count;
BasicBlock** nodes;
BasicBlock* header() { return nodes[0]; }
BasicBlock* last() { return nodes[count - 1]; }
~TestLoop() { delete[] nodes; }
void Check(BasicBlockVector* order) { CheckLoop(order, nodes, count); }
};
static TestLoop* CreateLoop(Schedule* schedule, int count) {
TestLoop* loop = new TestLoop();
loop->count = count;
loop->nodes = new BasicBlock* [count];
for (int i = 0; i < count; i++) {
loop->nodes[i] = schedule->NewBasicBlock();
if (i > 0) {
schedule->AddSuccessorForTesting(loop->nodes[i - 1], loop->nodes[i]);
}
}
schedule->AddSuccessorForTesting(loop->nodes[count - 1], loop->nodes[0]);
return loop;
}
};
class SchedulerTestWithIsolate : public SchedulerTest, public TestWithIsolate {
public:
SchedulerTestWithIsolate() {}
Unique<HeapObject> GetUniqueUndefined() {
Handle<HeapObject> object =
Handle<HeapObject>(isolate()->heap()->undefined_value(), isolate());
return Unique<HeapObject>::CreateUninitialized(object);
}
};
namespace {
const Operator kIntAdd(IrOpcode::kInt32Add, Operator::kPure, "Int32Add", 2, 0,
0, 1, 0, 0);
} // namespace
TEST_F(SchedulerTest, BuildScheduleEmpty) {
graph()->SetStart(graph()->NewNode(common()->Start(0)));
graph()->SetEnd(graph()->NewNode(common()->End(), graph()->start()));
USE(Scheduler::ComputeSchedule(zone(), graph()));
}
TEST_F(SchedulerTest, BuildScheduleOneParameter) {
graph()->SetStart(graph()->NewNode(common()->Start(0)));
Node* p1 = graph()->NewNode(common()->Parameter(0), graph()->start());
Node* ret = graph()->NewNode(common()->Return(), p1, graph()->start(),
graph()->start());
graph()->SetEnd(graph()->NewNode(common()->End(), ret));
USE(Scheduler::ComputeSchedule(zone(), graph()));
}
TEST_F(SchedulerTest, BuildScheduleIfSplit) {
graph()->SetStart(graph()->NewNode(common()->Start(3)));
Node* p1 = graph()->NewNode(common()->Parameter(0), graph()->start());
Node* p2 = graph()->NewNode(common()->Parameter(1), graph()->start());
Node* p3 = graph()->NewNode(common()->Parameter(2), graph()->start());
Node* p4 = graph()->NewNode(common()->Parameter(3), graph()->start());
Node* p5 = graph()->NewNode(common()->Parameter(4), graph()->start());
Node* cmp = graph()->NewNode(js()->LessThanOrEqual(), p1, p2, p3,
graph()->start(), graph()->start());
Node* branch = graph()->NewNode(common()->Branch(), cmp, graph()->start());
Node* true_branch = graph()->NewNode(common()->IfTrue(), branch);
Node* false_branch = graph()->NewNode(common()->IfFalse(), branch);
Node* ret1 =
graph()->NewNode(common()->Return(), p4, graph()->start(), true_branch);
Node* ret2 =
graph()->NewNode(common()->Return(), p5, graph()->start(), false_branch);
Node* merge = graph()->NewNode(common()->Merge(2), ret1, ret2);
graph()->SetEnd(graph()->NewNode(common()->End(), merge));
ComputeAndVerifySchedule(13, graph());
}
TEST_F(SchedulerRPOTest, Degenerate1) {
Schedule schedule(zone());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 1, false);
CHECK_EQ(schedule.start(), order->at(0));
}
TEST_F(SchedulerRPOTest, Degenerate2) {
Schedule schedule(zone());
schedule.AddGoto(schedule.start(), schedule.end());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 2, false);
CHECK_EQ(schedule.start(), order->at(0));
CHECK_EQ(schedule.end(), order->at(1));
}
TEST_F(SchedulerRPOTest, Line) {
for (int i = 0; i < 10; i++) {
Schedule schedule(zone());
BasicBlock* last = schedule.start();
for (int j = 0; j < i; j++) {
BasicBlock* block = schedule.NewBasicBlock();
block->set_deferred(i & 1);
schedule.AddGoto(last, block);
last = block;
}
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 1 + i, false);
for (size_t i = 0; i < schedule.BasicBlockCount(); i++) {
BasicBlock* block = schedule.GetBlockById(BasicBlock::Id::FromSize(i));
if (block->rpo_number() >= 0 && block->SuccessorCount() == 1) {
CHECK(block->rpo_number() + 1 == block->SuccessorAt(0)->rpo_number());
}
}
}
}
TEST_F(SchedulerRPOTest, SelfLoop) {
Schedule schedule(zone());
schedule.AddSuccessorForTesting(schedule.start(), schedule.start());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 1, true);
BasicBlock* loop[] = {schedule.start()};
CheckLoop(order, loop, 1);
}
TEST_F(SchedulerRPOTest, EntryLoop) {
Schedule schedule(zone());
BasicBlock* body = schedule.NewBasicBlock();
schedule.AddSuccessorForTesting(schedule.start(), body);
schedule.AddSuccessorForTesting(body, schedule.start());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 2, true);
BasicBlock* loop[] = {schedule.start(), body};
CheckLoop(order, loop, 2);
}
TEST_F(SchedulerRPOTest, EndLoop) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 2));
schedule.AddSuccessorForTesting(schedule.start(), loop1->header());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 3, true);
loop1->Check(order);
}
TEST_F(SchedulerRPOTest, EndLoopNested) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 2));
schedule.AddSuccessorForTesting(schedule.start(), loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), schedule.start());
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 3, true);
loop1->Check(order);
}
TEST_F(SchedulerRPOTest, Diamond) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(A, C);
schedule.AddSuccessorForTesting(B, D);
schedule.AddSuccessorForTesting(C, D);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 4, false);
CHECK_EQ(0, A->rpo_number());
CHECK((B->rpo_number() == 1 && C->rpo_number() == 2) ||
(B->rpo_number() == 2 && C->rpo_number() == 1));
CHECK_EQ(3, D->rpo_number());
}
TEST_F(SchedulerRPOTest, Loop1) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, B);
schedule.AddSuccessorForTesting(C, D);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 4, true);
BasicBlock* loop[] = {B, C};
CheckLoop(order, loop, 2);
}
TEST_F(SchedulerRPOTest, Loop2) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, B);
schedule.AddSuccessorForTesting(B, D);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 4, true);
BasicBlock* loop[] = {B, C};
CheckLoop(order, loop, 2);
}
TEST_F(SchedulerRPOTest, LoopN) {
for (int i = 0; i < 11; i++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
BasicBlock* F = schedule.NewBasicBlock();
BasicBlock* G = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, D);
schedule.AddSuccessorForTesting(D, E);
schedule.AddSuccessorForTesting(E, F);
schedule.AddSuccessorForTesting(F, B);
schedule.AddSuccessorForTesting(B, G);
// Throw in extra backedges from time to time.
if (i == 1) schedule.AddSuccessorForTesting(B, B);
if (i == 2) schedule.AddSuccessorForTesting(C, B);
if (i == 3) schedule.AddSuccessorForTesting(D, B);
if (i == 4) schedule.AddSuccessorForTesting(E, B);
if (i == 5) schedule.AddSuccessorForTesting(F, B);
// Throw in extra loop exits from time to time.
if (i == 6) schedule.AddSuccessorForTesting(B, G);
if (i == 7) schedule.AddSuccessorForTesting(C, G);
if (i == 8) schedule.AddSuccessorForTesting(D, G);
if (i == 9) schedule.AddSuccessorForTesting(E, G);
if (i == 10) schedule.AddSuccessorForTesting(F, G);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 7, true);
BasicBlock* loop[] = {B, C, D, E, F};
CheckLoop(order, loop, 5);
}
}
TEST_F(SchedulerRPOTest, LoopNest1) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
BasicBlock* F = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, D);
schedule.AddSuccessorForTesting(D, C);
schedule.AddSuccessorForTesting(D, E);
schedule.AddSuccessorForTesting(E, B);
schedule.AddSuccessorForTesting(E, F);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 6, true);
BasicBlock* loop1[] = {B, C, D, E};
CheckLoop(order, loop1, 4);
BasicBlock* loop2[] = {C, D};
CheckLoop(order, loop2, 2);
}
TEST_F(SchedulerRPOTest, LoopNest2) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
BasicBlock* F = schedule.NewBasicBlock();
BasicBlock* G = schedule.NewBasicBlock();
BasicBlock* H = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(C, D);
schedule.AddSuccessorForTesting(D, E);
schedule.AddSuccessorForTesting(E, F);
schedule.AddSuccessorForTesting(F, G);
schedule.AddSuccessorForTesting(G, H);
schedule.AddSuccessorForTesting(E, D);
schedule.AddSuccessorForTesting(F, C);
schedule.AddSuccessorForTesting(G, B);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 8, true);
BasicBlock* loop1[] = {B, C, D, E, F, G};
CheckLoop(order, loop1, 6);
BasicBlock* loop2[] = {C, D, E, F};
CheckLoop(order, loop2, 4);
BasicBlock* loop3[] = {D, E};
CheckLoop(order, loop3, 2);
}
TEST_F(SchedulerRPOTest, LoopFollow1) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 1));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, 1));
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->header(), loop2->header());
schedule.AddSuccessorForTesting(loop2->last(), E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CHECK_EQ(static_cast<int>(schedule.BasicBlockCount()),
static_cast<int>(order->size()));
loop1->Check(order);
loop2->Check(order);
}
TEST_F(SchedulerRPOTest, LoopFollow2) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 1));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, 1));
BasicBlock* A = schedule.start();
BasicBlock* S = schedule.NewBasicBlock();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->header(), S);
schedule.AddSuccessorForTesting(S, loop2->header());
schedule.AddSuccessorForTesting(loop2->last(), E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CHECK_EQ(static_cast<int>(schedule.BasicBlockCount()),
static_cast<int>(order->size()));
loop1->Check(order);
loop2->Check(order);
}
TEST_F(SchedulerRPOTest, LoopFollowN) {
for (int size = 1; size < 5; size++) {
for (int exit = 0; exit < size; exit++) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, size));
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->nodes[exit], loop2->header());
schedule.AddSuccessorForTesting(loop2->nodes[exit], E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CHECK_EQ(static_cast<int>(schedule.BasicBlockCount()),
static_cast<int>(order->size()));
loop1->Check(order);
loop2->Check(order);
}
}
}
TEST_F(SchedulerRPOTest, NestedLoopFollow1) {
Schedule schedule(zone());
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, 1));
SmartPointer<TestLoop> loop2(CreateLoop(&schedule, 1));
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* E = schedule.end();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, loop1->header());
schedule.AddSuccessorForTesting(loop1->header(), loop2->header());
schedule.AddSuccessorForTesting(loop2->last(), C);
schedule.AddSuccessorForTesting(C, E);
schedule.AddSuccessorForTesting(C, B);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CHECK_EQ(static_cast<int>(schedule.BasicBlockCount()),
static_cast<int>(order->size()));
loop1->Check(order);
loop2->Check(order);
BasicBlock* loop3[] = {B, loop1->nodes[0], loop2->nodes[0], C};
CheckLoop(order, loop3, 4);
}
TEST_F(SchedulerRPOTest, LoopBackedges1) {
int size = 8;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
schedule.AddSuccessorForTesting(loop1->nodes[i], loop1->header());
schedule.AddSuccessorForTesting(loop1->nodes[j], E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
loop1->Check(order);
}
}
}
TEST_F(SchedulerRPOTest, LoopOutedges1) {
int size = 8;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
schedule.AddSuccessorForTesting(loop1->nodes[i], loop1->header());
schedule.AddSuccessorForTesting(loop1->nodes[j], D);
schedule.AddSuccessorForTesting(D, E);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
loop1->Check(order);
}
}
}
TEST_F(SchedulerRPOTest, LoopOutedges2) {
int size = 8;
for (int i = 0; i < size; i++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
for (int j = 0; j < size; j++) {
BasicBlock* O = schedule.NewBasicBlock();
schedule.AddSuccessorForTesting(loop1->nodes[j], O);
schedule.AddSuccessorForTesting(O, E);
}
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
loop1->Check(order);
}
}
TEST_F(SchedulerRPOTest, LoopOutloops1) {
int size = 8;
for (int i = 0; i < size; i++) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* E = schedule.end();
SmartPointer<TestLoop> loop1(CreateLoop(&schedule, size));
schedule.AddSuccessorForTesting(A, loop1->header());
schedule.AddSuccessorForTesting(loop1->last(), E);
TestLoop** loopN = new TestLoop* [size];
for (int j = 0; j < size; j++) {
loopN[j] = CreateLoop(&schedule, 2);
schedule.AddSuccessorForTesting(loop1->nodes[j], loopN[j]->header());
schedule.AddSuccessorForTesting(loopN[j]->last(), E);
}
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, schedule.BasicBlockCount(), true);
loop1->Check(order);
for (int j = 0; j < size; j++) {
loopN[j]->Check(order);
delete loopN[j];
}
delete[] loopN;
}
}
TEST_F(SchedulerRPOTest, LoopMultibackedge) {
Schedule schedule(zone());
BasicBlock* A = schedule.start();
BasicBlock* B = schedule.NewBasicBlock();
BasicBlock* C = schedule.NewBasicBlock();
BasicBlock* D = schedule.NewBasicBlock();
BasicBlock* E = schedule.NewBasicBlock();
schedule.AddSuccessorForTesting(A, B);
schedule.AddSuccessorForTesting(B, C);
schedule.AddSuccessorForTesting(B, D);
schedule.AddSuccessorForTesting(B, E);
schedule.AddSuccessorForTesting(C, B);
schedule.AddSuccessorForTesting(D, B);
schedule.AddSuccessorForTesting(E, B);
BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule);
CheckRPONumbers(order, 5, true);
BasicBlock* loop1[] = {B, C, D, E};
CheckLoop(order, loop1, 4);
}
TEST_F(SchedulerTestWithIsolate, BuildScheduleIfSplitWithEffects) {
const Operator* op;
// Manually transcripted code for:
// function turbo_fan_test(a, b, c, y) {
// if (a < b) {
// return a + b - c * c - a + y;
// } else {
// return c * c - a;
// }
// }
op = common()->Start(0);
Node* n0 = graph()->NewNode(op);
USE(n0);
Node* nil = graph()->NewNode(common()->Dead());
op = common()->End();
Node* n23 = graph()->NewNode(op, nil);
USE(n23);
op = common()->Merge(2);
Node* n22 = graph()->NewNode(op, nil, nil);
USE(n22);
op = common()->Return();
Node* n16 = graph()->NewNode(op, nil, nil, nil);
USE(n16);
op = js()->Add();
Node* n15 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n15);
op = js()->Subtract();
Node* n14 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n14);
op = js()->Subtract();
Node* n13 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n13);
op = js()->Add();
Node* n11 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n11);
op = common()->Parameter(0);
Node* n2 = graph()->NewNode(op, n0);
USE(n2);
n11->ReplaceInput(0, n2);
op = common()->Parameter(0);
Node* n3 = graph()->NewNode(op, n0);
USE(n3);
n11->ReplaceInput(1, n3);
op = common()->HeapConstant(GetUniqueUndefined());
Node* n7 = graph()->NewNode(op);
USE(n7);
n11->ReplaceInput(2, n7);
op = js()->LessThan();
Node* n8 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n8);
n8->ReplaceInput(0, n2);
n8->ReplaceInput(1, n3);
n8->ReplaceInput(2, n7);
n8->ReplaceInput(3, n0);
n8->ReplaceInput(4, n0);
n11->ReplaceInput(3, n8);
op = common()->IfTrue();
Node* n10 = graph()->NewNode(op, nil);
USE(n10);
op = common()->Branch();
Node* n9 = graph()->NewNode(op, nil, nil);
USE(n9);
n9->ReplaceInput(0, n8);
n9->ReplaceInput(1, n0);
n10->ReplaceInput(0, n9);
n11->ReplaceInput(4, n10);
n13->ReplaceInput(0, n11);
op = js()->Multiply();
Node* n12 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n12);
op = common()->Parameter(0);
Node* n4 = graph()->NewNode(op, n0);
USE(n4);
n12->ReplaceInput(0, n4);
n12->ReplaceInput(1, n4);
n12->ReplaceInput(2, n7);
n12->ReplaceInput(3, n11);
n12->ReplaceInput(4, n10);
n13->ReplaceInput(1, n12);
n13->ReplaceInput(2, n7);
n13->ReplaceInput(3, n12);
n13->ReplaceInput(4, n10);
n14->ReplaceInput(0, n13);
n14->ReplaceInput(1, n2);
n14->ReplaceInput(2, n7);
n14->ReplaceInput(3, n13);
n14->ReplaceInput(4, n10);
n15->ReplaceInput(0, n14);
op = common()->Parameter(0);
Node* n5 = graph()->NewNode(op, n0);
USE(n5);
n15->ReplaceInput(1, n5);
n15->ReplaceInput(2, n7);
n15->ReplaceInput(3, n14);
n15->ReplaceInput(4, n10);
n16->ReplaceInput(0, n15);
n16->ReplaceInput(1, n15);
n16->ReplaceInput(2, n10);
n22->ReplaceInput(0, n16);
op = common()->Return();
Node* n21 = graph()->NewNode(op, nil, nil, nil);
USE(n21);
op = js()->Subtract();
Node* n20 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n20);
op = js()->Multiply();
Node* n19 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n19);
n19->ReplaceInput(0, n4);
n19->ReplaceInput(1, n4);
n19->ReplaceInput(2, n7);
n19->ReplaceInput(3, n8);
op = common()->IfFalse();
Node* n18 = graph()->NewNode(op, nil);
USE(n18);
n18->ReplaceInput(0, n9);
n19->ReplaceInput(4, n18);
n20->ReplaceInput(0, n19);
n20->ReplaceInput(1, n2);
n20->ReplaceInput(2, n7);
n20->ReplaceInput(3, n19);
n20->ReplaceInput(4, n18);
n21->ReplaceInput(0, n20);
n21->ReplaceInput(1, n20);
n21->ReplaceInput(2, n18);
n22->ReplaceInput(1, n21);
n23->ReplaceInput(0, n22);
graph()->SetStart(n0);
graph()->SetEnd(n23);
ComputeAndVerifySchedule(20, graph());
}
TEST_F(SchedulerTestWithIsolate, BuildScheduleSimpleLoop) {
const Operator* op;
// Manually transcripted code for:
// function turbo_fan_test(a, b) {
// while (a < b) {
// a++;
// }
// return a;
// }
op = common()->Start(0);
Node* n0 = graph()->NewNode(op);
USE(n0);
Node* nil = graph()->NewNode(common()->Dead());
op = common()->End();
Node* n20 = graph()->NewNode(op, nil);
USE(n20);
op = common()->Return();
Node* n19 = graph()->NewNode(op, nil, nil, nil);
USE(n19);
op = common()->Phi(kMachAnyTagged, 2);
Node* n8 = graph()->NewNode(op, nil, nil, nil);
USE(n8);
op = common()->Parameter(0);
Node* n2 = graph()->NewNode(op, n0);
USE(n2);
n8->ReplaceInput(0, n2);
op = js()->Add();
Node* n18 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n18);
op = js()->ToNumber();
Node* n16 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n16);
n16->ReplaceInput(0, n8);
op = common()->HeapConstant(GetUniqueUndefined());
Node* n5 = graph()->NewNode(op);
USE(n5);
n16->ReplaceInput(1, n5);
op = js()->LessThan();
Node* n12 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n12);
n12->ReplaceInput(0, n8);
op = common()->Phi(kMachAnyTagged, 2);
Node* n9 = graph()->NewNode(op, nil, nil, nil);
USE(n9);
op = common()->Parameter(0);
Node* n3 = graph()->NewNode(op, n0);
USE(n3);
n9->ReplaceInput(0, n3);
n9->ReplaceInput(1, n9);
op = common()->Loop(2);
Node* n6 = graph()->NewNode(op, nil, nil);
USE(n6);
n6->ReplaceInput(0, n0);
op = common()->IfTrue();
Node* n14 = graph()->NewNode(op, nil);
USE(n14);
op = common()->Branch();
Node* n13 = graph()->NewNode(op, nil, nil);
USE(n13);
n13->ReplaceInput(0, n12);
n13->ReplaceInput(1, n6);
n14->ReplaceInput(0, n13);
n6->ReplaceInput(1, n14);
n9->ReplaceInput(2, n6);
n12->ReplaceInput(1, n9);
n12->ReplaceInput(2, n5);
op = common()->Phi(kMachAnyTagged, 2);
Node* n10 = graph()->NewNode(op, nil, nil, nil);
USE(n10);
n10->ReplaceInput(0, n0);
n10->ReplaceInput(1, n18);
n10->ReplaceInput(2, n6);
n12->ReplaceInput(3, n10);
n12->ReplaceInput(4, n6);
n16->ReplaceInput(2, n12);
n16->ReplaceInput(3, n14);
n18->ReplaceInput(0, n16);
op = common()->NumberConstant(0);
Node* n17 = graph()->NewNode(op);
USE(n17);
n18->ReplaceInput(1, n17);
n18->ReplaceInput(2, n5);
n18->ReplaceInput(3, n16);
n18->ReplaceInput(4, n14);
n8->ReplaceInput(1, n18);
n8->ReplaceInput(2, n6);
n19->ReplaceInput(0, n8);
n19->ReplaceInput(1, n12);
op = common()->IfFalse();
Node* n15 = graph()->NewNode(op, nil);
USE(n15);
n15->ReplaceInput(0, n13);
n19->ReplaceInput(2, n15);
n20->ReplaceInput(0, n19);
graph()->SetStart(n0);
graph()->SetEnd(n20);
ComputeAndVerifySchedule(19, graph());
}
TEST_F(SchedulerTestWithIsolate, BuildScheduleComplexLoops) {
const Operator* op;
// Manually transcripted code for:
// function turbo_fan_test(a, b, c) {
// while (a < b) {
// a++;
// while (c < b) {
// c++;
// }
// }
// while (a < b) {
// a += 2;
// }
// return a;
// }
op = common()->Start(0);
Node* n0 = graph()->NewNode(op);
USE(n0);
Node* nil = graph()->NewNode(common()->Dead());
op = common()->End();
Node* n46 = graph()->NewNode(op, nil);
USE(n46);
op = common()->Return();
Node* n45 = graph()->NewNode(op, nil, nil, nil);
USE(n45);
op = common()->Phi(kMachAnyTagged, 2);
Node* n35 = graph()->NewNode(op, nil, nil, nil);
USE(n35);
op = common()->Phi(kMachAnyTagged, 2);
Node* n9 = graph()->NewNode(op, nil, nil, nil);
USE(n9);
op = common()->Parameter(0);
Node* n2 = graph()->NewNode(op, n0);
USE(n2);
n9->ReplaceInput(0, n2);
op = common()->Phi(kMachAnyTagged, 2);
Node* n23 = graph()->NewNode(op, nil, nil, nil);
USE(n23);
op = js()->Add();
Node* n20 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n20);
op = js()->ToNumber();
Node* n18 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n18);
n18->ReplaceInput(0, n9);
op = common()->HeapConstant(GetUniqueUndefined());
Node* n6 = graph()->NewNode(op);
USE(n6);
n18->ReplaceInput(1, n6);
op = js()->LessThan();
Node* n14 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n14);
n14->ReplaceInput(0, n9);
op = common()->Phi(kMachAnyTagged, 2);
Node* n10 = graph()->NewNode(op, nil, nil, nil);
USE(n10);
op = common()->Parameter(0);
Node* n3 = graph()->NewNode(op, n0);
USE(n3);
n10->ReplaceInput(0, n3);
op = common()->Phi(kMachAnyTagged, 2);
Node* n24 = graph()->NewNode(op, nil, nil, nil);
USE(n24);
n24->ReplaceInput(0, n10);
n24->ReplaceInput(1, n24);
op = common()->Loop(2);
Node* n21 = graph()->NewNode(op, nil, nil);
USE(n21);
op = common()->IfTrue();
Node* n16 = graph()->NewNode(op, nil);
USE(n16);
op = common()->Branch();
Node* n15 = graph()->NewNode(op, nil, nil);
USE(n15);
n15->ReplaceInput(0, n14);
op = common()->Loop(2);
Node* n7 = graph()->NewNode(op, nil, nil);
USE(n7);
n7->ReplaceInput(0, n0);
op = common()->IfFalse();
Node* n30 = graph()->NewNode(op, nil);
USE(n30);
op = common()->Branch();
Node* n28 = graph()->NewNode(op, nil, nil);
USE(n28);
op = js()->LessThan();
Node* n27 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n27);
op = common()->Phi(kMachAnyTagged, 2);
Node* n25 = graph()->NewNode(op, nil, nil, nil);
USE(n25);
op = common()->Phi(kMachAnyTagged, 2);
Node* n11 = graph()->NewNode(op, nil, nil, nil);
USE(n11);
op = common()->Parameter(0);
Node* n4 = graph()->NewNode(op, n0);
USE(n4);
n11->ReplaceInput(0, n4);
n11->ReplaceInput(1, n25);
n11->ReplaceInput(2, n7);
n25->ReplaceInput(0, n11);
op = js()->Add();
Node* n32 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n32);
op = js()->ToNumber();
Node* n31 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n31);
n31->ReplaceInput(0, n25);
n31->ReplaceInput(1, n6);
n31->ReplaceInput(2, n27);
op = common()->IfTrue();
Node* n29 = graph()->NewNode(op, nil);
USE(n29);
n29->ReplaceInput(0, n28);
n31->ReplaceInput(3, n29);
n32->ReplaceInput(0, n31);
op = common()->NumberConstant(0);
Node* n19 = graph()->NewNode(op);
USE(n19);
n32->ReplaceInput(1, n19);
n32->ReplaceInput(2, n6);
n32->ReplaceInput(3, n31);
n32->ReplaceInput(4, n29);
n25->ReplaceInput(1, n32);
n25->ReplaceInput(2, n21);
n27->ReplaceInput(0, n25);
n27->ReplaceInput(1, n24);
n27->ReplaceInput(2, n6);
op = common()->Phi(kMachAnyTagged, 2);
Node* n26 = graph()->NewNode(op, nil, nil, nil);
USE(n26);
n26->ReplaceInput(0, n20);
n26->ReplaceInput(1, n32);
n26->ReplaceInput(2, n21);
n27->ReplaceInput(3, n26);
n27->ReplaceInput(4, n21);
n28->ReplaceInput(0, n27);
n28->ReplaceInput(1, n21);
n30->ReplaceInput(0, n28);
n7->ReplaceInput(1, n30);
n15->ReplaceInput(1, n7);
n16->ReplaceInput(0, n15);
n21->ReplaceInput(0, n16);
n21->ReplaceInput(1, n29);
n24->ReplaceInput(2, n21);
n10->ReplaceInput(1, n24);
n10->ReplaceInput(2, n7);
n14->ReplaceInput(1, n10);
n14->ReplaceInput(2, n6);
op = common()->Phi(kMachAnyTagged, 2);
Node* n12 = graph()->NewNode(op, nil, nil, nil);
USE(n12);
n12->ReplaceInput(0, n0);
n12->ReplaceInput(1, n27);
n12->ReplaceInput(2, n7);
n14->ReplaceInput(3, n12);
n14->ReplaceInput(4, n7);
n18->ReplaceInput(2, n14);
n18->ReplaceInput(3, n16);
n20->ReplaceInput(0, n18);
n20->ReplaceInput(1, n19);
n20->ReplaceInput(2, n6);
n20->ReplaceInput(3, n18);
n20->ReplaceInput(4, n16);
n23->ReplaceInput(0, n20);
n23->ReplaceInput(1, n23);
n23->ReplaceInput(2, n21);
n9->ReplaceInput(1, n23);
n9->ReplaceInput(2, n7);
n35->ReplaceInput(0, n9);
op = js()->Add();
Node* n44 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n44);
n44->ReplaceInput(0, n35);
op = common()->NumberConstant(0);
Node* n43 = graph()->NewNode(op);
USE(n43);
n44->ReplaceInput(1, n43);
n44->ReplaceInput(2, n6);
op = js()->LessThan();
Node* n39 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n39);
n39->ReplaceInput(0, n35);
op = common()->Phi(kMachAnyTagged, 2);
Node* n36 = graph()->NewNode(op, nil, nil, nil);
USE(n36);
n36->ReplaceInput(0, n10);
n36->ReplaceInput(1, n36);
op = common()->Loop(2);
Node* n33 = graph()->NewNode(op, nil, nil);
USE(n33);
op = common()->IfFalse();
Node* n17 = graph()->NewNode(op, nil);
USE(n17);
n17->ReplaceInput(0, n15);
n33->ReplaceInput(0, n17);
op = common()->IfTrue();
Node* n41 = graph()->NewNode(op, nil);
USE(n41);
op = common()->Branch();
Node* n40 = graph()->NewNode(op, nil, nil);
USE(n40);
n40->ReplaceInput(0, n39);
n40->ReplaceInput(1, n33);
n41->ReplaceInput(0, n40);
n33->ReplaceInput(1, n41);
n36->ReplaceInput(2, n33);
n39->ReplaceInput(1, n36);
n39->ReplaceInput(2, n6);
op = common()->Phi(kMachAnyTagged, 2);
Node* n38 = graph()->NewNode(op, nil, nil, nil);
USE(n38);
n38->ReplaceInput(0, n14);
n38->ReplaceInput(1, n44);
n38->ReplaceInput(2, n33);
n39->ReplaceInput(3, n38);
n39->ReplaceInput(4, n33);
n44->ReplaceInput(3, n39);
n44->ReplaceInput(4, n41);
n35->ReplaceInput(1, n44);
n35->ReplaceInput(2, n33);
n45->ReplaceInput(0, n35);
n45->ReplaceInput(1, n39);
op = common()->IfFalse();
Node* n42 = graph()->NewNode(op, nil);
USE(n42);
n42->ReplaceInput(0, n40);
n45->ReplaceInput(2, n42);
n46->ReplaceInput(0, n45);
graph()->SetStart(n0);
graph()->SetEnd(n46);
ComputeAndVerifySchedule(46, graph());
}
TEST_F(SchedulerTestWithIsolate, BuildScheduleBreakAndContinue) {
const Operator* op;
// Manually transcripted code for:
// function turbo_fan_test(a, b, c) {
// var d = 0;
// while (a < b) {
// a++;
// while (c < b) {
// c++;
// if (d == 0) break;
// a++;
// }
// if (a == 1) continue;
// d++;
// }
// return a + d;
// }
op = common()->Start(0);
Node* n0 = graph()->NewNode(op);
USE(n0);
Node* nil = graph()->NewNode(common()->Dead());
op = common()->End();
Node* n58 = graph()->NewNode(op, nil);
USE(n58);
op = common()->Return();
Node* n57 = graph()->NewNode(op, nil, nil, nil);
USE(n57);
op = js()->Add();
Node* n56 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n56);
op = common()->Phi(kMachAnyTagged, 2);
Node* n10 = graph()->NewNode(op, nil, nil, nil);
USE(n10);
op = common()->Parameter(0);
Node* n2 = graph()->NewNode(op, n0);
USE(n2);
n10->ReplaceInput(0, n2);
op = common()->Phi(kMachAnyTagged, 2);
Node* n25 = graph()->NewNode(op, nil, nil, nil);
USE(n25);
op = js()->Add();
Node* n22 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n22);
op = js()->ToNumber();
Node* n20 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n20);
n20->ReplaceInput(0, n10);
op = common()->HeapConstant(GetUniqueUndefined());
Node* n6 = graph()->NewNode(op);
USE(n6);
n20->ReplaceInput(1, n6);
op = js()->LessThan();
Node* n16 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n16);
n16->ReplaceInput(0, n10);
op = common()->Phi(kMachAnyTagged, 2);
Node* n11 = graph()->NewNode(op, nil, nil, nil);
USE(n11);
op = common()->Parameter(0);
Node* n3 = graph()->NewNode(op, n0);
USE(n3);
n11->ReplaceInput(0, n3);
op = common()->Phi(kMachAnyTagged, 2);
Node* n26 = graph()->NewNode(op, nil, nil, nil);
USE(n26);
n26->ReplaceInput(0, n11);
n26->ReplaceInput(1, n26);
op = common()->Loop(2);
Node* n23 = graph()->NewNode(op, nil, nil);
USE(n23);
op = common()->IfTrue();
Node* n18 = graph()->NewNode(op, nil);
USE(n18);
op = common()->Branch();
Node* n17 = graph()->NewNode(op, nil, nil);
USE(n17);
n17->ReplaceInput(0, n16);
op = common()->Loop(2);
Node* n8 = graph()->NewNode(op, nil, nil);
USE(n8);
n8->ReplaceInput(0, n0);
op = common()->Merge(2);
Node* n53 = graph()->NewNode(op, nil, nil);
USE(n53);
op = common()->IfTrue();
Node* n49 = graph()->NewNode(op, nil);
USE(n49);
op = common()->Branch();
Node* n48 = graph()->NewNode(op, nil, nil);
USE(n48);
op = js()->Equal();
Node* n47 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n47);
n47->ReplaceInput(0, n25);
op = common()->NumberConstant(0);
Node* n46 = graph()->NewNode(op);
USE(n46);
n47->ReplaceInput(1, n46);
n47->ReplaceInput(2, n6);
op = common()->Phi(kMachAnyTagged, 2);
Node* n42 = graph()->NewNode(op, nil, nil, nil);
USE(n42);
op = js()->LessThan();
Node* n30 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n30);
op = common()->Phi(kMachAnyTagged, 2);
Node* n27 = graph()->NewNode(op, nil, nil, nil);
USE(n27);
op = common()->Phi(kMachAnyTagged, 2);
Node* n12 = graph()->NewNode(op, nil, nil, nil);
USE(n12);
op = common()->Parameter(0);
Node* n4 = graph()->NewNode(op, n0);
USE(n4);
n12->ReplaceInput(0, n4);
op = common()->Phi(kMachAnyTagged, 2);
Node* n41 = graph()->NewNode(op, nil, nil, nil);
USE(n41);
n41->ReplaceInput(0, n27);
op = js()->Add();
Node* n35 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n35);
op = js()->ToNumber();
Node* n34 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n34);
n34->ReplaceInput(0, n27);
n34->ReplaceInput(1, n6);
n34->ReplaceInput(2, n30);
op = common()->IfTrue();
Node* n32 = graph()->NewNode(op, nil);
USE(n32);
op = common()->Branch();
Node* n31 = graph()->NewNode(op, nil, nil);
USE(n31);
n31->ReplaceInput(0, n30);
n31->ReplaceInput(1, n23);
n32->ReplaceInput(0, n31);
n34->ReplaceInput(3, n32);
n35->ReplaceInput(0, n34);
op = common()->NumberConstant(0);
Node* n21 = graph()->NewNode(op);
USE(n21);
n35->ReplaceInput(1, n21);
n35->ReplaceInput(2, n6);
n35->ReplaceInput(3, n34);
n35->ReplaceInput(4, n32);
n41->ReplaceInput(1, n35);
op = common()->Merge(2);
Node* n40 = graph()->NewNode(op, nil, nil);
USE(n40);
op = common()->IfFalse();
Node* n33 = graph()->NewNode(op, nil);
USE(n33);
n33->ReplaceInput(0, n31);
n40->ReplaceInput(0, n33);
op = common()->IfTrue();
Node* n39 = graph()->NewNode(op, nil);
USE(n39);
op = common()->Branch();
Node* n38 = graph()->NewNode(op, nil, nil);
USE(n38);
op = js()->Equal();
Node* n37 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n37);
op = common()->Phi(kMachAnyTagged, 2);
Node* n28 = graph()->NewNode(op, nil, nil, nil);
USE(n28);
op = common()->Phi(kMachAnyTagged, 2);
Node* n13 = graph()->NewNode(op, nil, nil, nil);
USE(n13);
op = common()->NumberConstant(0);
Node* n7 = graph()->NewNode(op);
USE(n7);
n13->ReplaceInput(0, n7);
op = common()->Phi(kMachAnyTagged, 2);
Node* n54 = graph()->NewNode(op, nil, nil, nil);
USE(n54);
n54->ReplaceInput(0, n28);
op = js()->Add();
Node* n52 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n52);
op = js()->ToNumber();
Node* n51 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n51);
n51->ReplaceInput(0, n28);
n51->ReplaceInput(1, n6);
n51->ReplaceInput(2, n47);
op = common()->IfFalse();
Node* n50 = graph()->NewNode(op, nil);
USE(n50);
n50->ReplaceInput(0, n48);
n51->ReplaceInput(3, n50);
n52->ReplaceInput(0, n51);
n52->ReplaceInput(1, n21);
n52->ReplaceInput(2, n6);
n52->ReplaceInput(3, n51);
n52->ReplaceInput(4, n50);
n54->ReplaceInput(1, n52);
n54->ReplaceInput(2, n53);
n13->ReplaceInput(1, n54);
n13->ReplaceInput(2, n8);
n28->ReplaceInput(0, n13);
n28->ReplaceInput(1, n28);
n28->ReplaceInput(2, n23);
n37->ReplaceInput(0, n28);
op = common()->NumberConstant(0);
Node* n36 = graph()->NewNode(op);
USE(n36);
n37->ReplaceInput(1, n36);
n37->ReplaceInput(2, n6);
n37->ReplaceInput(3, n35);
n37->ReplaceInput(4, n32);
n38->ReplaceInput(0, n37);
n38->ReplaceInput(1, n32);
n39->ReplaceInput(0, n38);
n40->ReplaceInput(1, n39);
n41->ReplaceInput(2, n40);
n12->ReplaceInput(1, n41);
n12->ReplaceInput(2, n8);
n27->ReplaceInput(0, n12);
n27->ReplaceInput(1, n35);
n27->ReplaceInput(2, n23);
n30->ReplaceInput(0, n27);
n30->ReplaceInput(1, n26);
n30->ReplaceInput(2, n6);
op = common()->Phi(kMachAnyTagged, 2);
Node* n29 = graph()->NewNode(op, nil, nil, nil);
USE(n29);
n29->ReplaceInput(0, n22);
op = js()->Add();
Node* n45 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n45);
op = js()->ToNumber();
Node* n44 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n44);
n44->ReplaceInput(0, n25);
n44->ReplaceInput(1, n6);
n44->ReplaceInput(2, n37);
op = common()->IfFalse();
Node* n43 = graph()->NewNode(op, nil);
USE(n43);
n43->ReplaceInput(0, n38);
n44->ReplaceInput(3, n43);
n45->ReplaceInput(0, n44);
n45->ReplaceInput(1, n21);
n45->ReplaceInput(2, n6);
n45->ReplaceInput(3, n44);
n45->ReplaceInput(4, n43);
n29->ReplaceInput(1, n45);
n29->ReplaceInput(2, n23);
n30->ReplaceInput(3, n29);
n30->ReplaceInput(4, n23);
n42->ReplaceInput(0, n30);
n42->ReplaceInput(1, n37);
n42->ReplaceInput(2, n40);
n47->ReplaceInput(3, n42);
n47->ReplaceInput(4, n40);
n48->ReplaceInput(0, n47);
n48->ReplaceInput(1, n40);
n49->ReplaceInput(0, n48);
n53->ReplaceInput(0, n49);
n53->ReplaceInput(1, n50);
n8->ReplaceInput(1, n53);
n17->ReplaceInput(1, n8);
n18->ReplaceInput(0, n17);
n23->ReplaceInput(0, n18);
n23->ReplaceInput(1, n43);
n26->ReplaceInput(2, n23);
n11->ReplaceInput(1, n26);
n11->ReplaceInput(2, n8);
n16->ReplaceInput(1, n11);
n16->ReplaceInput(2, n6);
op = common()->Phi(kMachAnyTagged, 2);
Node* n14 = graph()->NewNode(op, nil, nil, nil);
USE(n14);
n14->ReplaceInput(0, n0);
op = common()->Phi(kMachAnyTagged, 2);
Node* n55 = graph()->NewNode(op, nil, nil, nil);
USE(n55);
n55->ReplaceInput(0, n47);
n55->ReplaceInput(1, n52);
n55->ReplaceInput(2, n53);
n14->ReplaceInput(1, n55);
n14->ReplaceInput(2, n8);
n16->ReplaceInput(3, n14);
n16->ReplaceInput(4, n8);
n20->ReplaceInput(2, n16);
n20->ReplaceInput(3, n18);
n22->ReplaceInput(0, n20);
n22->ReplaceInput(1, n21);
n22->ReplaceInput(2, n6);
n22->ReplaceInput(3, n20);
n22->ReplaceInput(4, n18);
n25->ReplaceInput(0, n22);
n25->ReplaceInput(1, n45);
n25->ReplaceInput(2, n23);
n10->ReplaceInput(1, n25);
n10->ReplaceInput(2, n8);
n56->ReplaceInput(0, n10);
n56->ReplaceInput(1, n13);
n56->ReplaceInput(2, n6);
n56->ReplaceInput(3, n16);
op = common()->IfFalse();
Node* n19 = graph()->NewNode(op, nil);
USE(n19);
n19->ReplaceInput(0, n17);
n56->ReplaceInput(4, n19);
n57->ReplaceInput(0, n56);
n57->ReplaceInput(1, n56);
n57->ReplaceInput(2, n19);
n58->ReplaceInput(0, n57);
graph()->SetStart(n0);
graph()->SetEnd(n58);
ComputeAndVerifySchedule(62, graph());
}
TEST_F(SchedulerTestWithIsolate, BuildScheduleSimpleLoopWithCodeMotion) {
const Operator* op;
// Manually transcripted code for:
// function turbo_fan_test(a, b, c) {
// while (a < b) {
// a += b + c;
// }
// return a;
// }
op = common()->Start(0);
Node* n0 = graph()->NewNode(op);
USE(n0);
Node* nil = graph()->NewNode(common()->Dead());
op = common()->End();
Node* n22 = graph()->NewNode(op, nil);
USE(n22);
op = common()->Return();
Node* n21 = graph()->NewNode(op, nil, nil, nil);
USE(n21);
op = common()->Phi(kMachAnyTagged, 2);
Node* n9 = graph()->NewNode(op, nil, nil, nil);
USE(n9);
op = common()->Parameter(0);
Node* n2 = graph()->NewNode(op, n0);
USE(n2);
n9->ReplaceInput(0, n2);
op = js()->Add();
Node* n20 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n20);
n20->ReplaceInput(0, n9);
op = &kIntAdd;
Node* n19 = graph()->NewNode(op, nil, nil);
USE(n19);
op = common()->Phi(kMachAnyTagged, 2);
Node* n10 = graph()->NewNode(op, nil, nil, nil);
USE(n10);
op = common()->Parameter(0);
Node* n3 = graph()->NewNode(op, n0);
USE(n3);
n10->ReplaceInput(0, n3);
n10->ReplaceInput(1, n10);
op = common()->Loop(2);
Node* n7 = graph()->NewNode(op, nil, nil);
USE(n7);
n7->ReplaceInput(0, n0);
op = common()->IfTrue();
Node* n17 = graph()->NewNode(op, nil);
USE(n17);
op = common()->Branch();
Node* n16 = graph()->NewNode(op, nil, nil);
USE(n16);
op = js()->ToBoolean();
Node* n15 = graph()->NewNode(op, nil, nil, nil, nil);
USE(n15);
op = js()->LessThan();
Node* n14 = graph()->NewNode(op, nil, nil, nil, nil, nil);
USE(n14);
n14->ReplaceInput(0, n9);
n14->ReplaceInput(1, n10);
op = common()->HeapConstant(GetUniqueUndefined());
Node* n6 = graph()->NewNode(op);
USE(n6);
n14->ReplaceInput(2, n6);
op = common()->Phi(kMachAnyTagged, 2);
Node* n12 = graph()->NewNode(op, nil, nil, nil);
USE(n12);
n12->ReplaceInput(0, n0);
n12->ReplaceInput(1, n20);
n12->ReplaceInput(2, n7);
n14->ReplaceInput(3, n12);
n14->ReplaceInput(4, n7);
n15->ReplaceInput(0, n14);
n15->ReplaceInput(1, n6);
n15->ReplaceInput(2, n14);
n15->ReplaceInput(3, n7);
n16->ReplaceInput(0, n15);
n16->ReplaceInput(1, n7);
n17->ReplaceInput(0, n16);
n7->ReplaceInput(1, n17);
n10->ReplaceInput(2, n7);
n19->ReplaceInput(0, n2);
op = common()->Phi(kMachAnyTagged, 2);
Node* n11 = graph()->NewNode(op, nil, nil, nil);
USE(n11);
op = common()->Parameter(0);
Node* n4 = graph()->NewNode(op, n0);
USE(n4);
n11->ReplaceInput(0, n4);
n11->ReplaceInput(1, n11);
n11->ReplaceInput(2, n7);
n19->ReplaceInput(1, n3);
n20->ReplaceInput(1, n19);
n20->ReplaceInput(2, n6);
n20->ReplaceInput(3, n19);
n20->ReplaceInput(4, n17);
n9->ReplaceInput(1, n20);
n9->ReplaceInput(2, n7);
n21->ReplaceInput(0, n9);
n21->ReplaceInput(1, n15);
op = common()->IfFalse();
Node* n18 = graph()->NewNode(op, nil);
USE(n18);
n18->ReplaceInput(0, n16);
n21->ReplaceInput(2, n18);
n22->ReplaceInput(0, n21);
graph()->SetStart(n0);
graph()->SetEnd(n22);
Schedule* schedule = ComputeAndVerifySchedule(19, graph());
// Make sure the integer-only add gets hoisted to a different block that the
// JSAdd.
CHECK(schedule->block(n19) != schedule->block(n20));
}
namespace {
Node* CreateDiamond(Graph* graph, CommonOperatorBuilder* common, Node* cond) {
Node* tv = graph->NewNode(common->Int32Constant(6));
Node* fv = graph->NewNode(common->Int32Constant(7));
Node* br = graph->NewNode(common->Branch(), cond, graph->start());
Node* t = graph->NewNode(common->IfTrue(), br);
Node* f = graph->NewNode(common->IfFalse(), br);
Node* m = graph->NewNode(common->Merge(2), t, f);
Node* phi = graph->NewNode(common->Phi(kMachAnyTagged, 2), tv, fv, m);
return phi;
}
} // namespace
TARGET_TEST_F(SchedulerTest, FloatingDiamond1) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* d1 = CreateDiamond(graph(), common(), p0);
Node* ret = graph()->NewNode(common()->Return(), d1, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
ComputeAndVerifySchedule(13, graph());
}
TARGET_TEST_F(SchedulerTest, FloatingDiamond2) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* d1 = CreateDiamond(graph(), common(), p0);
Node* d2 = CreateDiamond(graph(), common(), p1);
Node* add = graph()->NewNode(&kIntAdd, d1, d2);
Node* ret = graph()->NewNode(common()->Return(), add, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
ComputeAndVerifySchedule(24, graph());
}
TARGET_TEST_F(SchedulerTest, FloatingDiamond3) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* d1 = CreateDiamond(graph(), common(), p0);
Node* d2 = CreateDiamond(graph(), common(), p1);
Node* add = graph()->NewNode(&kIntAdd, d1, d2);
Node* d3 = CreateDiamond(graph(), common(), add);
Node* ret = graph()->NewNode(common()->Return(), d3, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
ComputeAndVerifySchedule(33, graph());
}
TARGET_TEST_F(SchedulerTest, NestedFloatingDiamonds) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* map = graph()->NewNode(
simplified()->LoadElement(AccessBuilder::ForFixedArrayElement()), p0, p0,
p0, start, f);
Node* br1 = graph()->NewNode(common()->Branch(), map, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1);
Node* ttrue = graph()->NewNode(common()->Int32Constant(1));
Node* ffalse = graph()->NewNode(common()->Int32Constant(0));
Node* phi1 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), ttrue, ffalse, m1);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), fv, phi1, m);
Node* ephi1 = graph()->NewNode(common()->EffectPhi(2), start, map, m);
Node* ret = graph()->NewNode(common()->Return(), phi, ephi1, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
ComputeAndVerifySchedule(23, graph());
}
TARGET_TEST_F(SchedulerTest, NestedFloatingDiamondWithChain) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* brA1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* tA1 = graph()->NewNode(common()->IfTrue(), brA1);
Node* fA1 = graph()->NewNode(common()->IfFalse(), brA1);
Node* mA1 = graph()->NewNode(common()->Merge(2), tA1, fA1);
Node* phiA1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p1, mA1);
Node* brB1 = graph()->NewNode(common()->Branch(), p1, graph()->start());
Node* tB1 = graph()->NewNode(common()->IfTrue(), brB1);
Node* fB1 = graph()->NewNode(common()->IfFalse(), brB1);
Node* mB1 = graph()->NewNode(common()->Merge(2), tB1, fB1);
Node* phiB1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p1, mB1);
Node* brA2 = graph()->NewNode(common()->Branch(), phiB1, mA1);
Node* tA2 = graph()->NewNode(common()->IfTrue(), brA2);
Node* fA2 = graph()->NewNode(common()->IfFalse(), brA2);
Node* mA2 = graph()->NewNode(common()->Merge(2), tA2, fA2);
Node* phiA2 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phiB1, c, mA2);
Node* brB2 = graph()->NewNode(common()->Branch(), phiA1, mB1);
Node* tB2 = graph()->NewNode(common()->IfTrue(), brB2);
Node* fB2 = graph()->NewNode(common()->IfFalse(), brB2);
Node* mB2 = graph()->NewNode(common()->Merge(2), tB2, fB2);
Node* phiB2 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phiA1, c, mB2);
Node* add = graph()->NewNode(&kIntAdd, phiA2, phiB2);
Node* ret = graph()->NewNode(common()->Return(), add, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
ComputeAndVerifySchedule(35, graph());
}
TARGET_TEST_F(SchedulerTest, NestedFloatingDiamondWithLoop) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* loop = graph()->NewNode(common()->Loop(2), f, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* add = graph()->NewNode(&kIntAdd, ind, fv);
Node* br1 = graph()->NewNode(common()->Branch(), add, loop);
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
loop->ReplaceInput(1, t1); // close loop.
ind->ReplaceInput(1, ind); // close induction variable.
Node* m = graph()->NewNode(common()->Merge(2), t, f1);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), fv, ind, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
ComputeAndVerifySchedule(20, graph());
}
TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond1) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* loop = graph()->NewNode(common()->Loop(2), start, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* add = graph()->NewNode(&kIntAdd, ind, c);
Node* br = graph()->NewNode(common()->Branch(), add, loop);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1);
Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), add, p0, m1);
loop->ReplaceInput(1, t); // close loop.
ind->ReplaceInput(1, phi1); // close induction variable.
Node* ret = graph()->NewNode(common()->Return(), ind, start, f);
Node* end = graph()->NewNode(common()->End(), ret, f);
graph()->SetEnd(end);
ComputeAndVerifySchedule(20, graph());
}
TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond2) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* loop = graph()->NewNode(common()->Loop(2), start, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1);
Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), c, ind, m1);
Node* add = graph()->NewNode(&kIntAdd, ind, phi1);
Node* br = graph()->NewNode(common()->Branch(), add, loop);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
loop->ReplaceInput(1, t); // close loop.
ind->ReplaceInput(1, add); // close induction variable.
Node* ret = graph()->NewNode(common()->Return(), ind, start, f);
Node* end = graph()->NewNode(common()->End(), ret, f);
graph()->SetEnd(end);
ComputeAndVerifySchedule(20, graph());
}
TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond3) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* c = graph()->NewNode(common()->Int32Constant(7));
Node* loop = graph()->NewNode(common()->Loop(2), start, start);
Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t1 = graph()->NewNode(common()->IfTrue(), br1);
Node* f1 = graph()->NewNode(common()->IfFalse(), br1);
Node* loop1 = graph()->NewNode(common()->Loop(2), t1, start);
Node* ind1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop);
Node* add1 = graph()->NewNode(&kIntAdd, ind1, c);
Node* br2 = graph()->NewNode(common()->Branch(), add1, loop1);
Node* t2 = graph()->NewNode(common()->IfTrue(), br2);
Node* f2 = graph()->NewNode(common()->IfFalse(), br2);
loop1->ReplaceInput(1, t2); // close inner loop.
ind1->ReplaceInput(1, ind1); // close inner induction variable.
Node* m1 = graph()->NewNode(common()->Merge(2), f1, f2);
Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), c, ind1, m1);
Node* add = graph()->NewNode(&kIntAdd, ind, phi1);
Node* br = graph()->NewNode(common()->Branch(), add, loop);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
loop->ReplaceInput(1, t); // close loop.
ind->ReplaceInput(1, add); // close induction variable.
Node* ret = graph()->NewNode(common()->Return(), ind, start, f);
Node* end = graph()->NewNode(common()->End(), ret, f);
graph()->SetEnd(end);
ComputeAndVerifySchedule(28, graph());
}
TARGET_TEST_F(SchedulerTest, PhisPushedDownToDifferentBranches) {
Node* start = graph()->NewNode(common()->Start(2));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* p1 = graph()->NewNode(common()->Parameter(1), start);
Node* v1 = graph()->NewNode(common()->Int32Constant(1));
Node* v2 = graph()->NewNode(common()->Int32Constant(2));
Node* v3 = graph()->NewNode(common()->Int32Constant(3));
Node* v4 = graph()->NewNode(common()->Int32Constant(4));
Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start());
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), v1, v2, m);
Node* phi2 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), v3, v4, m);
Node* br2 = graph()->NewNode(common()->Branch(), p1, graph()->start());
Node* t2 = graph()->NewNode(common()->IfTrue(), br2);
Node* f2 = graph()->NewNode(common()->IfFalse(), br2);
Node* m2 = graph()->NewNode(common()->Merge(2), t2, f2);
Node* phi3 =
graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phi, phi2, m2);
Node* ret = graph()->NewNode(common()->Return(), phi3, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
ComputeAndVerifySchedule(24, graph());
}
TARGET_TEST_F(SchedulerTest, BranchHintTrue) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* tv = graph()->NewNode(common()->Int32Constant(6));
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(BranchHint::kTrue), p0, start);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), tv, fv, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
Schedule* schedule = ComputeAndVerifySchedule(13, graph());
// Make sure the false block is marked as deferred.
CHECK(!schedule->block(t)->deferred());
CHECK(schedule->block(f)->deferred());
}
TARGET_TEST_F(SchedulerTest, BranchHintFalse) {
Node* start = graph()->NewNode(common()->Start(1));
graph()->SetStart(start);
Node* p0 = graph()->NewNode(common()->Parameter(0), start);
Node* tv = graph()->NewNode(common()->Int32Constant(6));
Node* fv = graph()->NewNode(common()->Int32Constant(7));
Node* br = graph()->NewNode(common()->Branch(BranchHint::kFalse), p0, start);
Node* t = graph()->NewNode(common()->IfTrue(), br);
Node* f = graph()->NewNode(common()->IfFalse(), br);
Node* m = graph()->NewNode(common()->Merge(2), t, f);
Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), tv, fv, m);
Node* ret = graph()->NewNode(common()->Return(), phi, start, start);
Node* end = graph()->NewNode(common()->End(), ret, start);
graph()->SetEnd(end);
Schedule* schedule = ComputeAndVerifySchedule(13, graph());
// Make sure the true block is marked as deferred.
CHECK(schedule->block(t)->deferred());
CHECK(!schedule->block(f)->deferred());
}
} // namespace compiler
} // namespace internal
} // namespace v8